Xlib = C Language X Interface
X Window System Standard
X Version 11, Release 7

libX11 1.3.2

James Gettys

Cambridge Research Laboratory
Digital Equipment Corporation

Robert W Scheifler

Laboratory for Computer Science
Massachusetts Institute of Technology

with contributions from

Chuck Adams, Tektronix, Inc.
Vania Joloboff, Open Software Foundation
Hideki Hiura, Sun Microsystems, Inc.
Bill McMahon, Hewlett-Packard Company
Ron Newman, Massachusetts Institute of Technology
Al Tabayoyon, Tektronix, Inc.
Glenn WidenerTektronix, Inc.

Shigeru Yamada, Fujitsu OSSI

The X Windav System is a trademark of The Open Group.
TekHVC is a trademark of Tektronix, Inc.

Copyright © 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1994, 1996, 2002 The Open Group

Permission is hereby granted, free of charge, ygarson obtaining a cgpof this software and associated documenta-
tion files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The abee mpyright notice and this permission notice shall be included in all copies or substantial portions of the Soft-
ware.

THE SOFTWARE IS PRVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE AND NONINFRINGEMENTIN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACTTORT OR OTH-
ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of The Open Group shall not be used in advertising or otherwise to pro-
mote the sale, use or other dealings in this Software without prior written authorization from The Open Group.

Copyright © 1985, 1986, 1987, 1988, 1989, 1990, 1991 by Digital Equipment Corporation
Portions Copyright © 1990, 1991 by Tektronix, Inc.

Permission to use, cgpmodify and distribute this documentation forygourpose and without fee is hereby granted,
provided that the alve cpyright notice appears in all copies and that both that copyright notice and this permission
notice appear in all copies, and that the names of Digital and Tektronix not be used in in advertising or publicity per-
taining to this documentation without specific, written prior permission. Digital and Tektronix makes no representa-
tions about the suitability of this documentation foy parpose. lis provided “as is'without express or implied war-
ranty.

Acknowledgments

The design and implementation of the first 10 versions of X were primarily the work of three
individuals: Robert Scheifler of the MIT Laboratory for Computer Science and Jim Gettys of Dig-
ital EQuipment Corporation and Ron Newman of Midth at MIT Project AthenaX version 11,
however, is the result of the efforts of dozens of individuals at almost ay hoaations and
organizations. Atthe risk of offending some of the players by exclusion, we woutddik
acknowledge some of the people who desgpecial credit and recognition for their work on

Xlib. Our apologies to anyone inadvertentiyedooked.

Release 1

Our thanks does to Ron Newman (MIT Project Athena), who contributed substantially to the
design and implementation of the Version 11 Xlib interface.

Our thanks also goes to Ralph Swick (Project Athena and Digital) who kept it all together for us
during the early releases. He handled literally thousands of requests from peppldnere and
saved the sanity of at least one of us. His calm good cheer was a foundation on which we could
build.

Our thanks also goes to Todd Brurf@®ektronix) who was “loanedto Project Athena at

exactly the right moment to provide very capable and much-needed assistance during the alpha
and beta releases. He was responsible for the successful integration of sources from multiple
sites; we would not ve had a release without him.

Our thanks also goes to Al Mento and Al Wojtas of DiggtalL T RIX Documentation Group.

With good humor and chediey took a rough draft and made it an infinitely better and more use-
ful document. The work tlyeghavedone will help man everywhere. V¢ dso would like to hank

Hal Murray (Digital SRC) and Peter George (Digital VMS) who contributed much by proofread-
ing the early drafts of this document.

Our thanks also goes to fIBfike (Digital UEG), Tom Benson, Jackie Granfield, and Vince Orgo-
van (Digital VMS) who helped with the library utilities implementation; to Hania Gajewska (Dig-
ital UEG-WSL) who, along with Ellis Cohen (CMU and Siemens), was instrumental in the
semantic design of the windananager properties; and to @aRosenthal (Sun Microsystems)

who also contributed to the protocol and provided the sample generic color frame buffer device-
dependent code.

The alpha and beta test participants desgrgcial recognition and thanks as well. It is signifi-
cant that the bug reports (and mdixes) during alpha and beta test came almost exelysi

from just a fev of the alpha testers, mostly hardware vendors working on product implementa-
tions of X. The continued public contribution of vendors andasities is certainly to the bene-
fit of the entire X community.

Our special thanks must go to Sam FuN&ce-President of Corporate Research at Digital, who
has remained committed to the widest publalability of X and who made it possible to greatly
supplement MITS resources with the Digital sfah order to mak version 11 a realityMary of

the people mentioned here are part of the Western Software Laboratory (Digital UEG-WSL) of
the ULTRIX Engineering group and work for Snegi\allace, who has been vital to the pro-
ject’s auccess. Othensot mentioned here worked on the toolkit and are acknowledged in the X
Toolkit documentation.

Of course, we must particularly thank Paul Asente, formerly of Stanforedity and nav of
Digital UEG-WSL, who wrote \Whe predecessor to X, and Brian Reid, formerly of Stanford
University and nav of Digital WRL, who had much to do with \&/design.

Finally, our thanks goes to M|TDigital Equipment Corporation, and IBM for providing the envi-
ronment where it could happen.

Release 4

Our thanks go to Jim Fulton (MIT X Consortium) for designing and specifying th&hke
functions for Inter-Client Communication Gamtions (ICCCM) support.

We dso thank Al Mento of Digital for his continued effort in maintaining this document and Jim
Fulton and Donna Carrse (MIT X Consortium) for their much-appreciated efforts in reviewing
the changes.

Release 5

The principal authors of the Input Method facilities are Vania Jolglyfen Software Founda-
tion) and Bill McMahon (Hewlett-&ckard). Therincipal author of the rest of the international-
ization facilities is Glenn Widener €Kktronix). Ourthanks to them for keeping their sense of
humor through a long and sometimes difficult design process. Although the words and much of
the design are due to them, maihers hae cntributed substantially to the design and imple-
mentation. ®m McFarland (HP) and Frank Rojas (IBM) desgmrticular recognition for their
contritutions. Othecontributors were: Tim Anderson (Motorola), Alka Badshah (OSF), Gabe
Beged-Da (HP), Chih-Chung K (lll), Vera Cheng (lIl), Michael Collins (Digital), Walt Daniels
(IBM), Noritoshi Demizu (OMRON), KeisukFukui (Fujitsu), Hitoshoi Fukumoto (Nihon Sun),
Tim Greenwood (Digital), John Haey (BM), Hideki Hiura (Sun), Fred Horman (AT&T),
Norikazu Kaiya (Fujitsu), Yuji Kamata (IBM), Yutaka Kataoka (Wasedavéisity), Ranee
Khubchandani (Sun), Akira Kon (NEC), Hiroshi Kuribayashi (OMRON), Temikrosaka
(Sun), Seiji Kuwari (OMRON), Sandra Martin (OSF), Narita Masal(i#ujitsu), Masato

Morisaki (NTT), Nelson Ng (Sun), Takashi Nishimura (NTT America), Makato Nishino (IBM),
Akira Ohsone (Nihon Sun), Chris Peterson (MIT), Sam Shteingart (AT&T), Manish Sheth
(AT&T), Muneiyoshi Suzuki (NTT), Cori Mehring (Digital), Shoji Sugiyama (IBM), and Eiji
Tosa (IBM).

We ae deeply indebted to Tatsuya Kato (NTT), Hiroshi Kuribayashi (OMRON), Seiji Kuwari
(OMRON), Muneiyoshi Suzuki (NTT), and Li Yuhong (OMRON) for producing one of the first
complete sample implementation of the internationalization facilities, and Hiromu Inukai (Nihon
Sun), Takashi Fujiwara (Fujitsu), Hideki Hiura (Sun), Yasuhirav#&Oki Technosystems Labo-
ratory), Kazunori Nishihara (Fuji Xerox), Masaki Takeuchi (Sony), Katsuhisa Yano (Toshiba),
Makoto Wakamatsu (SgrCorporation) for producing the another complete sample implementa-
tion of the internationalization facilities.

The principal authors (design and implementation) of the Xcms color management facilities are
Al Tabayoyon (Tektronix) and Chuck AdamseKtronix). Joanaylor (Tektronix), Bob Toole
(Tektronix), and Keith Packard (MIT X Consortium) also contributed significantly to the design.
Others who contributed are: Harold Boll (Kodak), Ken Bronstein (HP), Waam (SGI), Donna
Corverse (MIT X Consortium), Elias Israel (ISC), Deron Johnson (Sun), Jim King (Adobe),
Ricardo Motta (HP), Chuck Peek (IBM), Wil Plouffe (IBM), @aSernlicht (MIT X Consor-

tium), Kumar Talluri (AT&T), and Richard Verbg(IBM).

We dso once again thank Al Mento of Digital for his work in formatting and reformatting text for
this manual, and for producing man pages. Thanks alsove Eather (1XI) for proof-reading
and finding a number of small errors.

Release 6

Stephen Gildea (X Consortium) authored the threads support. Ovais Ashraf (Sun) and Greg
Olsen (Sun) contributed substantially by testing the facilities and reporting bugs in a timely fash-
ion.

The principal authors of the internationalization facilities, including Input and Output Methods,
are Hideki Hiura (SunSoft) and Shigeru Yamada (Fujitsu OSSI). Although the words and much
of the design are due to them, mathers hae mntributed substantially to the design and imple-
mentation. Theare: Takashi Fujiwara (Fujitsu), Yoshio Horiuchi (IBM), Makoto Inada (Digital),
Hiromu Inukai (Nihon SunSoft), Song JaeKyung (KAIST), Frabkng (Digital), Tom McFar-

land (HP), Hiroyuki Miyamoto (Digital), MasahikNarita (Fujitsu), Frank Rojas (IBM),

Hidetoshi Tajima (HP), Masaki Takeuchi (Sony), Makoto Wakamatsu (Sony), Masaki Wakao
(IBM), Katsuhisa Yano(Toshiba) and Jinsoo Yoon (KAIST).

The principal producers of the sample implementation of the internationalization facilities are:
Jeffrey Bloomfield (Fujitsu OSSI), Takashi Fujiwara (Fujitsu), Hideki Hiura (SunSoft), Yoshio
Horiuchi (IBM), Makoto Inada (Digital), Hiromu Inukai (Nihon SunSoft), Song JaeKyung
(KAIST), Riki Kawaguchi (Fujitsu), FrankLing (Digital), Hiroyuki Miyamoto (Digital),

Hidetoshi Tajima (HP), Toshimitsu Terazono (Fujitsu), Makoto Wakamatsu (Sony), Masaki
Wakao (IBM), Shigeru Yamada (Fujitsu OSSI) and Katsuhisa Yano (Toshiba).

The coordinators of the integration, testing, and release of this implementation of the internation-
alization facilities are Nobuyuki Tanaka (Sony) and Makoto Wakamatsu (Sony).

Others who hee ntributed to the architectural design or testing of the sample implementation
of the internationalization facilities are: Hector Chan (Digital), Michael Kung (IBM), Joseph
Kwok (Digital), Hiroyuki Machida (Sony), Nelson Ng (SunSoft), Frank Rojas (IBM), Yoshiyuki
Segawa (Fujitsu OSSI), Makik Shimamura (Fujitsu), Shoji Sugiyama (IBM), Lining Sun (SGI),
Masaki Takeuchi (Sony), Jinsoo Yoon (KAIST) and Akiyasu Zen (HP).

Jim Gettys
Cambridge Research Laboratory
Digital Equipment Corporation

Robert W Scheifler
Laboratory for Computer Science
Massachusetts Institute of Technology

Chapter 1

Introduction to Xlib

The X Windav System is a network-transparent wimdsystem that was designed at MIX

display servers run on computers with either monochrome or color bitmap displayteardie
server distributes user input to and accepts output requests from various client programs located
either on the same machine or elsewhere in theanktwXlib is a C subroutine library that appli-
cation programs (clients) use to interface with the winggstem by means of a stream connec-

tion. Althougha dient usually runs on the same machine as the X server it is talking to, this need
not be the case.

Xlib = C Languae X hterfaceis a reference guide to the lowskC language interface to the X
Window System protocol. It is neither a tutorial nor a useriide to programming the X Win-

dow System. Ratheiit provides a detailed description of each function in the library as well as a
discussion of the related background informatixlib — C Languaye X hterfaceassumes a

basic understanding of a graphics wiwdsystem and of the C programming language. Other
higher-level abstractions (for example, those provided by the toolkits for X) are built on top of the
Xlib library. For further information about these highevdd ibraries, see the appropriate toolkit
documentation. Th¥ Window System Protocprovides the definiie word on the behavior of

X. Althoughadditional information appears here, the protocol document is the ruling document.

To provide an introduction to X programming, this chapter discusses:
. Overview of the X Windav System

. Errors

. Standard header files

. Generic values and types

. Naming and argument ceentions within Xlib

. Programming considerations

. Character sets and encodings

. Formatting comentions

1.1. Owerview of the X Window System

Some of the terms used in this book are unique to X, and other terms that are common to other
window systems hee dfferent meanings in X.You may find it helpful to refer to the glossary,
which is located at the end of the book.

The X Windav System supports one or more screens containiedapping windows or subwin-
dows. Ascreen is a physical monitor and hardware that can be ggscale, or monochrome.
There can be multiple screens for each displayavkstation. Asingle X server can provide dis-
play services for gnnumber of screensA set of screens for a single user with oegtioard and
one pointer (usually a mouse) is called a display.

All the windows in an X server are arranged in strict hierarchies. At the top of each hjigésach
root windav, which covers each of the display screens. Each root windgpartially or com-
pletely cavered by child windas. All windows, except for root windows, V&parents. Therés
usually at least one windofor each application program. Child windows may in turvehaeir

own children. Inthis way an gplication program can create an arbitrarily deep tree on each
screen. Xprovides graphics, text, and raster operations for windows.

A child window can be larger than its parent. That is, part or all of the child wiredo extend
beyond the boundaries of the parent, but all output to a wirsldipped by its parent. If seral
children of a windw haveoverlapping locations, one of the children is considered to be on top of
or raised wer the others, thus obscuring them. Output to areasred by other windows is sup-
pressed by the wingosystem unless the windohas backing store. If a windois cbscured by

a £cond windwy, the second winde obscures only those ancestors of the second wiirllat

are also ancestors of the first wimdo

A window has a border zero or more pixels in width, which can lpgatiern (pixmap) or solid
color you like. Awindow usually but not alays has a background pattern, which will be
repainted by the windo system when uncared. Childwindows obscure their parents, and
graphic operations in the parent wimdosually are clipped by the children.

Each windwv and pixmap has its own coordinate system. The coordinate system has the X axis
horizontal and the Y axis vertical with the origin [0, O] at the upper-left co@mordinates are
integral, in terms of pixels, and coincide with pixel centér@. a window, the origin is inside the
border at the inside, upper-left corner.

X does not guarantee to presetie contents of windes. Whenpart or all of a windw is hid-

den and then brought back onto the screen, its contents may be lost. The server then sends the
client program areExposeevent to notify it that part or all of the wingdoneeds to be repainted.
Programs must be prepared to regenerate the contents of windows on demand.

X also provides off-screen storage of graphics objects, called pixmaps. Single plane (depth 1)
pixmaps are sometimes referred to as bitmaps. Pixmaps can be used in most graphics functions
interchangeably with windows and are used in various graphics operations to define patterns or
tiles. Windows and pixmaps together are referred to asatras.

Most of the functions in Xlib just add requests to an output buffeese requests latexeeute
asynchronously on the X servdtunctions that return values of information stored in the server
do not return (that is, tyeblock) until an explicit reply is recedéd or an eror occurs.You can
provide an error handlewhich will be called when the error is reported.

If a client does not want a request keaite asynchronouslit can follow the request with a call
to XSync, which blocks until all previously buffered asynchronouwanés hae been sent and
acted on. As an important side effect, the output buffer in Xlibnayal flushed by a call to any
function that returns a value from the server or waits for input.

Many Xlib functions will return an integer resource 1D, which allows you to refer to objects
stored on the X serveiThese can be of typ&/indow, Font, Pixmap, Colormap, Cursor, and
GContext, as cfined in the file X11/X.h>. Thesaesources are created by requests and are
destroyed (or freed) by requests or when connections are closed. Most of these resources are
potentially sharable between applications, and in fact, windows are manipulated explicitly by
window manager programg-onts and cursors are shared automatically across multiple screens.
Fonts are loaded and unloaded as needed and are shared by multiple Ebetssre often

cached in the serveilib provides no support for sharing graphics contexts between applica-
tions.

Client programs are informed ofemts. Eents may either be side effects of a request (for exam-
ple, restacking windows generategposeevents) or completely asynchronous (for example,
from the leyboard). Aclient program asks to be informed oBets. Becausether applications
can send\ents to your application, programs must be prepared to handle (or ignemts ef all

types.

Input events (for example, ady pressed or the pointer med) arrive asynchronously from the
server and are queued until yreee requested by an explicit call (for exampi@&extEvent or
XWindowEvent). Inaddition, some library functions (for examp}RaiseWindow) generate
Exposeand ConfigureRequestevents. Thesevents also arkie asynchronouslybut the client
may wish to explicitly wait for them by callingSync after calling a function that can cause the
server to generatevents.

1.2. Errors

Some functions returBtatus, an nteger error indication. If the function fails, it returns a zero.

If the function returns a status of zero, it has not updated the regurmemts. Becau<@ does

not provide multiple return values, maiunctions must return their results by writing into client-
passed storage. By default, errors are handled either by a standard library function or by one that
you provide. Functionghat return pointers to strings return NULL pointers if the string does not
exist.

The X server reports protocol errors at the time that it detects them. If more than one error could
be generated for awgin request, the server can repory afthem.

Because Xlib usually does not transmit requests to the server immediately (that is, it buffers
them), errors can be reported much later thay @beially occur For debugging purposes, how-

eva, Xlib provides a mechanism for forcing synchronous behavior (see section 11.8.1). When
synchronization is enabled, errors are reported gsatbegenerated.

When Xlib detects an errdt calls an error handlewhich your program can pvade. If you do
not provide an error handlehe error is printed, and your program terminates.

1.3. StandardHeader Files

The following include files are part of the Xlib standard:

. <X11/Xlib.h>
This is the main header file for Xlibrhe majority of all Xlib symbols are declared by
including this file. This file also contains the preprocessor syidlilnEpecificationRe-

lease This symbol is defined to faa the 6 in this release of the standard. (Release 5 of
Xlib was the first release toVv&atis symbol.)

. <X11/X.h>

This file declares types and constants for the X protocol that are to be used by applications.
It is included automatically fromX11/Xlib.h>, so application code shouldvee need to
reference this file directly.

. <X11l/Xcms.h>

This file contains symbols for much of the color management facilities described in chapter
6. All functions, types, and symbols with the prefix “Xcms”, plus the Colon@aion

Contexts macros, are declared in this fil&X1%/Xlib.h> must be included before including

this file.

. <X11/Xutil.h>

This file declares various functions, types, and symbols used for inter-client communication
and application utility functions, which are described in chapters 14 andxta./Xib.h>
must be included before including this file.

. <X11/Xresource.l>

This file declares all functions, types, and symbols for the resource manager facilities,
which are described in chapter 15XX1/Xlib.h> must be included before including this

file.

<X11/Xatom.h>

This file declares all predefined atoms, which are symbols with the prefix “XA_".
<X11/cursorfont.h>

This file declares the cursor symbols for the standard cursor font, which are listed in
appendix B. All cursor symbols @ the prefix “XC_".

<X11/keysymdef.t»

This file declares all standard¥Sym values, which are symbols with the prefix “XK_".

The KeySyms are arranged in groups, and a preprocessor symbol controls inclusion of each
group. Thepreprocessor symbol must be defined prior to inclusion of the file to obtain the
associatedalues. Thereprocessor symbols are XK_MISCELLANXK XKB_KEYS,
XK_3270, XK_LATIN1, XK_LATIN2, XK_LATIN3, XK_LATIN4, XK_KA TAKANA,
XK_ARABIC, XK_CYRILLIC, XK_GREEK, XK_TECHNICAL, XK_SPECIAL,
XK_PUBLISHING, XK_APL, XK_HEBREW XK_THAI, and XK_KOREAN.

<X11/keysym.I»

This file defines the preprocessor symbols XK_MISCELLANIK XKB_KEYS,
XK_LATIN1, XK_LATIN2, XK_LATIN3, XK_LATIN4, and XK_GREEK and then
includes X11/keysymdef.t».

<X11/Xlibint.h >

This file declares all the functions, types, and symbols used for extensions, which are
described in appendix C. This file automatically includ&& XXlib.h>.
<X11/Xproto.h>

This file declares types and symbols for the basic X protocol, for use in implementing
extensions. lis included automatically fromx1/Xlibint.h >, so application and exten-
sion code should ner need to reference this file directly.

<X11/Xprotostr.h>

This file declares types and symbols for the basic X protocol, for use in implementing
extensions. lis included automatically fromxl1/Xproto.h>, so application and exten-
sion code should wer need to reference this file directly.

<X11/X10.h>

This file declares all the functions, types, and symbols used for the X10 compatibility func-
tions, which are described in appendix D.

1.4. GenericValues and Types
The following symbols are defined by Xlib and used throughout the manual:

Xlib defines the typ&ool and the Boolean valués ue and False.

None s the urwversal null resource ID or atom.

The typeXID is used for generic resource IDs.

The typeXPointer is defined to be ch&lnd is used as a generic opaque pointer to data.

1.5. Namingand Argument Corventions within Xlib

Xlib follows a number of corentions for the naming and syntax of the functionsve@that you
remember what information the function requires, theseeobions are intended to malhe
syntax of the functions more predictable.

The major naming caentions are:

To differentiate the X symbols from the other symbols, the library uses mixed case for
external symbols. It leges lowercase for variables and all uppercase for user macros, as
per existing covention.

All Xlib functions begin with a capital X.
The beginnings of all function names and symbols are capitalized.

All user-visible data structures begin with a capital X. More geneealghing that a user
might dereference begins with a capital X.

Macros and other symbols do not begin with a capitalXdstinguish them from all user
symbols, each word in the macro is capitalized.

All elements of or variables in a data structure arevietoase. Compoungords, where
needed, are constructed with underscorgs (

The display argument, where used, i8agks first in the argument list.

All resource objects, where used, occur at the beginning of the argument list immediately
after the display argument.

When a graphics context is present together with another type of resource (most com-
monly, a dawable), the graphics context occurs in the argument list after the other
resource. Dnaables outrank all other resources.

Source argumentswabys precede the destination arguments in the argument list.
The x argument alays precedes the y argument in the argument list.
The width argument alays precedes the height argument in the argument list.

Where the x, ywidth, and height arguments are used togetherx and y arguments
always precede the width and height arguments.

Where a mask is accompanied with a structure, the masisaprecedes the pointer to the
structure in the argument list.

1.6. Programming Considerations
The major programming considerations are:

Coordinates and sizes in X are actually 16-bit quantities. This decision was made to mini-
mize the bandwidth required for avgn levd of performance. Coordinatesually are

declared as amt in the interbce. \Alues larger than 16 bits are truncated silerfllges

(width and height) are declared as unsigned quantities.

Keyboards are the greatest variable between different manufactucekstations. Ifyou
want your program to be portable, you should be particularly consex\atie.

Mary display systems e limited amounts of off-screen memony§ you can, you should
minimize use of pixmaps and backing store.

The user should lra @ontrol of his screen real estate. Therefore, you should write your
applications to react to windomanagement rather than presume control of the entire
screen. Whayou do inside of your top-lel window, howeve, is up to your application.
For further information, see chapter 14 andltiter-Client Communication Conventions
Manual

1.7. CharacterSets and Encodings

Some of the Xlib functions makeference to specific character sets and character encodings.
The following are the most common:

X Portable Character Set

A basic set of 97 characters, which are assumed to exist in all locales supported by Xlib.
This set contains the following characters:

a..z A..Z 0.9 I"'#$%&'()*+,-./;;<=>?@[\] _{|} <space>, <tab>, and <newline>

This set is the left/lower half of the graphic character set of ISO8859-1 plus space, tab, and
newline. Itis also the set of graphic characters in 7-bit ASCII plus the same three control
characters. Thactual encoding of these characters on the host is system dependent.

Host Portable Character Encoding

The encoding of the X Portable Character Set on the host. The encoding itself is not
defined by this standard, but the encoding must be the same in all locales supported by Xlib
on the host. If a string is said to be in the Host Portable Character Encoding, then it only
contains characters from the X Portable Character Set, in the host encoding.

Latin-1
The coded character set defined by the ISO8859-1 standard.
Latin Portable Character Encoding

The encoding of the X Portable Character Set using the Latin-1 codepoints plus ASCII con-
trol characters. If a string is said to be in the Latin Portable Character Encoding, then it
only contains characters from the X Portable Character Set, not all of Latin-1.

STRING Encoding
Latin-1, plus tab and newline.
POSIX Portable Filename Character Set

The set of 65 characters, which can be used in naming files on a POSIX-compliant host,
that are correctly processed in all locales. The set is:

a.zA.Z0.9 . -

1.8. Formatting Conventions
Xlib — C Languaye X hterfaceuses the following camentions:

Global symbols are printed ithis special bnt. These can be either function names, sym-
bols defined in include files, or structure names. When declared and defined, function argu-
ments are printed italics. In the explanatory text that follows, thasually are printed in

regular type.

Each function is introduced by a general discussion that distinguishes it from other func-
tions. Thefunction declaration itself follows, and each argument is specifically explained.
Although ANSI C function prototype syntax is not used, Xlib header files normally declare
functions using function prototypes in ANSI Cvénnments. Generaliscussion of the
function, if ary is required, follows the guments. Wherapplicable, the last paragraph of
the explanation lists the possible Xlib error codes that the function can gertaate.
complete discussion of the Xlib error codes, see section 11.8.2.

To diminate ary ambiguity between those arguments that you pass and those that a func-
tion returns to you, the explanations for all arguments that you pass start with the word
specifiedr, in the case of multiple arguments, the wepecify The explanations for all
arguments that are returned to you start with the wetwinsor, in the case of multiple
arguments, the wonetturn. The explanations for all arguments that you can pass and are
returned start with the wordpecifies and returns

Any pointer to a structure that is used to return a value is designated as suchreyutime

suffix as part of its name. All other pointers passed to these functions are used for reading
only. A few arguments use pointers to structures that are used for both input and output
and are indicated by using tha_outsuffix.

Chapter 2

Display Functions

Before your program can use a displggu must establish a connection to the X ser@rce
you have established a connection, you then can use the Xlib macros and functions discussed in
this chapter to return information about the displajis chapter discussesviato:

. Open (connect to) the display

. Obtain information about the displaynage formats, or screens
. Generate a&NoOperation protocol request

. Free client-created data

. Close (disconnect from) a display

. Use X Server connection close operations

. Use Xlib with threads

. Use internal connections

2.1. Openingthe Display
To open a connection to the X server that controls a disps@XOpenDisplay.

Display *XOpenDisplaydisplay_namg
char *display_name

display_name Specifies the hardware display name, which determines the display and commu-
nications domain to be used. On a POSIX-conformant system, if the dis-
play_name is NULL, it defaults to the value of the DISFLghvironment vari-
able.

The encoding and interpretation of the display name are implementation-dependent. Strings in
the Host Portable Character Encoding are supported; support for other characters is implementa-
tion-dependent. OROSIX-conformant systems, the display name or DISPéAvironment

variable can be a string in the format:

protocol/ hostnamenumberscreen_number

protocol Specifies a protocol family or an alias for a protocol fam#ypported protocol
families are implementation dependent. The protocol entry is optional. If proto-
col is not specified, the / separating protocol and hostname must also not be spec-
ified.

hostname Specifies the name of the host machine on which the display is physically
attached. Wu follow the hostname with either a single colon (:) or a double
colon (:3).

number Specifies the number of the display server on that host mactinemay
optionally follow this display number with a period (A single CPU can ha
more than one displayMultiple displays are usually numbered starting with
zero.

screen_number
Specifies the screen to be used on that seMattiple screens can be controlled
by a single X serverThe screen_number sets an internal variable that can be
accessed by using thgefaultScreenmacro or theXDefaultScreenfunction if
you are using languages other than C (see section 2.2.1).

For example, the following would specify screen 1 of display 0 on the machine named “dual-
headed”:

dual-headed:0.1

The XOpenDisplay function returns @isplay structure that serves as the connection to the X
server and that contains all the information about that X seK@penDisplay connects your
application to the X server through TCP or DECnet communications protocols, or through some
local inter-process communication protocol. If the protocol is specified as "tcp”, "inet", or

"inet6", or if no protocol is specified and the hostname is a host machine name and a single colon
(:) separates the hosthame and display nund@penDisplay connects using TCP streams. (If

the protocol is specified as "inet", TCHepIPv4 is used. If the protocol is specified as "inet6",

TCP over IPv6 is used. Otherwise, the implementation determines which IP version is used.) If
the hostname and protocol are both not specified, Xlib useswshiteelieves is he fastest

transport. Ifthe hostname is a host machine name and a double colon (::) separates the hostname
and display numbeXOpenDisplay connects using DECneA single X server can support any

or all of these transport mechanisms simultaneouslgarticular Xlib implementation can sup-

port maly more of these transport mechanisms.

If successful XOpenDisplay returns a pointer to Bisplay structure, which is defined in
<X11/Xlib.h>. If XOpenDisplay does not succeed, it returns NULL. After a successful call to
XOpenDisplay, dl of the screens in the display can be used by the client. The screen number
specified in the display_name argument is returned bip#iaultScreenmacro (or theXDe-
faultScreen function). You can access elements of isplay and Screenstructures only by
using the information macros or functiorfSor information about using macros and functions to
obtain information from th®isplay structure, see section 2.2.1.

X servers may implement various types of access control mechanisms (see section 9.8).

2.2. Obtaining Information about the Display, Image Formats, or Screens

The Xlib library provides a number of useful macros and corresponding functions that return data
from the Display structure. Thenacros are used for C programming, and their corresponding
function equalents are for other language bindings. This section discusses the:

. Display macros
. Image format functions and macros
. Screen information macros

All other members of th®isplay structure (that is, those for which no macros are defined) are
private to Xlib and must not be used. Applications musendirectly modify or inspect these
private members of th®isplay structure.

Note

The XDisplayWidth , XDisplayHeight, XDisplayCells, XDisplayPlanes XDis-
playWidthMM , and XDisplayHeightMM functions in the next sections are mis-
named. Thesginctions really should be named Scwhateverand XScreewhat-
ewer, not Displaywhateveror XDisplaywhatever Our apologies for the resulting
confusion.

2.2.1. DisplayMacros

Applications should not directly modify mipart of theDisplay and Screenstructures. The
members should be considered read-atilgough thg may change as the result of other opera-
tions on the display.

The following lists the C language macros, their corresponding functiovalsais that are for
other language bindings, and what data both can return.

AllPlanes

unsigned long XAllPlanes()

Both return a value with all bits set to 1 suitable for use in a plane argument to a procedure.

Both BlackPixel and WhitePixel can be used in implementing a monochrome application.

These pixel values are for permanently allocated entries in the default colormap. The actual RGB
(red, green, and blue) values are settable on some screens agdsaseamay not actually be

black or white. The names are intended tovegrthe expected relat intensity of the colors.

10

BlackPixel (display, screen_numbgr

unsigned long XBlackP#e{ (display, screen_number
Display *display,
int screen_number

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the black pixel value for the specified screen.

WhitePixel (display, screen_number

unsigned long XWhiteP#&! (display, screen_numbér
Display *display;,
int screen_number

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the white pixel value for the specified screen.

ConnectionNumbexisplay)

int XConnectionNumbeisplay)
Display *display,

display Specifies the connection to the X server.

Both return a connection number for the specified dispglaya FOSIX-conformant system, this
is the file descriptor of the connection.

DefaultColormapdisplay, screen_numbér

Colormap XDeéultColormapdisplay, screen_number
Display *display;
int screen_number

display Specifies the connection to the X server.
screen_number
Specifies the appropriate screen number on the host server.

Both return the default colormap ID for allocation on the specified screen. Most routine

11

allocations of color should be made out of this colormap.

DefaultDepth flisplay, screen_numbér

int XDefaultDepth fisplay, screen_numbér
Display *display;,
int screen_number

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the depth (number of planes) of the default root wiidothe specified screen.
Other depths may also be supported on this screeiX{dathVisualinfo).

To determine the number of depths that ara@lable on a giren screen, useXListDepths.

int *XListDepths display, screen_numbecount_returr)
Display *display,
int screen_number
int *count_return

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

count_return Returns the number of depths.

The XListDepths function returns the array of depths that arlable on the specified screen.
If the specified screen_number is valid and sufficient memory for the array can be allocated,
XListDepths sets count_return to the number edilable depths. Otherwise, it does not set
count_return and returns NULLTo release the memory allocated for the array of depths, use
XFree.

DefaultGC display, screen_numbg@r

GC XDefaultGC display, screen_number
Display *display,
int screen_number
display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the default graphics context for the root windbthe specified screen. This GC is
created for the carenience of simple applications and contains the default GC components with
the foreground and background pixel values initialized to the black and white pixels for the

12

screen, respeeily. You can modify its contents freely because it is not usedyiX iim func-
tion. ThisGC should neer be freed.

DefaultRootWinda (display)

Windav XDefaultRootWindav (display)
Display *display;

display Specifies the connection to the X server.

Both return the root windw for the default screen.

DefaultScreenOfDisplaydisplay)

Screen *XDehultScreenOfDisplaydisplay)
Display *display;

display Specifies the connection to the X server.

Both return a pointer to the default screen.

ScreenOfDisplaydisplay, screen_numbegr

Screen *XScreenOfDisplag(splay, screen_numbgr
Display *display;,
int screen_number

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return a pointer to the indicated screen.

DefaultScreendisplay)

int XDefaultScreendisplay)
Display *display;

display Specifies the connection to the X server.

Both return the default screen number referenced bX@@enDisplay function. Thismacro or
function should be used to retresthe screen number in applications that will use only a single
screen.

13

DefaultMsual (display, screen_numbér

Visual *XDefault\Visual (display, screen_number
Display *display,
int screen_number
display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the default visual type for the specified scréenfurther information about visual
types, see section 3.1.

DisplayCells ¢lisplay, screen_numbér

int XDisplayCells display, screen_numbegr
Display *display;,
int screen_number
display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the number of entries in the default colormap.

DisplayPlanesdisplay, screen_numbér

int XDisplayPlanesdisplay, screen_numbegr
Display *display,
int screen_number
display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the depth of the root windof the specified screerkzor an explanation of depth, see
the glossary.

14

DisplayString @isplay)

char *XDisplayString{isplay)
Display *display,

display Specifies the connection to the X server.

Both return the string that was passeX@penDisplay when the current display was opened.

On POSIX-conformant systems, if the passed string was NULL, these return the value of the DIS-
PLAY environment variable when the current display was opened. These are useful to applica-
tions that inoke the fork system call and want to open asnennection to the same display

from the child process as well as for printing error messages.

long XExtendedMaxRequestSizigplay)
Display *display,

display Specifies the connection to the X server.

The XExtendedMaxRequestSiz€unction returns zero if the specified display does not support
an extended-length protocol encoding; otherwise, it returns the maximum request size (in 4-byte
units) supported by the server using the extended-length encoding. The Xlib fubxdicavs-

Lines, XDrawArcs, XFillPolygon, XChangeProperty, XSetClipRectangles and XSetRe-

gion will use the extended-length encoding as necesi$anpported by the servetJse of the
extended-length encoding in other Xlib functions (for examgBrawPoints, XDrawRectan-

gles, XDrawSegments XFillArcs , XFillRectangles, XPutimage) is permitted but not

required; an Xlib implementation may choose to split the data across multiple smaller requests
instead.

long XMaxRequestSizéfsplay)
Display *display,

display Specifies the connection to the X server.

The XMaxRequestSizefunction returns the maximum request size (in 4-byte units) supported by
the server without using an extended-length protocol encoding. Single protocol requests to the
server can be no larger than this size unless an extended-length protocol encoding is supported by
the server The protocol guarantees the size to be no smaller than 4096 units (16384 bytes). Xlib
automatically breaks data up into multiple protocol requests as necessary for the following func-
tions: XDrawPoints, XDrawRectangles XDrawSegments XFillArcs , XFillRectangles, and
XPutimage.

15

LastkKnavnRequestProcessatigplay)

unsigned long XLastKnenRequestProcesseatigplay)
Display *display,

display Specifies the connection to the X server.

Both extract the full serial number of the last request known by Xlibvie been processed by
the X server Xlib automatically sets this number when repli@ents, and errors are regedl.

NextRequestdisplay)

unsigned long XNaRequestdisplay)
Display *display;

display Specifies the connection to the X server.

Both extract the full serial number that is to be used for the next request. Serial numbers are
maintained separately for each display connection.

Protocol\érsion @isplay)

int XProtocol\érsion display)
Display *display,

display Specifies the connection to the X server.
Both return the major version number (11) of the X protocol associated with the connected dis-

play.

ProtocolReision (display)

int XProtocolReision (display)
Display *display;,

display Specifies the connection to the X server.

Both return the minor protocol revision number of the X server.

16

QLengthdisplay)

int XQLength display)
Display *display,

display Specifies the connection to the X server.

Both return the length of theyent queue for the connected displayote that there may be more
events that hee rot been read into the queue yet (¥&a/entsQueued.

RootWindav(display, screen_numb@r

Windav XRootWindav (display, screen_numbér
Display *display;
int screen_number

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the root winda These are useful with functions that need avede of a particular
screen and for creating tops&twindows.

ScreenCountlisplay)

int XScreenCountdisplay)
Display *display;,

display Specifies the connection to the X server.

Both return the number ofalable screens.

Server\éndor display)

char *XServer¥éndor @isplay)
Display *display,

display Specifies the connection to the X server.
Both return a pointer to a null-terminated string that provides some identification of the owner of
the X server implementation. If the data returned by the server is in the Latin Portable Character

Encoding, then the string is in the Host Portable Character Encoding. Otherwise, the contents of
the string are implementation-dependent.

17

VendorReleasedisplay)

int XVendorReleasei{splay)
Display *display,

display Specifies the connection to the X server.

Both return a number related to a vendozlease of the X server.

2.2.2. ImageFormat Functions and Macros

Applications are required to present data to the X server in a format that the server dédimands.
help simplify applications, most of the work required toveninthe data is provided by Xlib (see
sections 8.7 and 16.8).

The XPixmapFormatValues structure provides an interface to the pixmap format information
that is returned at the time of a connection setup. It contains:

typedef struct {
int depth;
int bits_per_pixel;
int scanline_pad;
} X PixmapFormatValues;

To dbtain the pixmap format information for avgn display, use XListPixmapFormats.

XPixmapFormatValues *XListPixmagiEmats @isplay, count_return
Display *display,
int *count_return

display Specifies the connection to the X server.
count_return Returns the number of pixmap formats that are supported by the display.

The XListPixmapFormats function returns an array &fPixmapFormatValues structures that
describe the types of Z format images supported by the specified difplasufficient memory
is available, XListPixmapFormats returns NULL. To free the allocated storage for the
XPixmapFormatValues structures, us&Free.

The following lists the C language macros, their corresponding functiovalsais that are for
other language bindings, and what daty thegth return for the specified server and screen.
These are often used by toolkits as well as by simple applications.

18

ImageByteOrderdisplay)

int XImageByteOrderdisplay)
Display *display,
display Specifies the connection to the X server.
Both specify the required byte order for images for each scanline unit in XY format (bitmap) or

for each pixel value in Z format. The macro or function can return ditBBFirst or MSB-
First.

BitmapUnit(display)

int XBitmapUnit(display)
Display *display,

display Specifies the connection to the X server.

Both return the size of a bitmapanline unit in bits. The scanline is calculated in multiples of
this value.

BitmapBitOrder ¢lisplay)

int XBitmapBitOrder @isplay)
Display *display,

display Specifies the connection to the X server.

Within each bitmap unit, the left-most bit in the bitmap as displayed on the screen is either the
least significant or most significant bit in the unit. This macro or function can leBBRirst or
MSBFirst .

BitmapRad (display)

int XBitmapPRad (display)
Display *display,
display Specifies the connection to the X server.

Each scanline must be padded to a multiple of bits returned by this macro or function.

19

DisplayHeight@isplay, screen_numbegr

int XDisplayHeightdisplay, screen_number
Display *display,
int screen_number

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return an integer that describes the height of the screen in pixels.

DisplayHeightMM display, screen_numbér

int XDisplayHeightMM (display, screen_numbegr
Display *display;,
int screen_number

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the height of the specified screen in millimeters.

DisplayWidth (display, screen_numbgr

int XDisplayWdth (display, screen_numbegr
Display *display,
int screen_number

display Specifies the connection to the X server.
screen_number
Specifies the appropriate screen number on the host server.

Both return the width of the screen in pixels.

20

DisplayWdthMM (display, screen_numb@r

int XDisplayWdthMM (display, screen_number
Display *display,
int screen_number

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the width of the specified screen in millimeters.

2.2.3. Sceen Information Macros

The following lists the C language macros, their corresponding functioveismuis that are for
other language bindings, and what daty theth can return. These macros or functions ak &k
pointer to the appropriate screen structure.

BlackPixelOfScreengcreer)

unsigned long XBlackP&{OfScreengcreen
Screen screen

screen Specifies the appropriatcreenstructure.

Both return the black pixel value of the specified screen.

WhitePixelOfScreengcreen

unsigned long XWhiteP&dOfScreengcreer)
Screen Screen

screen Specifies the appropriatcreenstructure.

Both return the white pixel value of the specified screen.

CellsOfScreengcreen

int XCellsOfScreengcreer)
Screen screen

screen Specifies the appropriatcreenstructure.

Both return the number of colormap cells in the default colormap of the specified screen.

21

DefaultColormapOfScrees¢reen

Colormap XDeéultColormapOfScreestreer)
Screen screen

screen Specifies the appropriat&creenstructure.

Both return the default colormap of the specified screen.

DefaultDepthOfScreersgreen

int XDefaultDepthOfScreersgreen
Screen screen

screen Specifies the appropriatcreenstructure.

Both return the depth of the root windo

DefaultGCOfScreerdcreer)

GC XDefaultGCOfScreendcreen)
Screen $creen

screen Specifies the appropriatcreenstructure.

Both return a default graphics context (GC) of the specified screen, which has the same depth as
the root windav of the screen. The GC mustueebe freed.

DefaultMisualOfScreengcreern)

Visual *XDefaultMsualOfScreendgcreer)
Screen screen

screen Specifies the appropriatcreenstructure.

Both return the default visual of the specified scrdem.information on visual types, see section
3.1.

22

DoesBackingStoresgreen)

int XDoesBackingStorescreer)
Screen creen

screen Specifies the appropriatcreenstructure.

Both return a value indicating whether the screen supports backing stores. The value returned can
be one ofWhenMapped, NotUseful, or Always (see section 3.2.4).

DoesSaeUnders écreen)

Bool XDoesSwaeUnders gcreer)
Screen screen

screen Specifies the appropriatcreenstructure.

Both return a Boolean value indicating whether the screen suppestansters. IfTrue, the
screen supportseauwnders. IfFalse, the screen does not supponesanders (see section 3.2.5).

DisplayOfScreendcreer)

Display *XDisplayOfScreendgcreen)
Screen screen

screen Specifies the appropriatcreenstructure.

Both return the display of the specified screen.

int XScreenNumberOfScreesdreen)
Screen screen

screen Specifies the appropriatcreenstructure.

The XScreenNumberOfScreenfunction returns the screen indaumber of the specified screen.

EventMaskOfScreersgreern)

long XEventMaskOfScreersgreer)
Screen creen

screen Specifies the appropriatacreenstructure.

Both return theeent mask of the root windofor the specified screen at connection setup time.

23

WidthOfScreengcreer)

int XWidthOfScreengcreer)
Screen Screen

screen Specifies the appropriatcreenstructure.

Both return the width of the specified screen in pixels.

HeightOfScreengcreer)

int XHeightOfScreengcreer)
Screen screen

screen Specifies the appropriatcreenstructure.

Both return the height of the specified screen in pixels.

WidthMMOfScreengcreer)

int XWidthMMOfScreen creen)
Screen screen

screen Specifies the appropriatcreenstructure.

Both return the width of the specified screen in millimeters.

HeightMMOfScreengcreer)

int XHeightMMOfScreengcreer)
Screen screen

screen Specifies the appropriatcreenstructure.

Both return the height of the specified screen in millimeters.

MaxCmapsOfScreems€reen)

int XMaxCmapsOfScreerstreer)
Screen creen

screen Specifies the appropriatecreenstructure.

Both return the maximum number of installed colormaps supported by the specified screen (see

24

section 9.3).

MinCmapsOfScreersgreer)

int XMinCmapsOfScreerscreen)
Screen screen

screen Specifies the appropriatcreenstructure.

Both return the minimum number of installed colormaps supported by the specified screen (see
section 9.3).

PlanesOfScreerstreer)

int XPlanesOfScreers¢reer)
Screen screen

screen Specifies the appropriatcreenstructure.

Both return the depth of the root windo

RootWindavOfScreensgcreer)

Window XRootWindavOfScreengcreer)
Screen screen

screen Specifies the appropriatcreenstructure.

Both return the root windw of the specified screen.

2.3. Generatinga NoOperation Protocol Request
To execute aNoOperation protocol request, us€éNoOp.

XNoOp (display)
Display *display,

display Specifies the connection to the X server.

The XNoOp function sends &loOperation protocol request to the X seryérereby &ercising
the connection.

2.4. Freeing Client-Created Data
To free in-memory data that was created by an Xlib functionXésee.

25

XFree [data)
void *data;

data Specifies the data that is to be freed.

The XFree function is a general-purpose Xlib routine that frees the specified datianust use
it to free amy objects that were allocated by Xlib, unless an alternate function is explicitly speci-
fied for the object A NULL pointer cannot be passed to this function.

2.5. Closingthe Display
To dose a display or disconnect from the X seruse XCloseDisplay.

XCloseDisplaydisplay)
Display *display,

display Specifies the connection to the X server.

The XCloseDisplay function closes the connection to the X server for the display specified in the
Display structure and destroys all windows, resource Msndow, Font, Pixmap, Colormap,
Cursor, and GContext), or other resources that the client has created on this displegs the
close-down mode of the resource has been changeX$€loseDownModg. Therefore,

these windows, resource IDs, and other resources shauddbsereferenced again or an error

will be generated. Before exiting, you should ¢étloseDisplay explicitly so that ag pending

errors are reported agCloseDisplay performs a finaXSync operation.

XCloseDisplay can generate BadGC error.

Xlib provides a function to permit the resources owned by a client tosredter the client’s
connection is closedTo change a client’ dose-down mode, us¥SetCloseDownMode

XSetCloseDwnMode (display, close_modg
Display *display,
int close_mode
display Specifies the connection to the X server.

close_mode Specifies the client close-down modéu can pasdestroyAll, RetainPerma-
nent, or RetainTemporary.

The XSetCloseDownModedefines what will happen to the clientesources at connection
close. Aconnection starts iDestroyAll mode. r information on what happens to the client’s
resources when the close_mode argumeRetainPermanentor RetainTemporary, see sec-
tion 2.6.

XSetCloseDownModecan generate BadValue error.

2.6. UsingX Server Connection Close Operations

When the X serves’mnnection to a client is closed either by an explicit cak@oseDisplay
or by a process that exits, the X server performs the following automatic operations:

26

It disowns all selections owned by the client (¥&etSelectionOwnej.

It performs anXUngrabPointer and XUngrabKeyboard if the client has actely
grabbed the pointer or theyboard.

It performs anXUngrabServer if the client has grabbed the server.
It releases all pas& gabs made by the client.

It marks all resources (including colormap entries) allocated by the client either as perma-
nent or temporaryepending on whether the close-down modReasainPermanentor
RetainTemporary. Howeva, this does not prent other client applications from explic-

itly destroying the resources (s¥SetCloseDownMods.

When the close-down modeXxestroyAll, the X server destroys all of a clientésources as fol-

lows:

It examines each windwin the clients saveset to determine if it is an inferior (subwin-
dow) of a windav created by the client. (Thesaset is a list of other clients’ windows

that are referred to asv&sset windavs.) If so, the X server reparents theesaet window

to the closest ancestor so that theesset windav is not an inferior of a winde created by
the client. The reparenting s unchanged the absolute coordinates (with respect to the
root window) of the upper-left outer corner of theesaet windov.

It performs aMapWindow request on the se-set windav if the sae-set windav is
unmapped. Th& server does thisven if the sae-set windav was not an inferior of a
window created by the client.

It destroys all windows created by the client.

It performs the appropriate free request on each nonwinesource created by the client
in the server (for exampl&ont, Pixmap, Cursor, Colormap, and GContext).

It frees all colors and colormap entries allocated by a client application.

Additional processing occurs when the last connection to the X server closes. An X server goes
through a cycle of having no connections and having some connections. When the last connec-
tion to the X server closes as a result of a connection closing with the close_nieitrof/All

the X server does the following:

It resets its state as if it had just been started. The X server begins by destroying all linger-
ing resources from clients thatvesierminated inRetainPermanentor RetainTempo-
rary mode.

It deletes all but the predefined atom identifiers.
It deletes all properties on all root windows (see section 4.3).

It resets all device maps and attributes (for exampledick, bell volume, and accelera-
tion) as well as the access control list.

It restores the standard root tiles and cursors.
It restores the default font path.
It restores the input focus to st&einterRoot.

However, the X server does not reset if you close a connection with a close-down mode set to
RetainPermanentor RetainTemporary.

2.7. UsingXlib with Threads

On systems that kia threads, support may be provided to permit multiple threads to use Xlib
concurrently.

27

To initialize support for concurrent threads, udaitThreads .

Status XlInitThreads);

The XlnitThreads function initializes Xlib support for concurrent threads. This function must
be the first Xlib function a multi-threaded program calls, and it must complete bejarthan

Xlib call is made. This function returns a nonzero status if initialization was successful; other-
wise, it returns zero. On systems that do not support threads, this funatéys edturns zero.

It is only necessary to call this function if multiple threads might use Xlib concutréhaly

calls to Xlib functions are protected by some other access mechanism (for example, a mutual
exclusion lock in a toolkit or through explicit client programming), Xlib thread initialization is
not required. It is recommended that single-threaded programs not call this function.

To lock a display acrosssaal Xlib calls, useXLockDisplay .

void XLockDisplay (display)
Display *display;

display Specifies the connection to the X server.

The XLockDisplay function locks out all other threads from using the specified disther
threads attempting to use the display will block until the display is unlocked by this thread.
Nested calls tXLockDisplay work correctly; the display will not actually be unlocked until
XUnlockDisplay has been called the same number of timeslasxkDisplay . This function
has no effect unless Xlib was successfully initialized for threads ddmitlhreads .

To wnlock a displayuse XUnlockDisplay.

void XUnlockDisplay display)
Display *display,

display Specifies the connection to the X server.

The XUnlockDisplay function allows other threads to use the specified displayad\ry

threads that hee Hocked on the display are allowed to continue. Nested locking works correctly;
if XLockDisplay has been called multiple times by a thread, tkelmlockDisplay must be

called an equal number of times before the display is actually wtdockhisfunction has no

effect unless Xlib was successfully initialized for threads uxiimitThreads .

2.8. UsingInternal Connections

In addition to the connection to the X senaar Xib implementation may require connections to
other kinds of servers (for example, to input method servers as described in chapteolkis

and clients that use multiple displays, or that use displays in combination with other inputs, need
to obtain these additional connections to correctly block until inpweikable and need to pro-

cess that input when it isalable. Simpleclients that use a single display and block for input in

an Xlib event function do not need to use these facilities.

28

To track internal connections for a displage XAddConnectionWatch.

typedef void (*XConnection\tchProc){lisplay, client_data fd, opening watch_data
Display *display,
XPointerclient_datg
int fd;
Bool opening
XPointer *watch_data

Status XAddConnectionsitch display, procedure client_datg
Display *display;,
XWatchProgrocedure
XPointerclient_datg

display Specifies the connection to the X server.
procedure Specifies the procedure to be called.
client_data Specifies the additional client data.

The XAddConnectionWatch function registers a procedure to be called each time Xlib opens or
closes an internal connection for the specified displéne procedure is passed the disptag

specified client_data, the file descriptor for the connection, a Boolean indicating whether the con-
nection is being opened or closed, and a pointer to a locationvatepriatch data. If opening is

Tr ue, the procedure can store a pointer toate data in the location pointed to by watch_data;
when the procedure is later called for this same connection and opeRadgegsthe location

pointed to by watch_data will hold this samevge data pointer.

This function can be called atyatime after a display is opened. If internal connections already
exist, the registered procedure will immediately be called for each of them, b&fddConnec-
tionWatch returns. XAddConnectionWatch returns a nonzero status if the procedure is suc-
cessfully registered; otherwise, it returns zero.

The registered procedure should not cayl dfib functions. If the procedure directly or indi-

rectly causes the state of internal connections or watch procedures to change, the result is not
defined. IfXlib has been initialized for threads, the procedure is called with the display locked
and the result of a call by the procedure tp 4lib function that locks the display is not defined
unless thexaecuting thread has externally locked the display usihgckDisplay .

To gop tracking internal connections for a displase XRemaveConnectionWatch.

Status XRemeeConnectionVitch display procedure client_datg
Display *display,
XWatchProgrocedure
XPointerclient_datg
display Specifies the connection to the X server.
procedure Specifies the procedure to be called.
client_data Specifies the additional client data.

The XRemoveConnectionWatch function remwees a geviously registered connection watch
procedure. Thelient_data must match the client_data used when the procedure was initially

29

registered.

To process input on an internal connection, ¥g&ocessinternalConnection

void XProcessinternalConnectiotigplay, fd)

Display *display;,

int fd;
display Specifies the connection to the X server.
fd Specifies the file descriptor.

The XProcessinternalConnectionfunction processes inputalable on an internal connection.
This function should be called for an internal connection only after an operating system facility
(for example selector poll) has indicated that input iwvalable; otherwise, the effect is not
defined.

To dbtain all of the current internal connections for a displag XInternalConnectionNum-
bers.

Status XlInternalConnectionNumbedigplay, fd_return, count_return
Display *display;,
int **fd_return;
int *count_return

display Specifies the connection to the X server.

fd_return Returns the file descriptors.
count_return Returns the number of file descriptors.

The XinternalConnectionNumbers function returns a list of the file descriptors for all internal
connections currently open for the specified dispi&$ren the allocated list is no longer needed,
free it by usingXFree. This functions returns a nonzero status if the list is successfully allo-
cated; otherwise, it returns zero.

30

Chapter 3

Window Functions

In the X Windav System, a windw is a rectangular area on the screen that lets yau graphic
output. Clientapplications can displaywerlapping and nested windows on one or more screens
that are drien by X servers on one or more machines. Clients who want to create windows must
first connect their program to the X server by call€@@penDisplay. This chapter begins with a
discussion of visual types and windattributes. Thechapter continues with a discussion of the
Xlib functions you can use to:

. Create windows

. Destrgy windows

. Map windows

. Unmap windows

. Configure windows

. Change windw stacking order

. Change windw attributes

This chapter also identifies the windactions that may generateents.

Note that it is vital that your application conform to the establishegentions for communicat-
ing with windawv managers for it to work well with the various windmanagers in use (see sec-
tion 14.1). Toolkits generally adhere to these amtions for you, relieving you of the burden.
Toolkits also often supersede nyaminctions in this chapter with versions of theimo For more
information, refer to the documentation for the toolkit that you are using.

3.1. Msual Types

On some display hardware, it may be possible to deal with color resources in more than one way.
For example, you may be able to deal with a screen of either 12-bit depth with arbitrary mapping
of pixel to color (pseudo-color) or 24-bit depth with 8 bits of the pixel dedicated to each of red,
green, and blue. These different ways of dealing with the visual aspects of the screen are called
visuals. er each screen of the displdyere may be a list of valid visual types supported at dif-
ferent depths of the screen. Because default windows and visual types are defined for each
screen, most simple applications need not deal with this compledityprovides macros and
functions that return the default root wingdhe default depth of the default root wing@nd

the default visual type (see sections 2.2.1 and 16.7).

Xlib uses an opaqu¥isual structure that contains information about the possible color mapping.
The visual utility functions (see section 16.7) useXafisuallnfo structure to return this infor-

mation to an application. The members of this structure pertinent to this discussion are class,
red_mask, green_mask, blue_mask, bits_per_rgb, and colormap_size. The class member speci-
fies one of the possible visual classes of the screen and &iatlw&ray, StaticColor, True-

Color, GrayScale, PseudoColor, or DirectColor .

The following concepts may serto make the explanation of visual types clear@he screen
can be color or grayscale, carvba olormap that is writable or read-onbnd can also he a
colormap whose indices are decomposed into separate RGB pieces, provided one is not on a

31

grayscale screen. This leads to the following diagram:

Color Gray-scale
R/O R/W R/IO R/W

Undecomposed Static Pseudo StaticGray

Colormap Color| Color Gray | Scale
Decomposed e Direct
Colormap Color| Color

Conceptuallyas ech pixel is read out of video memory for display on the screen, it goes through
a look-up stage by indexing into a colormap. Colormaps can be manipulated arbitrarily on some
hardware, in limited ways on other hardware, and not at all on otherdrardivhevisual types

affect the colormap and the RGB values in the following ways:

. For PseudoColor, a pgxel value indees a ®lormap to produce independent RGB values,
and the RGB values can be changed dynamically.

. GrayScaleis treated the same way BseudoColorexcept that the primary that ges the
screen is undefined. Thus, the client shoulthgs store the same value for red, green, and
blue in the colormaps.

. For DirectColor, a pxel value is decomposed into separate RGB subfields, and each sub-
field separately indes the colormap for the correspondinglwe. TheRGB values can be
changed dynamically.

. TrueColor is treated the same way BgrectColor except that the colormap has prede-
fined, read-only RGBalues. Thes®GB values are server dependent but provide linear or
near-linear ramps in each primary.

. StaticColor is treated the same way BseudoColorexcept that the colormap has prede-
fined, read-onlyserver-dependent RGB values.
. StaticGray is treated the same way 8taticColor except that the RGB values are equal

for ary single pixel value, thus resulting in shades of gr&yaticGray with a two-entry
colormap can be thought of as monochrome.

The red_mask, green_mask, and blue_mask members are only defib@edtColor and

TrueColor. Each has one contiguous set of bits with no intersections. The bits_per_rgb member
specifies the log base 2 of the number of distinct color values (individually) of red, green, and
blue. ActualRGB values are unsigned 16-bit numbers. The colormap_size member defines the
number of gailable colormap entries in a newly created colormiagr. DirectColor and Tr ue-

Color, this is the size of an individual pixel subfield.

To obtain the visual ID from &isual, use XVisualIDFromVisual .

VisuallD XVisuallDFrom\sual (visual)
Visual *visual;

visual Specifies the visual type.

The XVisuallDFromVisual function returns the visual ID for the specified visual type.

32

3.2. Window Attributes

All InputOutput windows hae a lorder width of zero or more pixels, an optional background,
an e/ent suppression mask (which suppresses propagatioeatsdrom children), and a prop-
erty list (see section 4.3). The winddorder and background can be a solid color or a pattern,
called a tile. All windows except the rootvsaa @rent and are clipped by their parent. If a win-
dow is gacked on top of another wingpit obscures that other windofor the purpose of input.

If a windaw has a background (almost all do), it obscures the other wifidlopurposes of out-
put. Attemptdo output to the obscured area do nothing, and no imeatse(for example,

pointer motion) are generated for the obscured area.

Windows also hae associated property lists (see section 4.3).

Both InputOutput andInputOnly windows hae the following common attributes, which are
the only attributes of amputOnly window:

. win-gravity

. event-mask

. do-not-propagate-mask

. override-redirect

. cursor

If you specify ag other attributes for amputOnly window, a BadMatch error results.

InputOnly windows are used for controlling inputeats in situations wherlputOutput win-
dows are unnecessarinputOnly windows are invisible; can only be used to control such things
as cursors, inputvent generation, and grabbing; and cannot be usedyigraphics requests.

Note thatinputOnly windows cannot hae InputOutput windows as inferiors.

Windows hae lorders of a programmable width and pattern as well as a background pattern or
tile. Pixel values can be used for solid colors. The background and border pixmaps can be
destroyed immediately after creating the wwdbno further explicit references to them are to be
made. Thepattern can either be reladito the parent or absolute. KarentRelative, the par-

ent’s background is used.

When windows are first created, yrege not visible (not mapped) on the screeny Autput to a
window that is not visible on the screen and that does nat becking store will be discarded.

An application may wish to create a windtbng before it is mapped to the screen. When a win-
dow is eventually mapped to the screen (usiylapWindow), the X server generates an
Exposeevent for the winda if backing store has not been maintained.

A window manager canwarride your choice of size, border width, and position for a teg-le

window. Your program must be prepared to use the actual size and position of the top. windo

is not acceptable for a client application to resize itself unless in direct response to a human com-
mand to do so. Instead, either your program should use the spet#ogt, or if the space is too

small for aly useful work, your program might ask the user to resize the windbe border of

your top-level window is considered fair game for windomanagers.

To st an attribute of a windg set the appropriate member of tKk&etWindowAttributes struc-
ture and OR in the corresponding value bitmask in your subsequent c&lsaateWindow
and XChangeWindowAttributes, or use one of the other cegnience functions that set the
appropriate attribte. Thesymbols for the value mask bits and k®&etWindowAttributes
structure are:

33

/* Window attribute value mask bits */

#define CWBackPixmap (1L<<0)

#define CWBackPixel (1L<<1)

#define CWBorderPixmap (1L<<2)

#define CWBorderPixel (1L<<3)

#define CWBItGravity (1L<<4)

#define CWWinGravity (1L<<b)

#define CWBackingStore (1L<<6)

#define CWBackingPlanes (1L<<7)

#define CWBackingPixel (1L<<8)

#define CWOverrideRedirect (1L<<9)

#define CWSaveUnder (1L<<10)

#define CWEventMask (1L<<11)

#define CWDontPropagate (1L<<12)

#define CWColormap (1L<<13)

#define CWCursor (1L<<14)

[* Values */

typedef struct {
Pixmap background_pixmap; /* background, None, or ParentReldti
unsigned long background_ pix /* background pixel */
Pixmap border_pixmap; /* border of the windor CopyFromParent */
unsigned long border_pak /* border pixel value */
int bit_gravity; /* one of bit gravity values */
int win_gravity; /* one of the windw gravity values */
int backing_store; /* NotUseful, WhenMapped walys */
unsigned long backing_planes; * planes to be preserved if possible */
unsigned long backing_ ek /* value to use in restoring planes */
Bool save_under; /*should bits under be wad? (popups) */
long event_mask; [*set of @ents that should be ged */
long do_not_propage mask; /’set of @ents that should not propagate */
Bool override_redirect; /*boolean value forvarride_redirect */
Colormap colormap; /* color map to be associated with wintlo
Cursor cursor; /* cursor to be displayed (or None) */

} X SetWindowAttributes;

The following lists the defaults for each windettribute and indicates whether the attribute is
applicable tanputOutput andInputOnly windows:

Attribute Default InputOutput InputOnly
background-pixmap None Yes No
background-pigl Undefined Yes No
border-pixmap CopyFromParent Yes No
border-piel Undefined Yes No
bit-gravity ForgetGravity Yes No
win-gravity NorthWestGravity Yes Yes

34

Attribute Default InputOutput InputOnly

backing-store NotUseful Yes No
backing-planes Albnes ¥s No
backing-pixel zero Yes No

sase-under False Yes No
event-mask emptpet Yes Yes
do-not-propagte-mask emptget Yes Yes
overide-redirect False Yes Yes
colormap CopyFromParent Yes No
cursor None Yes Yes

3.2.1. Backgpound Attribute

Only InputOutput windows can hae a lackground. %u can set the background of an
InputOutput window by using a pixel or a pixmap.

The background-pixmap attribute of a wimdsgpecifies the pixmap to be used for a window’s
background. Thipixmap can be of arsize, although some sizes may be faster than others. The
background-pixel attribute of a windaspecifies a pixel value used to paint a windoteck-

ground in a single color.

You can set the background-pixmap to a pixmidpne (default), orParentRelative. You can

set the background-pixel of a winddo any pixel value (no dedult). If you specify a back-
ground-pixel, it @errides either the default background-pixmap or adue you may hze %t in

the background-pixmapA pixmap of an undefined size that is filled with the background-pixel is
used for the background. Range checking is not performed on the background pixel; it simply is
truncated to the appropriate number of bits.

If you set the background-pixmap, iterides the defult. Thebackground-pixmap and the win-
dow must hae the same depth, orBadMatch error results. If you set background-pixmap to
None, the windav has no defined background. If you set the background-pixmBpremtRel-
ative:

. The parent windovs background-pixmap is used. The child wimddoweve, must hae
the same depth as its parent, @aMatch error results.

. If the parent winde has a background-pixmap dfone, the windav also has a back-
ground-pixmap oNone.

. A copy of the parent windovg' background-pixmap is not made. The parebsickground-
pixmap is examined each time the child windowackground-pixmap is required.

. The background tile originabys aligns with the parent windosvbackground tile origin.
If the background-pixmap is n®tarentRelative, the background tile origin is the child
window’s arigin.
Setting a n& background, whether by setting background-pixmap or background-prediides
ary previous background. The background-pixmap can be freed immediately if no further
explicit reference is made to it (the X server will keep aydopuse when needed). If you later
draw into the pixmap used for the background, what happens is undefined because the X imple-
mentation is free to maka py of the pixmap or to use the same pixmap.

When no valid contents argaiable for regions of a wind® and either the regions are visible or
the server is maintaining backing store, the server automatically tiles the regions with the win-
dow’s background unless the winddias a background dfone. If the background idlone, the

35

previous screen contents from other windows of the same depth as the/aiadomply left in
place as long as the contents come from the parent of thewvardin inferior of the parent.
Otherwise, the initial contents of the exposed regions are undefihguhseevents are then gen-
erated for the regionsyen if the background-pixmap iNone (see section 10.9).

3.2.2. BorderAttribute

Only InputOutput windows can hae a lorder You can set the border of émputOutput win-
dow by using a pixel or a pixmap.

The border-pixmap attribute of a windapecifies the pixmap to be used for a windoidrder.

The border-pixel attribute of a windaspecifies a pixmap of undefined size filled with that pixel
be used for a window'bordet Range checking is not performed on the background pixel; it sim-
ply is truncated to the appropriate number of bits. The border tile origiwdgsathe same as the
background tile origin.

You can also set the border-pixmap to a pixmap gfsime (some may be faster than others) or to
CopyFromParent (default). You can set the border-pixel toygpixel value (no default).

If you set a border-pixmap, iverrides the defult. Theborder-pixmap and the windomust

have the same depth, orBadMatch error results. If you set the border-pixmaplopy-
FromParent, the parent windovg' border-pixmap is copied. Subsequent changes to the parent
window’s border attribute do not affect the child windoHoweve, the child windev must hae

the same depth as the parent windar a BadMatch error results.

The border-pixmap can be freed immediately if no further explicit reference is made to it. If you
later drav into the pixmap used for the borpgehat happens is undefined because the X imple-
mentation is free either to mala ©py of the pixmap or to use the same pixmap. If you specify a
border-pixel, it @errides either the default border-pixmap oy &alue you may hze st in the
borderpixmap. Allpixels in the windows border will be set to the border-gix Settinga new

border whether by setting border-pixel or by setting border-pixmagrrides ag previous bor-

der.

Output to a windw is dways clipped to the inside of the winato Therefore, graphics operations
never affect the winda border.

3.2.3. Gravity Attributes

The bit gravity of a windw defines which region of the windoshould be retained when an
InputOutput window is resized. Thelefault value for the bit-gravity attribute ForgetGrav-

ity . The windav gravity of a windev allows you to define ha the InputOutput or InputOnly
window should be repositioned if its parent is resized. The default value for the win-gravity
attribute isNorthWestGravity .

If the inside width or height of a windois not changed and if the windos moved or its border

is changed, then the contents of the wim@ce not lost but mee with the windav. Changing the
inside width or height of the winglocauses its contents to be ved or lost (depending on the
bit-gravity of the window) and causes children to be reconfigured (depending on their win-grav-
ity). For a change of width and height, the (x, y) pairs are defined:

Gravity Dir ection Coordinates

NorthWestGravity (0, 0)
NorthGravity (Width/2, 0)

36

NorthEastGravity (Width, 0)

WestGravity (0, Height/2)
CenterGravity (Width/2, Height/2)
EastGravity (Width, Height/2)
SouthWestGravity (0, Height)
SouthGravity (Width/2, Height)

SouthEastGravity (Width, Height)

When a windw with one of these bit-gravity values is resized, the corresponding pair defines the
change in position of each pixel in the wimdoWhen a windw with one of these win-gravities

has its parent windoresized, the corresponding pair defines the change in position of the win-
dow within the parent. When a windas so epositioned, &ravityNotify event is generated

(see section 10.10.5).

A bit-gravity of StaticGravity indicates that the contents or origin should novenelative ©

the origin of the root winde. If the change in size of the wingdas coupled with a change in
position (X, y), then for bit-gravity the change in position of each pixel is (=x, —y), and for win-
gravity the change in position of a child when its parent is so resized is (=x, —y). Nd&ahat
icGravity still only takes effect when the width or height of the wind® changed, not when the
window is moved.

A bit-gravity of ForgetGravity indicates that the window'contents are alays discarded after a

size changeven if a backing store or s@& under has been requested. The wimndwtiled with

its background and zero or mdexposeevents are generated. If no background is defined, the
existing screen contents are not altered. Some X servers may also ignore the specified bit-gravity
and alvays generaté&xposeevents.

The contents and borders of inferiors are not affected by their [sngmfravity. A server is
permitted to ignore the specified bit-gravity and Besget instead.

A win-gravity of UnmapGravity is like NorthWestGravity (the windav is not moved), except
the child is also unmapped when the parent is resized, addraapNotify event is generated.

3.2.4. BackingStore Attribute

Some implementations of the X server may choose to maintain the contémst@utput

windows. Ifthe X server maintains the contents of a windbe off-screen sad pixels are

known as backing store. The backing store advises the X server on what to do with the contents
of a windav. The backing-store attribute can be selNttUseful (default), WhenMapped, or

Always.

A backing-store attribute dllotUseful advises the X server that maintaining contents is unneces-
sary dthough some X implementations may still choose to maintain contents and, therefore, not
generateExposeevents. Abacking-store attribute alvhenMapped advises the X server that
maintaining contents of obscured regions when the wirisonapped would be beneficial. In

this case, the server may generat&aposeevent when the winde is created. Abacking-store
attribute ofAlways advises the X server that maintaining contemnés hen the windw is

unmapped would be beneficial. Even if the wiwds larger than its parent, this is a request to

the X server to maintain complete contents, not just the region within the parenivwoioglaod-

aries. Whilethe X server maintains the windawdontents Exposeeveits normally are not gen-
erated, but the X server may stop maintaining contentsydinae.

When the contents of obscured regions of a wind@ being maintained, regions obscured by
noninferior windows are included in the destination of graphics requests (and source, when the
window is the source). Howeer, regons obscured by inferior windows are not included.

37

3.2.5. Sae Under Flag

Some server implementations may presenntents ofinputOutput windows under other
InputOutput windows. Thisis not the same as preserving the contents of a wifioioyou.

You may get better visual appeal if transient windows (for example, pop-up menus) request that
the system presesvthe screen contents under them, so the temporarily obscured applications do
not have o repaint.

You can set the se-under flag tolr ue or False (default). If save-under isTrue, the X server is
advised that, when this windds mapped, saving the contents of windows it obscures would be
beneficial.

3.2.6. BackingPlanes and Backing Pixel Attributes

You can set backing planes to indicate (with bits set to 1) which bit planeslopai©utput

window hold dynamic data that must be preserved in backing store and dwéngndars. The

default value for the backing-planes attribute is all bits set toli.can set backing pixel to

specify what bits to use in planes nov@ed by backing planes. The default value for the back-
ing-pixel attribute is all bits set to 0. The X server is free W@ saly the specified bit planes in

the backing store or thev@aunder and is free to regenerate the remaining planes with the speci-
fied pixelalue. Ary extraneous bits in these values (that is, those bits beyond the specified depth
of the window) may be simply ignored. If you request backing storeverwsaers, you should

use these members to minimize the amount of off-screen memory required to store yowr windo

3.2.7. Event Mask and Do Not Propagate Mask Attributes

The esent mask defines whichvents the client is interested in for tHigputOutput or Inpu-
tOnly window (or, for some eent types, inferiors of this windg). Theevent mask is the bitwise
inclusive OR of zero or more of the validvent mask bits.You can specify that no maskable
events are reported by settildpEventMask (default).

The do-not-propagate-mask attribute defines whiehte should not be propagated to ancestor
windows when no client has theeat type selected in thisputOutput or InputOnly window.
The do-not-propagate-mask is the bitwise ine1€)R of zero or more of the following masks:
KeyPress KeyRelease ButtonPress, ButtonRelease PointerMotion , Button1Motion, But-
ton2Motion, Button3Motion, Button4Motion , Button5Motion , and ButtonMotion . You can
specify that all eents are propagated by settiNgEventMask (default).

3.2.8. Owerride Redirect Flag

To control windaw placement or to add decoration, a windmanager often needs to intercept
(redirect) ag map or configure request. Pop-up windows, hareoften need to be mapped
without a windev manager getting in the waylo control whether annputOutput or Inpu-
tOnly window is to ignore these structure control facilities, use terale-redirect flag.

The override-redirect flag specifies whether map and configure requests on thiswsmmdd
override aSubstructureRedirectMask on the parentYou can set the werride-redirect flag to
True or False (default). Window managers use this information teoa tampering with pop-up
windows (see also chapter 14).

3.2.9. ColormapAttribute

The colormap attribute specifies which colormap best reflects the true colordrgfut@utput
window. The colormap must ka the same visual type as the wimdar a BadMatch error

results. Xservers capable of supporting multiple hardware colormaps can use this information,
and windev managers can use it for callsXenstallColormap . You can set the colormap

38

attribute to a colormap or tGopyFromParent (default).

If you set the colormap tGopyFromParent, the parent windove alormap is copied and used

by its child. Howeer, the child windev must hae the same visual type as the parent, Bad-

Match error results. The parent winganust not hge a olormap ofNone, or aBadMatch

error results. The colormap is copied by sharing the colormap object between the child and par-
ent, not by making a complete gogf the colormap contents. Subsequent changes to the parent
window’s clormap attribute do not affect the child windo

3.2.10. CursorAttribute

The cursor attribute specifies which cursor is to be used when the pointer isnput@utput
or InputOnly window. You can set the cursor to a cursoName (default).

If you set the cursor tblone, the parens aursor is used when the pointer is in thputOutput

or InputOnly window, and ary change in the parestaursor will cause an immediate change in
the displayed cursoBy calling XFreeCursor, the cursor can be freed immediately as long as
no further explicit reference to it is made.

3.3. Creating Windows

Xlib provides basic ways for creating windows, and toolkits often supply higbhefleactions
specifically for creating and placing topsbwindows, which are discussed in the appropriate
toolkit documentation. If you do not use a toolkit, heereyou must provide some standard
information or hints for the windw manager by using the Xlib inter-client communication func-
tions (see chapter 14).

If you use Xlib to create your own topvkt windows (direct children of the root window), you
must obserg the following rules so that all applications interact reasonably across the different
styles of windev management:

. You must neer fight with the windav manager for the size or placement of your toglle
window.

. You must be able to deal with whegesize windav you get, gen if this means that your
application just prints a messagesliPlease mad me ligger” in its windaw.

. You should only attempt to resize orwvedop-level windows in direct response to a user
request. Ifa request to change the size of a togellevindow fails, you must be prepared to
live with what you get.You are free to resize or mre the children of top-keel windows as
necessary(Toolkits often hae facilities for automatic relayout.)

. If you do not use a toolkit that automatically sets standard wipdaperties, you should
set these properties for topswindows before mapping them.

For further information, see chapter 14 andltiter-Client Communication Conventions Manual

XCreateWindow is the more general function that allows you to set specific wirattabutes
when you create a windo XCreateSimpleWindow creates a winde that inherits its attributes
from its parent winde.

The X server acts as liputOnly windows do not exist for the purposes of graphics requests,
exposure processing, andsibilityNotify events. AnlnputOnly window cannot be used as a
dravable (that is, as a source or destination for graphics requésm)tOnly and InputOutput
windows act identically in other respects (properties, grabs, input control, and so on). Extension
packages can define other classes of windows.

To aeate an unmapped wind@nd set its windw attributes, useXCreateWindow.

39

Window X CreateWindw (display, parent, x, y, width, height, border_width depth

class visual, valuemaskattributes

Display *display,
Window parent

intx,y;

unsigned intvidth, height,
unsigned inborder_width

int depth

unsigned intlass

Visual *isual;

unsigned longyaluemask
XSetWindowAttributes attributes

display
parent

X
y

width
height

border_width
depth

class

visual

valuemask

attributes

Specifies the connection to the X server.
Specifies the parent windo

Specify the x and y coordinates, which are the top-left outside corner of the cre-
ated windows borders and are relag © the inside of the parent windoswor-
ders.

Specify the width and height, which are the created wirslmside dimensions
and do not include the created windswdrders. Thalimensions must be
nonzero, or BadValue error results.

Specifies the width of the created windsuworder in pixels.

Specifies the window’depth. Adepth of CopyFromParent means the depth is
taken from the parent.

Specifies the created windandass. You can pastnputOutput , InputOnly ,
or CopyFromParent. A class ofCopyFromParent means the class is taken
from the parent.

Specifies the visual typeA visual of CopyFromParent means the visual type is
taken from the parent.

Specifies which windw attributes are defined in the attributeguament. This
mask is the bitwise inclug OR of the valid attribute mask bits. If valuemask is
zero, the attributes are ignored and are not referenced.

Specifies the structure from which the values (as specified by the value mask) are
to be talken. Thevalue mask should v the appropriate bits set to indicate
which attributes hae been set in the structure.

The XCreateWindow function creates an unmapped subwindor a specified parent windo
returns the windw ID of the created winde, and causes the X server to genera@reateNo-
tify event. Thecreated windw is placed on top in the stacking order with respect to siblings.

The coordinate system has the X axis horizontal and the Y axis vertical with the origin [0, 0] at
the upper-left cornerCoordinates are integral, in terms of pixels, and coincide with pixel centers.
Each windav and pixmap has its own coordinate systefor a window, the origin is inside the
border at the inside, upper-left corner.

The border_width for amputOnly window must be zero, or BadMatch error results.For
classinputOutput , the visual type and depth must be a combination supported for the screen, or

40

a BadMatch error results. The depth need not be the same as the parent, but the parent must not
be a windav of classInputOnly , or aBadMatch error results.For an InputOnly window, the

depth must be zero, and the visual must be one supported by the screen. If either condition is not
met, aBadMatch error results. The parent wingphoweve, may hare any @pth and class. If

you specify ap invdid window attribute for a windwy, a BadMatch error results.

The created winde is not yet displayed (mapped) on the useisplay To display the windw,
call XMapWindow . The nev window initially uses the same cursor as its parénhew airsor
can be defined for the wavindow by calling XDefineCursor. The windav will not be visible
on the screen unless it and all of its ancestors are mapped and it is not obscuyeaf kg an
ancestors.

XCreateWindow can generat8adAlloc, BadColor, BadCursor, BadMatch, BadPixmap,
BadValue, and BadWindow errors.

To aeate an unmappddputOutput subwindav of a gven parent windav, use XCreateSim-
pleWindow.

Window XCreateSimpleWinda(display, parent, x, y, width, height, border_width
border, background
Display *display,
Windowparent;
intx,y;
unsigned intvidth, height,
unsigned inborder_width
unsigned londporder,
unsigned londpackground

display Specifies the connection to the X server.

parent Specifies the parent windo

X

y Specify the x and y coordinates, which are the top-left outside corner of the new
window’s borders and are relag © the inside of the parent windosworders.

width

height Specify the width and height, which are the created winslmnside dimensions

and do not include the created winds\worders. Thalimensions must be
nonzero, or BadValue error results.

border_width Specifies the width of the created windsuwrder in pixels.
border Specifies the border pixel value of the windo
background Specifies the background pixel value of the wimdo

The XCreateSimpleWindow function creates an unmappbegputOutput subwindav for a
specified parent windag returns the winde ID of the created winde, and causes the X server to
generate LreateNotify event. Thecreated windw is placed on top in the stacking order with
respect to siblings. Anpart of the windav that extends outside its parent windis dipped.

The border_width for amputOnly window must be zero, or BadMatch error results. XCre-
ateSimpleWindow inherits its depth, class, and visual from its parent. All other window
attributes, except background and bortavetheir default values.

41

XCreateSimpleWindow can generat8adAlloc, BadMatch, BadValue, and BadwWindow
errors.

3.4. Destoying Windows

Xlib provides functions that you can use to desaavindow or destrg all subwindows of a win-
dow.

To destroy a window and all of its subwindows, uséDestroyWindow.

XDestroyWindav (display, w)
Display *display;,
Windoww;

display Specifies the connection to the X server.
w Specifies the winde.

The XDestroyWindow function destroys the specified windas well as all of its subwindows

and causes the X server to generabeatroyNotify event for each winde. The windav should
never be referenced agn. If the windav specified by the w argument is mapped, it is unmapped
automatically The ordering of théestroyNotify events is such that for grgiven window being
destroyedDestroyNotify is generated on gnnferiors of the windw before being generated on
the windav itself. Theordering among siblings and across subhierarchies is not otherwise con-
strained. Ilfthe windav you specified is a root windg no windows are desty@d. Destrging a
mapped winde will generateExposeevents on other windows that were obscured by the win-
dow being destroyed.

XDestroyWindow can generate BadWindow error.
To destrg al subwindows of a specified windp use XDestroySubwindows

XDestroySubwindas (display, w)
Display *display;,
Windoww;

display Specifies the connection to the X server.
w Specifies the winde.

The XDestroySubwindowsfunction destroys all inferior windows of the specified windim
bottom-to-top stacking ordeit causes the X server to generatBestroyNotify event for each
window. If any mapped subwindows were actually destroyéDestroySubwindowscauses the

X server to generatExposeevents on the specified windo This is much more efficient than
deleting mag windows one at a time because much of the work need be performed only once for
all of the windows, rather than for each wimdorhe subwindows should ver be referenced

again.

XDestroySubwindowscan generate BadWindow error.

3.5. Mapping Windows

A window is considered mapped if akMapWindow call has been made on it. It may not be
visible on the screen for one of the following reasons:

42

. It is obscured by another opaque wimdo
. One of its ancestors is not mapped.
. It is entirely clipped by an ancestor.

Exposeevents are generated for the windavhen part or all of it becomes visible on the screen.
A client receves the Exposeevents only if it has asked for thenwindows retain their position
in the stacking order when there unmapped.

A window manager may want to control the placement of subwitsddf SubstructureRedi-
rectMask has been selected by a wimdmanager on a parent windqusually a root window),

a map request initiated by other clients on a child wimdonot performed, and the windoman-
ager is sent MapRequestevent. However, if the override-redirect flag on the child had been set
to True (usually only on pop-up menus), the map request is performed.

A tiling window manager might decide to reposition and resize other clients’ windows and then
decide to map the wingoto its final location.A window manager that wants to provide decora-
tion might reparent the child into a frame firfor further information, see sections 3.2.8 and
10.10. Onlya dngle client at a time can select fBubstructureRedirectMask.

Similarly, a sngle client can select fdResizeRedirectMaskon a parent winde. Then, any
attempt to resize the windoby another client is suppressed, and the client vesei Resiz-
eRequestevent.

To map a gven window, use XMapWindow .

XMapWindow (display, w)
Display *display;
Windoww;

display Specifies the connection to the X server.
w Specifies the winde.

The XMapWindow function maps the windeand all of its subwindows that ta had map
requests. Mapping window that has an unmapped ancestor does not display thewvbudo
marks it as eligible for display when the ancestor becomes mapped. Suchwa isicalted
unviewable. Whenall its ancestors are mapped, the windmcomes vieable and will be visi-
ble on the screen if it is not obscured by another windthis function has no effect if the win-
dow is dready mapped.

If the override-redirect of the windwe is False and if some other client has select&uabstructur-
eRedirectMask on the parent windg then the X server generatedapRequestevent, and the
XMapWindow function does not map the winaio Otherwise, the windw is mapped, and the X
server generatesMapNotify event.

If the windaw becomes vizable and no earlier contents for it are remembered, the X server tiles
the windav with its background. If the window'background is undefined, the existing screen
contents are not altered, and the X server generates zero cErpmseevents. Ifbacking-store
was maintained while the wind®was unmapped, nBxposeevents are generated. If backing-
store will nav be nmaintained, a full-winder exposure is alays generated. Otherwise, only visi-
ble regions may be reported. Similar tiling and exposure fiakce for ag newy viewable infe-

riors.

If the windaw is an InputOutput window, XMapWindow generatexposeevents on each
InputOutput window that it causes to be displayed. If the client maps and paints the window

43

and if the client begins processinggets, the windw is painted twice.To avoid this, first ask for
Exposeevents and then map the windpso the client processes inputeats as usual. Thevent
list will include Exposefor each windw that has appeared on the screen. The ciientmal
response to akxposeevent should be to repaint the winalo This method usually leads to sim-
pler programs and to proper interaction with wikwvdoanagers.

XMapWindow can generate BadWindow error.
To map and raise a windg use XMapRaised.

XMapRaiseddisplay, w)

Display *display;,

Windoww;
display Specifies the connection to the X server.
w Specifies the winde.

The XMapRaised function essentially is similar t§MapWindow in that it maps the window
and all of its subwindows thatVehad map requests. Howaer, it also raises the specified win-
dow to the top of the stackFor additional information, seXMapWindow .

XMapRaised can generate multiplBadWindow errors.
To map all subwindows for a specified windaise XMapSubwindows.

XMapSubwindaevs (display, w)

Display *display;,

Windoww;
display Specifies the connection to the X server.
w Specifies the winde.

The XMapSubwindows function maps all subwindows for a specified wiwdo top-to-bottom
stacking order The X server generat&xposeevents on each newly displayed windoThis

may be much more efficient than mapping ynamdows one at a time because the server needs
to perform much of the work only once, for all of the windows, rather than for eachwvindo

XMapSubwindows can generate BadWindow error.

3.6. UnmappingWindows
Xlib provides functions that you can use to unmap a winolodl subwindows.

To unmap a winda, use XUnmapWindow .

44

XUnmapWindav (display, w)
Display *display;
Windoww;

display Specifies the connection to the X server.
w Specifies the winde.

The XUnmapWindow function unmaps the specified windand causes the X server to gener-
ate anUnmapNotify event. If the specified windw is dready unmapped{UnmapWindow

has no dect. Normalexposure processing on formerly obscured windows is performed. Any
child window will no longer be visible until another map call is made on the parent. In other
words, the subwindows are still mapped but are not visible until the parent is mapped. Unmap-
ping a windav will generateExposeevents on windows that were formerly obscured by it.

XUnmapWindow can generate BadWindow error.
To unmap all subwindows for a specified wimgaise XUnmapSubwindows.

XUnmapSubwindas (display, w)
Display *display,
Windoww;

display Specifies the connection to the X server.
w Specifies the winde.

The XUnmapSubwindows function unmaps all subwindows for the specified wimdto bottom-

to-top stacking orderlt causes the X server to generatelaimapNotify event on each subwin-

dow and Exposeevents on formerly obscured winds. Usingthis function is much more effi-

cient than unmapping multiple windows one at a time because the server needs to perform much
of the work only once, for all of the windows, rather than for each windo

XUnmapSubwindows can generate BadwWindow error.

3.7. ConfiguringWindows

Xlib provides functions that you can use tova@ wndow, resize a windw, move and resize a
window, or change a windovg border width. To change one of these parameters, set the appro-
priate member of thX¥WindowChangesstructure and OR in the corresponding value mask in
subsequent calls t8ConfigureWindow. The symbols for the value mask bits and Xwin-
dowChangesstructure are:

45

/* Configure windev value mask bits */

#define CWX (1<<0)
#define CWY (1<<1)
#define CWWidth (1<<2)
#define CWHeight (1<<3)
#define CWBorderWidth (1<<4)
#define CWSibling (1<<b)
#define CWStackMode (1<<6)
[* Values */

typedef struct {
intx,y;
int width, height;
int border_width;
Window sibling;
int stack_mode;
} X WindowChanges;

The x and y members are used to set the wirglgwnd y coordinates, which are reiaito the
parents aigin and indicate the position of the upper-left outer corner of the windbe width
and height members are used to set the inside size of thewyimatdncluding the bordeend
must be nonzero, orBadValue error results. Attempts to configure a root wiwdwmveno
effect.

The border_width member is used to set the width of the borderéls piXotethat setting just
the border width leaes the outer-left corner of the windaoin a fixed position but mees the abso-
lute position of the window' arigin. If you attempt to set the border-width attribute of rpu-
tOnly window nonzero, aBadMatch error results.

The sibling member is used to set the sibling wimflar stacking operations. The stack_mode
member is used to setdhe windav is to be estacked and can be setAbove, Below, Toplf,
BottomlIf , or Opposite.

If the override-redirect flag of the windwis False and if some other client has selectuab-
structureRedirectMask on the parent, the X server generat€oafigureRequestevent, and

no further processing is performed. Otherwise, if some other client has sétesiedRedirect-

Mask on the windav and the inside width or height of the winglés being changed, Resiz-
eRequestevent is generated, and the current inside width and height are used instead. Note that
the oserride-redirect flag of the windohas no effect oiResizeRedirectMaskand thatSub-
structureRedirectMask on the parent has precedengerdrResizeRedirectMaskon the win-

dow.

When the geometry of the wingdas changed as specified, the windis restacked among sib-
lings, and aConfigureNotify event is generated if the state of the windactually changes.
GravityNotify events are generated aft€onfigureNotify events. Ifthe inside width or height
of the windav has actually changed, children of the windare affected as specified.

If a window’s 9ze actually changes, the wind@ribwindows mee according to their window
gravity. Depending on the windowhit gravity, the contents of the windoalso may be meed
(see section 3.2.3).

46

If regions of the winde were obscured but moare not, exposure processing is performed on
these formerly obscured windows, including the wimdtself and its inferiors. As a result of
increasing the width or height, exposure processing is also performeg nevaregons of the
window and ary regons where winda contents are lost.

The restack check (specificaltite computation foBottomlf , Toplf , and Opposite) is per-
formed with respect to the windosvfinal size and position (as controlled by the other arguments

of the request), not its initial position. If a sibling is specified without a stack_mdej-a
Match error results.

If a sibling and a stack_mode are specified, the windaestacked as follows:

Above The windav is placed just abee the sibling.

Below The windav is placed just bela the sibling.

Toplf If the sibling occludes the windg the windav is placed at the top of the stack.

Bottomlf If the window occludes the sibling, the windois placed at the bottom of the
stack.

Opposite If the sibling occludes the windg the windav is placed at the top of the stack.
If the window occludes the sibling, the windas placed at the bottom of the
stack.

If a stack_mode is specified but no sibling is specified, the wingleestacked as follows:

Above The windav is placed at the top of the stack.

Below The windav is placed at the bottom of the stack.

Toplf If any sibling occludes the winde, the windav is placed at the top of the stack.

BottomIf If the window occludes an sibling, the windaev is placed at the bottom of the
stack.

Opposite If any sibling occludes the winde, the windav is placed at the top of the stack.
If the window occludes ay sibling, the windev is placed at the bottom of the
stack.

Attempts to configure a root winddchaveno effect.

To configure a windows sze, location, stacking, or bordese XConfigureWindow .

47

XConfigureWindav(display, w, value_maskvalueg
Display *display;
Windoww;
unsigned invalue_mask
XWindowChanges Values

display Specifies the connection to the X server.
w Specifies the winde to be econfigured.

value_mask Specifies which values are to be set using information in the values structure.
This mask is the bitwise inclug OR of the valid configure winde values bits.

values Specifies theXWindowChanges structure.

The XConfigureWindow function uses the values specified in ¥X\&indowChanges structure
to reconfigure a window’sze, position, bordelnd stacking orderValues not specified are
taken from the existing geometry of the windo

If a sibling is specified without a stack_mode or if the wimdnot actually a sibling, 8ad-

Match error results. Note that the computationsBattomlf , Toplf , and Opposite are per-

formed with respect to the windosvfinal geometry (as controlled by the other arguments passed
to XConfigureWindow), not its initial geometry Any backing store contents of the wirwiats
inferiors, and other newly visible windows are either discarded or changed to reflect the current
screen contents (depending on the implementation).

XConfigureWindow can generat®adMatch, BadValue, and BadWindow errors.
To move a window without changing its size, uséMoveWindow.

XMoveWindow (display, w, X, y)
Display *display,
Windoww;
intx,y;

display Specifies the connection to the X server.
w Specifies the winde to be noved.

X
y Specify the x and y coordinates, which define the llneation of the top-left
pixel of the windows border or the winde itself if it has no border.

The XMoveWindow function maves the specified windw to the specified x and y coordinates,
but it does not change the windawdze, raise the winde, or change the mapping state of the
window. Moving a mapped winde may or may not lose the windoswontents depending on if
the windav is abscured by nonchildren and if no backing stodiste. Ifthe contents of the win-
dow are lost, the X server generatégposeevents. Moving a mapped windwe generates
Exposeevents on ag formerly obscured windows.

If the override-redirect flag of the windwis False and some other client has selecgdbstruc-
tureRedirectMask on the parent, the X server generat&oafigureRequestevent, and no fur-
ther processing is performed. Otherwise, the wintomoved.

XMoveWindow can generate BadWindow error.

48

To change a windovg' sze without changing the upper-left coordinate, ¥&esizeWindow.

XResizeWindav (display, w, width, height)
Display *display,
Windoww;
unsigned intvidth, height,

display Specifies the connection to the X server.

w Specifies the winde.

width
height Specify the width and height, which are the interior dimensions of the window
after the call completes.

The XResizeWindowfunction changes the inside dimensions of the specified winux
including its borders. This function does not change the wirglgeper-left coordinate or the
origin and does not restack the wimdoChanging the size of a mapped wimdmay lose its con-
tents and generatexposeevents. Ifa mapped windw is made smallerchanging its size gener-
atesExposeevents on windows that the mapped windformerly obscured.

If the override-redirect flag of the windwis False and some other client has selec8ubstruc-
tureRedirectMask on the parent, the X server generat€oafigureRequestevent, and no fur-
ther processing is performed. If either width or height is zeBad/alue error results.

XResizeWindowcan generat®adValue and BadWindow errors.

To change the size and location of a winglose XMo veResizeWindow:

XMoveResizeWindw (display, w, X, y, width, heigh)

Display *display;
Windoww;
intx,y;
unsigned inwidth, height
display Specifies the connection to the X server.
w Specifies the winde to be econfigured.
X
y Specify the x and y coordinates, which define the pesition of the windw rel-
ative o its parent.
width
height Specify the width and height, which define the interior size of the windo

The XMoveResizeWindowfunction changes the size and location of the specified wimdth-
out raising it. Moving and resizing a mapped wiwduoay generate aBxposeevent on the win-
dow. Depending on the mesize and location parameters, moving and resizing a winday
generateExposeevents on windows that the windoformerly obscured.

If the override-redirect flag of the windwis False and some other client has selecg&dbstruc-
tureRedirectMask on the parent, the X server generaté&oafigureRequestevent, and no fur-
ther processing is performed. Otherwise, the windae and location are changed.

49

XMoveResizeWindowcan generatBadValue and BadWindow errors.
To change the border width of avgh window, use XSetWindowBorderWidth .

XSetWindowBorderWith (display, w, width)
Display *display;,
Windoww;
unsigned inwvidth;

display Specifies the connection to the X server.
w Specifies the winde.
width Specifies the width of the windadborder.

The XSetWindowBorderWidth function sets the specified wind@aborder width to the speci-
fied width.

XSetWindowBorderWidth can generate BadWindow error.

3.8. ChangingWindow Stacking Order

Xlib provides functions that you can use to raise, lpgisgulate, or restack windows.
To raise a winde so that no sibling winde obscures it, us&XRaiseWindow.

XRaiseWindav (display, w)
Display *display;
Windoww;

display Specifies the connection to the X server.
w Specifies the winde.

The XRaiseWindow function raises the specified wingddo the top of the stack so that no sib-

ling window obscures it. If the windows arega&ded as werlapping sheets of paper stacked on a
desk, then raising a windais analogous to moving the sheet to the top of the stack but leaving its
x and y location on the desk constant. Raising a mapped winwy generaté&Exposeevents

for the windav and ary mapped subwindows that were formerly obscured.

If the override-redirect attribute of the windois False and some other client has selecBub-
structureRedirectMask on the parent, the X server generat€oafigureRequestevent, and
no processing is performed. Otherwise, the wim@oraised.

XRaiseWindow can generate BadWindow error.

To lower a windav so hat it does not obscureyasibling windows, useXLowerWindow .

50

XLowerWindow (display, w)
Display *display;
Windoww;

display Specifies the connection to the X server.
w Specifies the winde.

The XLowerWindow function lowers the specified winddo the bottom of the stack so that it
does not obscure wsibling windows. If the windows are gerded as wverlapping sheets of

paper stacked on a desk, then lowering a windanalogous to moving the sheet to the bottom
of the stack but leaving its x and y location on the desk constant. Lowering a mapped window
will generateExposeevents on ag windows it formerly obscured.

If the override-redirect attribute of the windois False and some other client has selecgub-
structureRedirectMask on the parent, the X server generat€3oafigureRequestevent, and
no processing is performed. Otherwise, the wim@blowered to the bottom of the stack.

XLowerWindow can generate BadWindow error.
To drculate a subwind@ up or cown, useXCirculateSubwindows.

XCirculateSubwindws (display, w, direction)
Display *display;,
Windoww;
int direction;

display Specifies the connection to the X server.
w Specifies the winde.

direction Specifies the direction (up or down) that you want to circulate the windfou
can pas$fRaiseLowestor LowerHighest.

The XCirculateSubwindows function circulates children of the specified windo the speci-

fied direction. If you specifjiRaiseLowest XCirculateSubwindows raises the lowest mapped
child (if any) that is occluded by another child to the top of the stack. If you spewmifgrHigh-

est, XCirculateSubwindows lowers the highest mapped child (if any) that occludes another
child to the bottom of the stack. Exposure processing is then performed on formerly obscured
windows. If some other client has select8dbstructureRedirectMask on the windw, the X

server generates@irculateRequestevent, and no further processing is performed. If a child is
actually restacked, the X server generat€sraulateNotify event.

XCirculateSubwindows can generatBadValue and BadWindow errors.

To raise the lowest mapped child of a windtihat is partially or completely occluded by another
child, useXCirculateSubwindowsUp.

51

XCirculateSubwindarsUp (display, w)
Display *display;
Windoww;

display Specifies the connection to the X server.
w Specifies the winde.

The XCirculateSubwindowsUp function raises the lowest mapped child of the specified window
that is partially or completely occluded by another child. Completely unobscured children are not
affected. Thids a comenience function equalent to XCirculateSubwindows with RaiselLow-

est specified.

XCirculateSubwindowsUp can generate BadWindow error.

To lower the highest mapped child of a wimdthat partially or completely occludes another
child, useXCirculateSubwindowsDown.

XCirculateSubwindowsDwan (display, w)
Display *display;
Windoww;

display Specifies the connection to the X server.
w Specifies the winde.

The XCirculateSubwindowsDown function lowers the highest mapped child of the specified
window that partially or completely occludes another child. Completely unobscured children are
not afected. Thids a cowenience function equélent to XCirculateSubwindows with Lower-
Highest specified.

XCirculateSubwindowsDown can generate BadWindow error.
To restack a set of windows from top to bottom, X&estackWindows.

XRestackWindws (display, windows nwindows;
Display *display,
Windowwindowd];
int nwindows

display Specifies the connection to the X server.

windows Specifies an array containing the windows to be restacked.
nwindows Specifies the number of windows to be restacked.

The XRestackWindowsfunction restacks the windows in the order specified, from top to bot-
tom. Thestacking order of the first windoin the windows array is unaffected, but the other win-
dows in the array are stacked underneath the first winddhe order of the arrayThe stacking
order of the other windows is nofedted. Br each windw in the windav array that is not a

child of the specified winda a BadMatch error results.

If the override-redirect attribute of a wingois False and some other client has selecgub-
structureRedirectMask on the parent, the X server generdfemfigureRequestevents for

52

each windw whose werride-redirect flag is not set, and no further processing is performed. Oth-
erwise, the windows will be restacked in top-to-bottom order.

XRestackWindows can generate BadWindow error.

3.9. ChangingWindow Attributes

Xlib provides functions that you can use to set wimdtiributes. XChangeWindowAttributes

is the more general function that allows you to set one or more wiattiibutes provided by the
XSetWindowAttributes structure. Thether functions described in this sectionallpou to set
one specific winde attribute, such as a windosvbackground.

To change one or more attributes for aegiwindow, use XChangeWindowAttributes .

XChangeWindowAttrilates display, w, valuemaskattributes)
Display *display;,
Windoww;
unsigned longyaluemask
XSetWindowAttributes attributes

display Specifies the connection to the X server.
w Specifies the winde.

valuemask Specifies which winde attributes are defined in the attributeguamnent. This
mask is the bitwise inclug OR of the valid attribute mask bits. If valuemask is
zero, the attributes are ignored and are not referenced. The values and restric-
tions are the same as f&CreateWindow.

attributes Specifies the structure from which the values (as specified by the value mask) are
to be talen. Thevalue mask should va the appropriate bits set to indicate
which attributes hae been set in the structure (see section 3.2).

Depending on the valuemask, tik€hangeWindowAttributes function uses the window
attributes in thexSetWindowAttributes structure to change the specified wiwdatributes.
Changing the background does not cause the wirdatents to be changedo repaint the win-
dow and its background, uséClearWindow . Setting the border or changing the background
such that the border tile origin changes causes the border to be repainted. Changing the back-
ground of a root winde to None or ParentRelative restores the default background pixmap.
Changing the border of a root winddo CopyFromParent restores the default border pixmap.
Changing the win-gravity does not affect the current position of the win@hanging the back-
ing-store of an obscured winddo WhenMapped or Always, or changing the backing-planes,
backing-pixel, or s&e-under of a mapped windomay hare ro immediate déct. Changinghe
colormap of a winde (that is, defining a memap, not changing the contents of the existing
map) generates @olormapNotify event. Changinghe colormap of a visible wingomay have
no immediate effect on the screen because the map may not be instaldéthgsaCol-

ormap). Changinghe cursor of a root windoto None restores the default cursoVhenever
possible, you are encouraged to share colormaps.

Multiple clients can select input on the same wirddheir ezent masks are maintained sepa-
rately When an eent is generated, it is reported to all interested clients. Mewenly one
client at a time can select f&ubstructureRedirectMask, ResizeRedirectMask and Button-
PressMask If a dient attempts to select piof these gent masks and some other client has

53

already selected one BadAccesserror results. There is only one do-not-propagate-mask for a
window, not one per client.

XChangeWindowAttributes can generat®adAccess BadColor, BadCursor, BadMatch,
BadPixmap, BadValue, and BadWindow errors.

To st the background of a winddo a gven pixel, useXSetWindowBackground.

XSetWindavBackgrounddisplay w, background_pixél
Display *display,
Windoww;
unsigned londpackground_pixel

display Specifies the connection to the X server.
w Specifies the winde.

background_pixel
Specifies the pixel that is to be used for the background.

The XSetWindowBackground function sets the background of the wind the specified pixel
value. Changinghe background does not cause the windontents to be changeXSetWin-
dowBackground uses a pixmap of undefined size filled with the pixel value you passed. If you
try to change the background of BxputOnly window, a BadMatch error results.

XSetWindowBackground can generat8adMatch and BadWindow errors.

To st the background of a winddo a gven pixmap, useXSetWindowBackgroundPixmap.

XSetWindavBackgroundPixmaplisplay, w, background_pixmap
Display *display;,
Windoww;
Pixmapbackground_pixmap

display Specifies the connection to the X server.
w Specifies the winde.

background_pixmap
Specifies the background pixmdparentRelative, or None.

The XSetWindowBackgroundPixmap function sets the background pixmap of the windo

the specified pixmap. The background pixmap can immediately be freed if no further explicit ref-
erences to it are to be made.PdrentRelative is specified, the background pixmap of the win-
dow'’s parent is used, or on the root wingdhe default background is restored. If you try to

change the background of &mputOnly window, a BadMatch error results. If the background

is set toNone, the windav has no defined background.

XSetWindowBackgroundPixmap can generat8adMatch, BadPixmap, and BadWindow
errors.

54

Note

XSetWindowBackground and XSetWindowBackgroundPixmap do not change
the current contents of the winglo

To change and repaint a windaborder to a gien pixel, useXSetWindowBorder.

XSetWindavBorder display, w, border_pixe)

Display *display;,

Windoww;

unsigned londporder_pixe|
display Specifies the connection to the X server.
w Specifies the winde.

border_pixel Specifies the entry in the colormap.

The XSetWindowBorder function sets the border of the winvddo the pixel value you specify.
If you attempt to perform this on dnputOnly window, a BadMatch error results.

XSetWindowBorder can generat8adMatch and BadWindow errors.
To change and repaint the border tile of wegiwindow, use XSetWindowBorderPixmap.

XSetWindavBorderPixmapdisplay, w, border_pixmap
Display *display;,
Windoww;
Pixmapborder_pixmap
display Specifies the connection to the X server.
w Specifies the winde.

border_pixmap
Specifies the border pixmap GopyFromParent.

The XSetWindowBorderPixmap function sets the border pixmap of the windo the pixmap
you specify The border pixmap can be freed immediately if no further explicit references to it
are to be made. If you speci§opyFromParent, a cpy of the parent windove border pixmap

is used. If you attempt to perform this onlaputOnly window, a BadMatch error results.

XSetWindowBorderPixmap can generat8adMatch, BadPixmap, and BadWindow errors.

To st the colormap of agen window, use XSetWindowColormap.

55

XSetWindavColormap €lisplay, w, colormap)
Display *display;,
Windoww;
Colormapcolormap

display Specifies the connection to the X server.
w Specifies the winde.
colormap Specifies the colormap.

The XSetWindowColormap function sets the specified colormap of the specified windidhe
colormap must hae the same visual type as the wimgar a BadMatch error results.

XSetWindowColormap can generat®adColor, BadMatch, and BadWindow errors.
To define which cursor will be used in a wivdause XDefineCursor.

XDefineCursordisplay, w, cursor)
Display *display,
Windoww;
Cursorcursor,
display Specifies the connection to the X server.
w Specifies the winde.
cursor Specifies the cursor that is to be displayedlione.

If a cursor is set, it will be used when the pointer is in the windbthe cursor idNone, it is
equiaent to XUndefineCursor.

XDefineCursor can generat8adCursor and BadWindow errors.
To undefine the cursor in avgn window, use XUndefineCursor.

XUndefineCursordisplay, w)
Display *display,
Windoww;
display Specifies the connection to the X server.

w Specifies the winde.

The XUndefineCursor function undoes the effect of a previoxiBefineCursor for this win-
dow. When the pointer is in the windpthe parens aursor will nav be wised. Orthe root win-
dow, the default cursor is restored.

XUndefineCursor can generate BadwWindow error.

56

Chapter 4

Window | nformation Functions

After you connect the display to the X server and create a wjnaga can use the Xlib window
information functions to:

. Obtain information about a window
. Translate screen coordinates

. Manipulate property lists

. Obtain and change windoproperties
. Manipulate selections

4.1. Obtaining Window | nformation

Xlib provides functions that you can use to obtain information about the witrde, the win-
dow’s aurrent attributes, the windos/turrent geometryor the current pointer coordinates.
Because theare most frequently used by windananagers, these functions all return a status to
indicate whether the windostill exists.

To dbtain the parent, a list of children, and number of children fovengvindow, use XQuery-
Tree.

Status XQueryfiee display, w, root_return, parent_return children_return, nchildren_returr)
Display *display;
Windoww;
Windaw *root_return;
Window *parent_return
Window **children_return;
unsigned int hchildren_return

display Specifies the connection to the X server.

w Specifies the winde whose list of children, root, parent, and number of children
you want to obtain.

root_return Returns the root winda
parent_return Returns the parent windo

children_return
Returns the list of children.

nchildren_return
Returns the number of children.

The XQueryTree function returns the root ID, the parent wimdD, a pointer to the list of chil-
dren windows (NULL when there are no children), and the number of children in the list for the
specified windw. The children are listed in current stacking oyfierm bottom-most (first) to
top-most (last).XQueryTree returns zero if it fails and nonzero if it succeeds.free a non-

57

NULL children list when it is no longer needed, Ugéree.
XQueryTree can generate BadWindow error.

To dbtain the current attributes of asgh window, use XGetWindowAttributes .

Status XGetWindowAttribtes @isplay, w, window_attributes_return
Display *display,
Windoww;
XWindowAttributes *window_attributes_return

display Specifies the connection to the X server.

w Specifies the winde whose current attributes you want to obtain.

window_attributes_return
Returns the specified windos\étributes in theXWindowAttributes structure.

The XGetWindowAttributes function returns the current attributes for the specified wirtdo
an XWindowAttributes structure.

typedef struct {
intx,y; /* location of windev */
int width, height; /* width and height of windo*/
int border_width; /* border width of windo*/
int depth; [* depth of winde */
Visual *visual; /* the associated visual structure */
Window root; * root of screen containing winaag*/
int class; /* InputOutput, InputOnly*/
int bit_gravity; /* one of the bit gravity values */
int win_gravity; /* one of the winde gravity values */
int backing_store; I* NotUseful, WhenMapped walys */
unsigned long backing_planes; /* planes to be preserved if possible */
unsigned long backing_ ek /* value to be used when restoring planes */
Bool save_under; /*boolean, should bits under beved? */
Colormap colormap; /* color map to be associated with wintlo
Bool map_installed; /* boolean, is color map currently installed*/
int map_state; /* IsUnmapped, IsUmnwigble, IsVievable */
long all_event_masks; /*set of @ents all people hae interest in*/
long your_@ent_mask; /*my event mask */
long do_not_propate_mask; I’set of @ents that should not propagate */
Bool override_redirect; [*boolean value forwerride-redirect */
Screen *screen; /* back pointer to correct screen */

} X WindowAttributes;

The x and y members are set to the upper-left outer corneveditatne parent windovg arigin.

The width and height members are set to the inside size of thewyimtancluding the border.
The border_width member is set to the windobarder width in pils. Thedepth member is set
to the depth of the windo(that is, bits per pixel for the object). The visual member is a pointer
to the screes’associatedvisual structure. Theoot member is set to the root windof the

58

screen containing the windo The class member is set to the windodass and can be either
InputOutput or InputOnly .

The bit_gravity member is set to the windswat gravity and can be one of the following:

ForgetGravity EastGravity
NorthWestGravity SouthWestGravity
NorthGravity SouthGravity
NorthEastGravity SouthEastGravity
WestGravity StaticGravity
CenterGravity

The win_gravity member is set to the windswindow gravity and can be one of the following:

UnmapGravity EastGravity
NorthWestGravity SouthWestGravity
NorthGravity SouthGravity
NorthEastGravity SouthEastGravity
WestGravity StaticGravity
CenterGravity

For additional information on gravitysee section 3.2.3.

The backing_store member is set to indicai® tie X server should maintain the contents of a
window and can béWhenMapped, Always, or NotUseful. The backing_planes member is set
to indicate (with bits set to 1) which bit planes of the wimdold dynamic data that must be pre-
served in backing_stores and duringesainders. Théacking_pixel member is set to indicate
what values to use for planes not set in backing_planes.

The sae_under member is set T ue or False. The colormap member is set to the colormap
for the specified winde and can be a colormap ID dtone. The map_installed member is set to
indicate whether the colormap is currently installed and calr be or False. The map_state
member is set to indicate the state of the wineind can bdsUnmapped, IsUnviewable, or
IsViewable. IsUnviewableis used if the windw is mapped but some ancestor is unmapped.

The all_&ent_masks member is set to the bitwise inoleI€iR of dl event masks selected on the
window by dl clients. The your_eent_mask member is set to the bitwise inala<iR of dl

event masks selected by the querying client. The do_not_propagate_mask member is set to the
bitwise inclusve OR of the set of gents that should not propagate.

The override_redirect member is set to indicate whether this winaleerrides structure control
facilities and can bdr ue or False. Window manager clients should ignore the windidthis
member isTr ue.

The screen member is set to a screen pointer test wu a back pointer to the correct screen.
This makes it easier to obtain the screen information without having toeothe root window
fields to see which field matches.

XGetWindowAttributes can generat8adDrawable and BadWindow errors.

To dbtain the current geometry of avgn drawable, useXGetGeometry.

59

Status XGetGeometrg(splay, d, root_return, x_return, y_return, width_return
height_return border_width_returndepth_return
Display *display;,
Drawabled;
Window *root_return;
int *x_return, *y_return;
unsigned int tvidth_return *height_return
unsigned int border_width_return
unsigned int depth_return

display Specifies the connection to the X server.

d Specifies the dveable, which can be a windoor a gxmap.

root_return Returns the root winda

X_return

y_return Return the x and y coordinates that define the location of tkallea For a

window, these coordinates specify the upper-left outer cornervelatits par-
ent’s aigin. For pixmaps, these coordinates angagks zero.

width_return
height_return Return the dnaiable’s dmensions (width and heightf-or a window, these
dimensions specify the inside size, not including the border.

border_width_return
Returns the border width in mls. Ifthe dravable is a pixmap, it returns zero.

depth_return Returns the depth of the dvable (bits per pixel for the object).

The XGetGeometry function returns the root wingoand the current geometry of the diable.
The geometry of the dnable includes the x and y coordinates, width and height, border width,
and depth. These are described in the argument list. gdsdepass to this function a window
whose class inputOnly .

XGetGeometry can generate BadDrawable error.

4.2. Translating Screen Coordinates

Applications sometimes need to perform a coordinate transformation from the coordinate space of
one windaev to another windav or need to determine which windahe pointing device is in.
XTranslateCoordinates and XQueryPointer fulfill these needs (andraid ary race conditions)

by asking the X server to perform these operations.

To translate a coordinate in one windto the coordinate space of another wiwgdase XTrans-
lateCoordinates.

60

Bool XTranslateCoordinatedisplay, src_w, dest_w src_x src_y, dest_x_return
dest_y returnchild_return)
Display *display,
Windowsrc_w, dest_w
int src_x, src_y,
int *dest_x_return*dest_y_return
Window *child_return;

display Specifies the connection to the X server.

src_w Specifies the source windo

dest_w Specifies the destination wingdo

Src_x

src_y Specify the x and y coordinates within the source windo

dest_x_return
dest_y return Return the x and y coordinates within the destination windo

child_return Returns the child if the coordinates are contained in a mapped child of the desti-
nation windav.

If XTranslateCoordinates returnsTr ue, it takes the src_x and src_y coordinates reddti the

source windows arigin and returns these coordinates to dest_x_return and dest_y_retuve relati

to the destination window'arigin. If XTranslateCoordinates returnsFalse, sc_w and dest_w

are on different screens, and dest_x_return and dest_y_return are zero. If the coordinates are con-
tained in a mapped child of dest_that child is returned to child_return. Otherwise, child_return

is set toNone.

XTranslateCoordinates can generate BadWindow error.

To dbtain the screen coordinates of the pointer or to determine the pointer coordinatestoaati
specified windwy, use XQueryPointer .

61

Bool XQueryPointerdisplay, w, root_return, child_return, root_x_return root_y_return
win_x_return win_y return mask_return
Display *display,
Windoww;
Window *root_return, *child_return;
int *root_x_return *root_y_return
int *win_x_return *win_y_return
unsigned int nask_return

display Specifies the connection to the X server.

w Specifies the winde.

root_return Returns the root windothat the pointer is in.

child_return Returns the child winde that the pointer is located in, ifyn

root_x_return
root_y return Return the pointer coordinates relatio the root windows aigin.

win_Xx_return
win_y return Return the pointer coordinates relatio the specified winde.

mask_return Returns the current state of the modifieykand pointer buttons.

The XQueryPointer function returns the root wingothe pointer is logically on and the pointer
coordinates relate © the root windows arigin. If XQueryPointer returnsFalse, the pointer is
not on the same screen as the specified wingwod XQueryPointer returnsNone to

child_return and zero to win_x_return and win_y_return{QueryPointer returnsTr ue, the
pointer coordinates returned to win_x_return and win_y_return aresectathe origin of the
specified windw. In this case XQueryPointer returns the child that contains the poinikany,
or elseNoneto child_return.

XQueryPainter returns the current logical state of thetkoard buttons and the modifiezyk in
mask_return. Isets mask_return to the bitwise inciesCR of one or more of the button or
modifier key btmasks to match the current state of the mouse buttons and the magiier k

Note that the logical state of a device (as seen through Xlib) may lag the physical state if device
event processing is frozen (see section 12.1).

XQueryPointer can generate BadWindow error.

4.3. Properties and Atoms

A property is a collection of named, typed data. The winggstem has a set of predefined prop-
erties (for example, the name of a wing@ize hints, and so on), and users can defiyeotrer
arbitrary information and associate it with wiméo Eaclproperty has a name, which is an ISO
Latin-1 string. For each named propertg wnique identifier (atom) is associated with At.prop-

erty also has a type, for example, string or inteGéese types are also indicated using atoms, so
arbitrary nev types can be defined. Data of only one type may be associated with a single prop-
erty name. Clients can store and regigroperties associated with wingds. For efficieny rea-

sons, an atom is used rather than a character siilmgernAtom can be used to obtain the

atom for property names.

A property is also stored in one ofvemal possible formats. The X server can store the informa-
tion as 8-bit quantities, 16-bit quantities, or 32-bit quantities. This permits the X server to present
the data in the byte order that the client expects.

62

Note

If you define further properties of complg/pe, you must encode and decode them
yourself. Theséunctions must be carefully written if thare to be portableFor
further information about heto write a library extension, see appendix C.

The type of a property is defined by an atom, which allows for arbitrary extension in this type
scheme.

Certain property names are predefined in the server for commonly used functions. The atoms for
these properties are defined MXl/Xatom.h>. To avoid nhame clashes with user symbols, the
#definename for each atom has the XA_ prefor an planation of the functions that let you
get and set much of the information stored in these predefined properties, see chapter 14.

The core protocol imposes no semantics on these property names, but semantics are specified in
other X Consortium standards, such asltier-Client Communication Conventions Manaad
the X Logical Font Description Conventions

You can use properties to communicate other information between applications. The functions
described in this section let you definevrgoperties and get the unique atom IDs in your appli-
cations.

Although aly particular atom can lva sosme client interpretation within each of the name spaces,
atoms occur in fig dstinct name spaces within the protocol:

. Selections

. Property names

. Property types

. Font properties

. Type of aClientMessageevent (none are built into the X server)

The built-in selection property names are:

PRIMARY
SECONDARY

The built-in property names are:

CUT_BUFFERO RESOURCE_MANGER
CUT_BUFFER1 WM_CLASS
CUT_BUFFER2 WM_CLIENT_MACHINE
CUT_BUFFER3 WM_COLORMAP_WIND®VS
CUT_BUFFER4 WM_COMMAND
CUT_BUFFER5 WM_HINTS
CUT_BUFFERS6 WM_ICON_MME
CUT_BUFFER7 WM_ICON_SIZE
RGB_BEST_MAP WM_MME
RGB_BLUE_MAP WM_NORMAL_HINTS
RGB_DERULT_MAP WM_PROTOCOLS
RGB_GRA’_MAP WM_STATE
RGB_GREEN_MAP WM_TRANSIENT_FOR
RGB_RED_MAP WM_ZOOM_HINTS

63

The built-in property types are:

ARC POINT

ATOM RGB_COLOR_MAP
BITMAP RECTANGLE
CARDINAL STRING
COLORMAP VISUALID
CURSOR WINDQV
DRAWABLE WM_HINTS

FONT WM_SIZE_HINTS
INTEGER

PIXMAP

The built-in font property names are:

MIN_SPACE STRIKEOUT _DESCENT
NORM_SRCE STRIKEOUT _ASCENT
MAX_SPACE ITALIC_ANGLE
END_SRCE X_HEIGHT
SUPERSCRIPT_X QAD_WIDTH
SUPERSCRIPT_Y WEIGHT
SUBSCRIPT_X POINT_SIZE
SUBSCRIPT_Y RESOLUTION
UNDERLINE_POSITION COPYRIGHT
UNDERLINE_THICKNESS NQTICE

FONT_NAME FAMILY_NAME
FULL_NAME CAP_HEIGHT

For further information about font properties, see section 8.5.
To return an atom for aggn name, useXInternAtom .

Atom XlinternAtomdisplay, atom_nameonly_if _exist$
Display *display;
char *atom_name
Bool only_if_exists

display Specifies the connection to the X server.
atom_name Specifies the name associated with the atom you want returned.
only_if exists Specifies a Boolean value that indicates whether the atom must be created.

The XinternAtom function returns the atom identifier associated with the specified atom_name
string. Ifonly_if_exists isFalse, the atom is created if it does naist. Therefore Xinter-

nAtom can returnNone. If the atom name is not in the Host Portable Character Encoding, the
result is implementation-dependent. Uppercase and lowercase matter; the strings “thing”,
“Thing”, and “thinG” all designate different atoms. The atom will remain defingmh efter the
client’s cnnection closes. It will become undefined only when the last connection to the X
server closes.

64

XinternAtom can generatBadAlloc and BadValue errors.
To return atoms for an array of names, XdeternAtoms .

Status XinternAtomgdisplay, names count, only_if _existsatoms_returi
Display *display;,
char *names
int count,
Bool only_if_exists
Atom *atoms_return

display Specifies the connection to the X server.
names Specifies the array of atom names.
count Specifies the number of atom names in the array.

only_if_exists Specifies a Boolean value that indicates whether the atom must be created.
atoms_return Returns the atoms.

The XinternAtoms function returns the atom identifiers associated with the specified names.
The atoms are stored in the atoms_return array supplied by the Ealliémg this function is
equiaent to callingXinternAtom for each of the names in turn with the specified value of
only_if exists, but this function minimizes the number of round-trip protocol exchanges between
the client and the X server.

This function returns a nonzero status if atoms are returned for all of the names; otherwise, it
returns zero.

XinternAtoms can generat®adAlloc andBadValue errors.
To return a name for a\ggn aom identifier use XGetAtomName.

char *XGetAtomNamedisplay, atom)
Display *display,
Atom atom;
display Specifies the connection to the X server.
atom Specifies the atom for the property name you want returned.

The XGetAtomName function returns the name associated with the specified atom. If the data
returned by the server is in the Latin Portable Character Encoding, then the returned string is in
the Host Portable Character Encoding. Otherwise, the result is implementation-dep&oadent.
free the resulting string, calFree.

XGetAtomName can generate BadAtom error.

To return the names for an array of atom identifiers XSetAtomNames.

65

Status XGetAtomNamesd{splay, atoms count, names_returh
Display *display;
Atom *atoms
int count
char *names_return

display Specifies the connection to the X server.
atoms Specifies the array of atoms.

count Specifies the number of atoms in the array.
names_return Returns the atom names.

The XGetAtomNames function returns the names associated with the specified atoms. The
names are stored in the names_return array supplied by the Callieng this function is equiv-
alent to callingXGetAtomName for each of the atoms in turn, but this function minimizes the
number of round-trip protocol exchanges between the client and the X server.

This function returns a nonzero status if names are returned for all of the atoms; otherwise, it
returns zero.

XGetAtomNames can generate BadAtom error.

4.4. Obtainingand Changing Window Properties

You can attach a property list te@y windown. Each property has a name, a type, and a value

(see section 4.3). The value is an array of 8-bit, 16-bit, or 32-bit quantities, whose interpretation
is left to the clients. The typehar is used to represent 8-bit quantities, the tgpert is used to
represent 16-bit quantities, and the tygpeg is used to represent 32-bit quantities.

Xlib provides functions that you can use to obtain, change, update, or interchange priopto
erties. Inaddition, Xlib provides other utility functions for inter-client communication (see chap-
ter 14).

To dbtain the type, format, and value of a property ofvargiindow, use XGetWindowProp-
erty.

66

int XGetWindavProperty ¢lisplay, w, property, long_offsetlong_length delete req_type

actual_type_returnactual_format_returnnitems_returnbytes_after_return
prop_return)

Display *display,

Windoww;

Atom property;

longlong_offsetlong_length

Bool delete

Atomreq_type

Atom *actual_type_return

int *actual format_return

unsigned long fitems_return

unsigned long bytes_after_return

unsigned char *prop_return

display Specifies the connection to the X server.
w Specifies the winde whose property you want to obtain.
property Specifies the property name.

long_offset Specifies the offset in the specified property (in 32-bit quantities) where the data
is to be retrieed.

long_length Specifies the length in 32-bit multiples of the data to be vettie

delete Specifies a Boolean value that determines whether the property is deleted.
req_type Specifies the atom identifier associated with the property typayiProperty-
Type.

actual_type_return
Returns the atom identifier that defines the actual type of the property.

actual_format_return
Returns the actual format of the property.

nitems_return Returns the actual number of 8-bit, 16-bit, or 32-bit items stored in the
prop_return data.

bytes_after_return
Returns the number of bytes remaining to be read in the property if a partial read
was performed.

prop_return Returns the data in the specified format.

The XGetWindowProperty function returns the actual type of the property; the actual format of
the property; the number of 8-bit, 16-bit, or 32-bit items transferred; the number of bytes remain-
ing to be read in the property; and a pointer to the data actually retuxi@zt\WindowProp-

erty sets the return arguments as follows:

. If the specified property does not exist for the specified wind&GetWindowProperty
returnsNone to actual_type_return and the value zero to actual_format_return and
bytes_after_return. Thatems_return argument is emptiy this case, the delete argument
is ignored.

. If the specified property exists but its type does not match the specifieX Gp@in-
dowProperty returns the actual property type to actual_type_return, the actual property
format (neer zero) to actual _format_return, and the property length in bytea {(the

67

actual_format_return is 16 or 32) to bytes_after_return. It also ignores the delete argument.
The nitems_return argument is empty.

. If the specified property exists and either you as8igyPropertyType to the req_type
argument or the specified type matches the actual propertyX@st\WindowProperty
returns the actual property type to actual_type_return and the actual property fougrat (ne
zero) to actual_format_return. It also returns a value to bytes_after_return and
nitems_return, by defining the following values:

N = actual length of the stored property in bytes
(even if the format is 16 or 32)
I =4 *|ong_offset

T=N-I
L = MINIMUM(T, 4 * long_length)
A=N-(1+L)

The returned value starts at byte ixdlén the property (indexing from zero), and its length
in bytes is L. If the value for long_offset causes L to bygzines, a BadValue error results.
The value of bytes_after_return is A, giving the number of trailing unread bytes in the
stored property.

If the returned format is 8, the returned data is representedres array If the returned format

is 16, the returned data is represented sfsoat array and should be cast to that type to obtain the
elements. Ithe returned format is 32, the returned data is representddmg array and should

be cast to that type to obtain the elements.

XGetWindowProperty always allocates one extra byte in prop_retunedef the property is
zero length) and sets it to zero so that simple properties consisting of characters ge ndbha
copied into yet another string before use.

If delete isTrue and bytes_after_return is zeGetWindowProperty deletes the property
from the windev and generates BropertyNotify event on the winduw.

The function return§uccessf it executes successfullyTo free the resulting data, uXé-ree.
XGetWindowProperty can generat®adAtom, BadValue, and BadWindow errors.

To dbtain a gven window’s property list, useXListProperties.

Atom *XListProperties{lisplay, w, num_prop_returi
Display *display,
Windoww;
int *num_prop_return
display Specifies the connection to the X server.
w Specifies the winde whose property list you want to obtain.

num_prop_return
Returns the length of the properties array.

The XListProperties function returns a pointer to an array of atom properties that are defined for
the specified winde or returns NULL if no properties were foundo free the memory allocated
by this function, us&XFree.

XListProperties can generate BadWindow error.

68

To change a property of avgin window, use XChangeProperty.

XChangePropertydisplay, w, property, type, format, mode data, nelements
Display *display,
Windoww;
Atom property, type;
int format;
int mode
unsigned chardata;
int nelements

display Specifies the connection to the X server.

w Specifies the winde whose property you want to change.

property Specifies the property name.

type Specifies the type of the properffhe X server does not interpret the type but
simply passes it back to an application that later ¢eaBgtWindowProperty .

format Specifies whether the data should be viewed as a list of 8-bit, 16-bit, or 32-bit

guantities. Possiblealues are 8, 16, and 32. This information allows the X
server to correctly perform byte-swap operations as necess#ng format is

16-bit or 32-bit, you must explicitly cast your data pointer to an (unsigned char *)
in the call toXChangeProperty.

mode Specifies the mode of the operatiofou can pasfPropModeReplace Prop-
ModePrepend, or PropModeAppend.
data Specifies the property data.

nelements Specifies the number of elements of the specified data format.

The XChangeProperty function alters the property for the specified wiwdimd causes the X

server to generateRropertyNotify event on that windw. XChangeProperty performs the fol-

lowing:

. If mode isPropModeReplace XChangeProperty discards the previous property value
and stores the medata.

. If mode isPropModePrependor PropModeAppend, XChangeProperty inserts the
specified data before the beginning of the existing data or onto the end of the existing data,
respectrely. The type and format must match the existing property valueBad&atch
error results. If the property is undefined, it is treated as defined with the correct type and
format with zero-length data.

If the specified format is 8, the property data must bleaa array If the specified format is 16,
the property data must beshort array If the specified format is 32, the property data must be a
long array.

The lifetime of a property is not tied to the storing client. Properties remain until explicitly

deleted, until the winde is destroyed, or until the server resekr a dscussion of what hap-

pens when the connection to the X server is closed, see section 2.6. The maximum size of a prop-
erty is server dependent and can vary dynamically depending on the amount of memory the server
has aailable. (Ifthere is insufficient space,BadAlloc error results.)

XChangeProperty can generatBadAlloc, BadAtom, BadMatch, BadValue, and BadWin-
dow errors.

69

To rotate a windovws property list, useXRotateWindowProperties.

XRotateWindavPropertiesdisplay, w, properties num_prop npositiong
Display *display,
Windoww;
Atom propertieq];
int num_prop
int npositions

display Specifies the connection to the X server.

w Specifies the winde.

properties Specifies the array of properties that are to be rotated.
num_prop Specifies the length of the properties array.

npositions Specifies the rotation amount.

The XRotateWindowProperties function allows you to rotate properties on a wivdmd

causes the X server to generBtepertyNotify events. Ifthe property names in the properties

array are viewed as being numbered starting from zero and if there are num_prop property names
in the list, then the value associated with property name | becomes the value associated with prop-
erty name (I + npositions) mod N for all | from zero to N — 1. The effect is to rotate the states by
npositions places around the virtual ring of property names (right forygogitbsitions, left for

negative rpositions). Ifnpositions mod N is nonzero, the X server generaf®pertyNotify

event for each property in the order thatytfzee listed in the arraylf an @aom occurs more than

once in the list or no property with that name is defined for the wir@lBadMatch error

results. Ifa BadAtom or BadMatch error results, no properties are changed.

XRotateWindowProperties can generat®adAtom, BadMatch, and BadWindow errors.
To celete a property on avgn window, use XDeleteProperty.

XDeletePropertydisplay, w, property)
Display *display,
Windoww;
Atom property,
display Specifies the connection to the X server.
w Specifies the winde whose property you want to delete.

property Specifies the property name.

The XDeleteProperty function deletes the specified property only if the property was defined on
the specified windw and causes the X server to generaira@pertyNotify event on the window
unless the property does not exist.

XDeleteProperty can generat®adAtom and BadWindow errors.

4.5. Selections

Selections are one method used by applications to exchange data. By using the property mecha-
nism, applications can exchange data of arbitrary types and can negotiate the type of the data. A
selection can be thought of as an indirect property with a dynamic type. That is, rather than

70

having the property stored in the X septbe property is maintained by some client (the owner).
A selection is global in nature (considered to belong to the user but be maintained by clients)
rather than being prite to a particular winde subhierarcly or a particular set of clients.

Xlib provides functions that you can use to set, get, or requestremn of selections. This

allows applications to implement the notion of current selection, which requires that notification
be sent to applications when yio longer own the selection. Applications that support selection
often highlight the current selection and so must be informed when another application has
acquired the selection so thatyttean unhighlight the selection.

When a client asks for the contents of a selection, it specifies a selection target type. This target
type can be used to control the transmitted representation of the coaragsample, if the

selection is “the last thing the user clicked’@mid that is currently an image, then the target type
might specify whether the contents of the image should be sent in XY format or Z format.

The target type can also be used to control the class of contents transmitted, for example, asking
for the “looks” (fonts, line spacing, indentation, and so forth) of a paragraph selection, not the

text of the paragraph. The target type can also be used for other purposes. The protocol does not
constrain the semantics.

To st the selection owngause XSetSelectionOwner

XSetSelectionOwnedjsplay, selection owner, time)
Display *display,
Atom selection
Windowowner,

Timetime;
display Specifies the connection to the X server.
selection Specifies the selection atom.
owner Specifies the owner of the specified selection atgou can pass a windwoor
None.
time Specifies the timeYou can pass either a timestamp@urrentTime .

The XSetSelectionOwnerfunction changes the owner and last-change time for the specified
selection and has no effect if the specified time is earlier than the current last-change time of the
specified selection or is later than the current X server time. Otherwise, the last-change time is
set to the specified time, witburrentTime replaced by the current server time. If the owner
window is gpecified asNone, then the owner of the selection become (that is, no owner).
Otherwise, the owner of the selection becomes the cleontitng the request.

If the neav owner (whether a client ddone) is not the same as the current owner of the selection
and the current owner is nbione, the current owner is sentSelectionClearevent. If the client

that is the owner of a selection is later terminated (that is, its connection is closed) or if the owner
window it has specified in the request is later destroyed, the owner of the selection automatically
reverts to None, but the last-change time is notedfted. Theselection atom is uninterpreted by

the X server.XGetSelectionOwnerreturns the owner windg which is reported irselection-
Requestand SelectionClearevents. Selectionare global to the X server.

XSetSelectionOwnercan generatBadAtom and BadWindow errors.

To return the selection ownerse XGetSelectionOwner.

71

Window XGetSelectionOwnedisplay, selection
Display *display;
Atom selection
display Specifies the connection to the X server.
selection Specifies the selection atom whose owner you want returned.

The XGetSelectionOwnerfunction returns the windwo ID associated with the windothat cur-
rently owns the specified selection. If no selection was specified, the function returns the constant
None. If Noneis returned, there is no owner for the selection.

XGetSelectionOwnercan generate BadAtom error.
To request coversion of a selection, us€ConvertSelection.

XCorvertSelection flisplay, selection target, property, requestor, time)
Display *display;,
Atom selection targe;
Atom property;
Windowrequestor
Timetime;
display Specifies the connection to the X server.
selection Specifies the selection atom.
target Specifies the target atom.
property Specifies the property nam&ou dso can passlone.
requestor Specifies the requestor.
time Specifies the timeYou can pass either a timestampQ@urrentTime .

XConvertSelection requests that the specified selection beveded to the specified target type:

. If the specified selection has an owriee X server sends ®electionRequesevent to that
owner.
. If no owner for the specified selection exists, the X server gener&ekeationNotify

evant to the requestor with properyone.

The arguments are passed on unchanged in either ofdfis.eThereare tvwo predefined selec-
tion atoms: PRIMAR and SECONDAR.

XConvertSelection can generatBadAtom and BadWindow errors.

72

Chapter 5

Pixmap and Cursor Functions

Once you hee mnnected to an X serygou can use the Xlib functions to:
. Create and free pixmaps
. Create, recolgrand free cursors

5.1. Creating and Freeing Pixmaps

Pixmaps can only be used on the screen on whighnthee created. Pixmaps are off-screen
resources that are used for various operations, such as defining cursors as tiling patterns or as the
source for certain raster operations. Most graphics requests can operate either owanindo

a pxmap. Abitmap is a single bit-plane pixmap.

To aeate a pixmap of agn sze, useXCreatePixmap.

Pixmap XCreatePixmajl{splay, d, width, height, depth
Display *display,
Drawable d;
unsigned intvidth, height,
unsigned indepth

display Specifies the connection to the X server.

d Specifies which screen the pixmap is created on.

width

height Specify the width and height, which define the dimensions of the pixmap.
depth Specifies the depth of the pixmap.

The XCreatePixmap function creates a pixmap of the width, height, and depth you specified and
returns a pixmap ID that identifies it. It is valid to passrgutOnly window to the dravable
argument. Theavidth and height arguments must be nonzero, BadValue error results. The

depth argument must be one of the depths supported by the screen of the spewdisd, dnma
BadValue error results.

The server uses the specifiedvasble to determine on which screen to create the pixmap. The
pixmap can be used only on this screen and only with otheeblies of the same depth (see
XCopyPlane for an exception to this rule). The initial contents of the pixmap are undefined.

XCreatePixmap can generat8adAlloc, BadDrawable, and BadValue errors.

To free all storage associated with a specified pixmapX&seePixmap.

73

XFreePixmapdisplay, pixmap)
Display *display;
Pixmappixmap

display Specifies the connection to the X server.
pixmap Specifies the pixmap.

The XFreePixmap function first deletes the association between the pixmap ID and the pixmap.
Then, the X server frees the pixmap storage when there are no references to it. The pixmap
should nger be referenced again.

XFreePixmap can generate BadPixmap error.

5.2. Creating, Recoloring, and Freeing Cursors

Each windw can hae a dfferent cursor defined for it. Whewer the pointer is in a visible win-
dow, it is et to the cursor defined for that windolf no cursor was defined for that windpthe
cursor is the one defined for the parent windo

From X’s perspectie, a aursor consists of a cursor source, mask, colors, and a hotspot. The mask
pixmap determines the shape of the cursor and must be a depth of one. The source pixmap must
have a épth of one, and the colors determine the colors of the source. The hotspot defines the
point on the cursor that is reported when a pointemteoccurs. There may be limitations

imposed by the hardware on cursors as to size and whether a mask is implemented.
XQueryBestCursor can be used to find out what sizes are possible. There is a standard font for
creating cursors, but Xlib provides functions that you can use to create cursors from an arbitrary
font or from bitmaps.

To caeate a cursor from the standard cursor font XSeeateFontCursor.

#include <X11/cursorfont.h>

Cursor XCreatedntCursor (lisplay, shapg

Display *display;,

unsigned inshape
display Specifies the connection to the X server.
shape Specifies the shape of the cursor.

X provides a set of standard cursor shapes in a special font named éyglications are
encouraged to use this interface for their cursors because the font can be customized for the indi-
vidual display type. The shape argument specifies which glyph of the standard fonts to use.

The hotspot comes from the information stored in the cursor font. The initial colors of a cursor
are a black foreground and a white background XdeecolorCursor). For further information
about cursor shapes, see appendix B.

XCreateFontCursor can generatBadAlloc andBadValue errors.

To aeate a cursor from font glyphs, us€reateGlyphCursor.

74

Cursor XCreateGlyphCursatisplay, source_fontmask_fontsource_chaymask_char
foregound_color, background_coloy
Display *display,
Font source_fontmask_font
unsigned insource_chaymask_char
XColor *foregound_color,
XColor *background_coloyr

display Specifies the connection to the X server.
source_font Specifies the font for the source glyph.
mask_font Specifies the font for the mask glyphNone.
source_char Specifies the character glyph for the source.
mask _char Specifies the glyph character for the mask.

foreground_color
Specifies the RGB values for the foreground of the source.

background_color
Specifies the RGB values for the background of the source.

The XCreateGlyphCursor function is similar toXCreatePixmapCursor except that the source
and mask bitmaps are obtained from the specified font glyphs. The source_char must be a
defined glyph in source_font, orBadValue error results. If mask_font is\gn, mask_char

must be a defined glyph in mask_font, dadValue error results. The mask_font and character
are optional. The origins of the source_char and mask_char (if defined) glyphs are positioned
coincidently and define the hotspot. The source_char and mask_char neegtrtwt kame
bounding box metrics, and there is no restriction on the placement of the hotspat tethe
bounding bors. Ifno mask_char is gen, all pixels of the source are displayethu can free

the fonts immediately by callingFreeFont if no further explicit references to them are to be
made.

For 2-byte matrix fonts, the 16-bit value should be formed with the bytel member in the most sig-
nificant byte and the byte2 member in the least significant byte.
XCreateGlyphCursor can generat8adAlloc, BadFont, and BadValue errors.

To aeate a cursor from mhbitmaps, useXCreatePixmapCursor.

75

Cursor XCreatePixmapCursdali§play, source mask foregound_color, background_colorx, y)
Display *display;
Pixmapsource
Pixmapmask
XColor *foregound_color,
XColor *background_coloyr
unsigned ink, y;

display Specifies the connection to the X server.
source Specifies the shape of the source cursor.
mask Specifies the curs@'ource bits to be displayed bdlone.

foreground_color
Specifies the RGB values for the foreground of the source.

background_color
Specifies the RGB values for the background of the source.

y Specify the x and y coordinates, which indicate the hotspotveskatihe
sources aigin.

The XCreatePixmapCursor function creates a cursor and returns the cursor ID associated with

it. Theforeground and background RGB values must be specified using foreground_color and
background_colomreven if the X server only has &taticGray or GrayScale screen. Théore-

ground color is used for the pixels set to 1 in the source, and the background color is used for the
pixels set to 0. Both source and mask, if specified, must #gpth one (or 8adMatch error

results) but can va any pot. Themask argument defines the shape of the cuidue pixels set

to 1 in the mask define which source pixels are displayed, and the pixels set to 0 define which pix-
els are ignored. If no mask isvgn, all pixels of the source are displayed. The mask, if present,
must be the same size as the pixmap defined by the source argumdésaddtatch error

results. Theénotspot must be a point within the source, @aalMatch error results.

The components of the cursor can be transformed arbitrarily to meet display limitations. The
pixmaps can be freed immediately if no further explicit references to them are to be made. Sub-
seqguent drawing in the source or mask pixmap has an undefined effect on theThastr

server might or might not mala opy of the pixmap.

XCreatePixmapCursor can generat®adAlloc and BadPixmap errors.

To determine useful cursor sizes, bs®ueryBestCursor.

76

Status XQueryBestCursatigplay, d, width, height, width_return height_return)
Display *display;,
Drawabled;
unsigned intvidth, height
unsigned int tvidth_return *height_return

display Specifies the connection to the X server.

d Specifies the dwaable, which indicates the screen.

width

height Specify the width and height of the cursor that you want the size information for.

width_return
height_return Return the best width and height that is closest to the specified width and height.

Some displays alie larger cursors than other displays. Tf@ueryBestCursor function pro-

vides a way to find out what size cursors are actually possible on the digpktyrns the largest
size that can be displayed. Applications should be prepared to use smaller cursors on displays
that cannot support large ones.

XQueryBestCursor can generate BadDrawable error.
To change the color of agn cursor use XRecolorCursor.

XRecolorCursordisplay, cursor, foregound_color, background_coloy
Display *display,
Cursorcursor,
XColor *foregound_color, *background_color

display Specifies the connection to the X server.

cursor Specifies the cursor.

foreground_color
Specifies the RGB values for the foreground of the source.

background_color
Specifies the RGB values for the background of the source.

The XRecolorCursor function changes the color of the specified cumaut if the cursor is
being displayed on a screen, the change is visible immedidte¢ypixel members of the
XColor structures are ignored; only the RGB values are used.

XRecolorCursor can generate BadCursor error.

To free (destroy) a gen cursor use XFreeCursor.

77

XFreeCursordisplay, cursor)

Display *display;,

Cursorcursor;
display Specifies the connection to the X server.
cursor Specifies the cursor.

The XFreeCursor function deletes the association between the cursor resource ID and the speci-

fied cursor The cursor storage is freed when no other resource references it. The specified cursor
ID should not be referred to again.

XFreeCursor can generate BadCursor error.

78

Chapter 6

Color Management Functions

Each X windev aways has an associated colormap that providegehdéindirection between

pixel values and colors displayed on the screen. Xlib provides functions that you can use to
manipulate a colormap. The X protocol defines colors using values in the RGB color space. The
RGB color space is device dependent; rendering an RGB value on differing output devices typi-
cally results in different colors. Xlib also provides a means for clients to specify color using
device-independent color spaces for consistent results ackdessdeXlibsupports device-inde-
pendent color spaces dele from the CIE XYZ color space. This includes the CIE XYZ, xyY,
L*u*v*, and L*a*b* color spaces as well as the TekHVC color space.

This chapter discussesviato:

. Create, cop, and destrg a mlormap
. Specify colors by name or value

. Allocate, modify and free color cells
. Read entries in a colormap

. Corvert between color spaces

. Control aspects of color ceersion

. Query the color gamut of a screen
. Add nev color spaces

All functions, types, and symbols in this chapter with the prefix “Xtarg defined in
<X11/Xcms.l>. Theremaining functions and types are definedXi¥/Xlib.h>.

Functions in this chapter manipulate the representation of color on the sSEceeach possible
value that a pixel can takin a wndow, there is a color cell in the colormapor example, if a
window is 4 hits deep, pixel values 0 through 15 are defina@olormap is a collection of color
cells. Acolor cell consists of a triple of red, green, and blue (RGR)es. Théardware

imposes limits on the number of significant bits in thedees. Aseach pixel is read out of dis-
play memorythe pixel is looked up in a colormap. The RGB value of the cell determines what
color is displayed on the screen. On a grayscale display with a black-and-white ntioaivei-

ues are combined to determine the brightness on the screen.

Typically, an gplication allocates color cells or sets of color cells to obtain the desired colors.
The client can allocate read-only cells. In which case, the pixel values for these colors can be
shared among multiple applications, and the RGB value of the cell cannot be changed. If the
client allocates read/write cells, thare exclusiely owned by the client, and the color associated
with the pixel value can be changed at will. Cells must be allocated (and, if read/write, initialized
with an RGB value) by a client to obtain desired colors. The use of pixel value for an unallocated
cell results in an undefined color.

Because colormaps are associated with windows, X supports displays with multiple colormaps
and, indeed, different types of colormaps. If there are insufficient colormap resources in the dis-
play, some windows will display in their true colors, and others will display with incorrect colors.
A window manager usually controls which windows are displayed in their true colors if more
than one colormap is required for the color resources the applications are using.tidiean

79

there is a set of installed colormaps for a scréimdows using one of the installed colormaps
display with true colors, and windows using other colormaps generally display with incorrect col-
ors. You can control the set of installed colormaps by uXihgstallColormap and XUninstall-
Colormap.

Colormaps are local to a particular screen. Screavaysihase a efault colormap, and pro-

grams typically allocate cells out of this colormap. Genenadly should not write applications

that monopolize color resources. Although some hardware supports multiple colormaps installed
at one time, manof the hardware displays built today support only a single installed colormap,

so the primitves ae written to encourage sharing of colormap entries between applications.

The DefaultColormap macro returns the default colormap. TbhefaultVisual macro returns
the default visual type for the specified screen. Possible visual typ8taticsray,
GrayScale, StaticColor, PseudoColor, TrueColor, or DirectColor (see section 3.1).

6.1. ColorStructures
Functions that operate only on RGB color space values us€alor structure, which contains:

typedef struct {
unsigned long piel; * pixel value */
unsigned short red, green, blue; /* rgb values */
char flags; /* DoRed, DoGreen, DoBlue */
char pad;
} X Color;

The red, green, and blue values areags in the range 0 to 65535 inclusiindependent of the
number of bits actually used in the display haadkv Theserver scales these values down to the
range used by the hardve. Blackis represented by (0,0,0), and white is represented by
(65535,65535,65535). kome functions, the flags member controls which of the red, green, and
blue members is used and can be the in@duSR of zero or more oDoRed, DoGreen, and

DoBlue.

Functions that operate on all color space values u3emsColor structure. Thistructure con-

tains a union of substructures, each supporting color specification encoding for a particular color
space. Like the XColor structure, theXcmsColor structure contains pixel and color specifica-

tion information (the spec member in tKkemsColor structure).

80

typedef unsigned long XcmsColorFormat;/* Color Specification Format */

typedef struct {
union {
XcmsRGB RGB;
XcmsRGBi RGB;;
XcmsCIEXYZ CIEXYZ;
XemsCIEuvY CIEuvY;
XcmsCIExyY CIEXxyY;
XcmsClIlELab CIELab;
XcmsCIELuv CIELuv;
XcmsTekHVC TekHVC;
XcmsPad Pad;
} spec;
unsigned long pixel;
XcmsColorFormat format;
} XcmsColor; [*Xcms Color Structure */

Because the color specification can be encoded for the various color spaces, encoding for the spec
member is identified by the format membehich is of typeXcmsColorFormat. The following
macros define standard formats.

#define XcmsUndefinedFormat 0x00000000

#define XcmsCIEXYZFormat 0x00000001 [* CIE XYZ */
#define XcmsCIEuvYFormat 0x00000002 [* CIE uV'Y */
#define XcmsCIExyYFormat 0x00000003 I* CIE xyY */
#define XcmsCIELabFormat 0x00000004 [* CIE L*a*b* */
#define XcmsCIELuvFormat 0x00000005 [* CIE L*u*v* */
#define XcmsTekHVCFormat 0x00000006 [* TekHVC */
#define XcmsRGBFormat 0x80000000 /* RGB Device */
#define XcmsRGBiFormat 0x80000001 /* RGB Intensity */

Formats for device-independent color spaces are distinguishable from those for device-dependent
spaces by the 32nd bit. If this bit is set, it indicates that the color specification is in a device-
dependent form; otherwise, it is in a device-independent form. If the 31st bit is set, this indicates
that the color space has been added to Xlib at run time (see section 6.12.4). The format value for
a wlor space added at run time may be different each time the prograeousee. Ifreferences

to such a color space must be made outside the client (for example, storing a color specification in
a file), then reference should be made by color space string prefiXdped-ormatOfPrefix

and XcmsPrefixOfFormat).

Data types that describe the color specification encoding for the various color spaces are defined
as follows:

81

typedef double XcmsFloat;

typedef struct {
unsigned short red;
unsigned short green;
unsigned short blue;
} XcmsRGB;

typedef struct {
XcmsFloat red;
XcmsFloat green;
XcmsFloat blue;
} X cmsRGB;;

typedef struct {
XcmsFloat X;
XcmsFloat Y
XcmsFloat Z;
} XecmsCIEXYZ;

typedef struct {
XcmsFloat u_prime;
XcmsFloat v_prime;
XcmsFloat Y

} XcmsCIEuvY

typedef struct {
XcmsFloat x;
XcmsFloat y;
XcmsFloat Y
} X cmsCIEXyY,

typedef struct {
XcmsFloat L_star;
XcmsFloat a_star;
XcmsFloat b_star;
} X cmsCIELab;

typedef struct {
XcmsFloat L_star;
XcmsFloat u_star;
XcmsFloat v_star;
} XecmsCIELuv;

typedef struct {
XcmsFloat H;
XcmsFloat VY

/¥ 0x0000 to @k /

/* 0x0000 to fBikf /

/* 0x0000 to &&kf /
[*RGB Device */

/*0.0to 1.0 ¥/
/*0.0to 1.0 */
/*0.0to 1.0 ¥/

/*RGB Intensity */

/*0.0to 1.0 */

[*CIE XYZ */

/*0.0t0 0.6 */

/*0.0t070.6 */
/¥0.0t0 1.0 */
[*CIE u'v'Y */

/¥0.0 to ~.75 */
/*0.0 to ~.85 */
/*0.0t0 1.0 */
I* CIE xyY */

/*0.0 to 100.0 */

[*CIE L*a*b* */

/*0.0 to 100.0 */

[*CIE L*u*v* */

/* 0.0 to 360.0 */
/*0.0 to 100.0 */

82

XcmsFloat C; /0.0 to 100.0 */
} XcmsTekHVC; [* TekHVC */

typedef struct {
XcmsFloat padO;
XcmsFloat padi;
XcmsFloat pad2;
XcmsFloat pad3;
} X cmsRd; /*four doubles */

The device-dependent formats providedwltolor specification in:

. RGB Intensity XcmsRGBI)
Red, green, and blue linear intensity values, floating-point values from 0.0 to 1.0, where 1.0
indicates full intensity0.5 half intensityand so on.

. RGB Device XcmsRGB)

Red, green, and blue values appropriate for the specified output d¥eicesRGB vaues
are of type unsigned short, scaled from 0 to 65535 in&uaid are interchangeable with
the red, green, and blue values in&Dolor structure.

It is important to note that RGB Intensity values are not gamma corredtegby Incontrast,

RGB Device values generated as a result of@ting color specifications arevedys gamma

corrected, and RGB Device values acquired as a result of querying a colormap or passed in by the
client are assumed by Xlib to be gamma corrected. TheR&B valudn this manual alays

refers to an RGB Device value.

6.2. ColorStrings

Xlib provides a mechanism for using string names for colarsolor string may either contain
an abstract color name or a numerical color specification. Color strings are casewasensiti

Color strings are used in the following functions:

. XAllocNamedColor

. XcmsAllocNamedColor
. XLookupColor

. XcmsLookupColor

. XParseColor

. XStoreNamedColor

Xlib supports the use of abstract color names, for example, red orAledue for this abstract

name is obtained by searching one or more color name databases. Xlib first searches zero or
more client-side databases; the numlmeration, and content of these databases is implementa-
tion-dependent and might depend on the current locale. If the name is not found, Xlib then looks
for the color in the X serves’database. Ithe color name is not in the Host Portable Character
Encoding, the result is implementation-dependent.

A numerical color specification consists of a color space name and a set of values in the following
syntax:

83

<color_space_namexvalue>/.../<value>

The following are examples of valid color strings.

"CIEXYZ:0.3227/0.28133/0.2493"
"RGBi:1.0/0.0/0.0"

"rgb:00/ff/00"
"CIELuv:50.0/0.0/0.0"

The syntax and semantics of numerical specifications aee fyir each standard color space in
the following sections.

6.2.1. RGBDevice String Specification

An RGB Device specification is identified by the prefix “rgbrid conforms to the following
syntax:

rgb:<red>/<green>/<blue>

<red>, <green>, <blue> := h | hh| hhh| hhhh
h := single hexadecimal digits (case insignificant)

Note thath indicates the value scaled in 4 blig,the value scaled in 8 bitshhthe value scaled
in 12 bits, andhhhhthe value scaled in 16 bits, respedi.

Typical examples are the strings “rgb:ea/75/a2d “rgb:ccc/320/320”, but mixed numbers of
hexadecimal digit strings (“rgb:ff/a5/and “rgb:ccc/32/0") are also allowed.

For backward compatibilityan dder syntax for RGB Device is supported, but its continued use is
not encouraged. The syntax is an initial sharp sign character followed by a numeric specification,
in one of the following formats:

#RGB (4bits each)
#RRGGBB (8bits each)
#RRRGGGBBB (1its each)
#RRRRGGGGBBBB (1dits each)

The R, G, and B represent single hexadecimal digits. When fewer than 16 bits each are specified,
they represent the most significant bits of the value (erthike “rgb:” syntax, in which values are
scaled). Br example, the string “#3d1s the same as “#3000a0007000".

6.2.2. RGBIntensity String Specification

An RGB intensity specification is identified by the prefix “rgkand conforms to the following
syntax:

rgbi:<red>/<green>/<blue>

Note that red, green, and blue are floating-point values between 0.0 and 1.04eéndlhsiinput
format for these values is an optional sign, a string of numbers possibly containing a decimal
point, and an optional exponent field containing an E or e followed by a possibly signed integer
string.

84

6.2.3. Deice-Independent String Specifications
The standard device-independent string specificatiores tha following syntax:

CIEXYZ:<X>/I<Y>/<Z>
CIEuvY:<u>/<v>/<Y>
CIExyY:<x>/<y>/<Y>
CIELabxL>/<a>/
CIELuv:<L>/<u>/<v>
TekHVC:<H>/<V>/<C>

All of the values (C, H, VX, Y, Z, a, b, u, v, y, X) & floating-point @lues. Thesyntax for these

values is an optional plus or minus sign, a string of digits possibly containing a decimal point, and
an optional exponent field consisting of an™&’ ‘‘e” f ollowed by an optional plus or minus fol-
lowed by a string of digits.

6.3. ColorConversion Contexts and Gamut Mapping

When Xlib cowerts device-independent color specifications into device-dependent specifications
and vice versa, it uses knowledge about the color limitations of the screemterdwisinfor-
mation, typically called the device profile, isa#able in a Color Coversion Context (CCC).

Because a specified color may be outside the color gamut of the target screen and the white point
associated with the color specification may differ from the white point inherent to the screen, Xlib
applies gamut mapping when it encounters certain conditions:

. Gamut compression occurs when eamion of device-independent color specifications to
device-dependent color specifications results in a color out of the target sceeeut.

. White adjustment occurs when the inherent white point of the screen differs from the white
point assumed by the client.

Gamut handling methods are stored as callbacks in the CCC, which in turn are used by the color
space coversion routines. Client data is also stored in the CCC for each callback. The CCC also
contains the white point the client assumes to be associated with color specifications (that is, the
Client White Point). The client can specify the gamut handling callbacks and client data as well
as the Client White Point. Xlib does not preclude the X client from performing other forms of
gamut handling (for example, gamut expansion); hareXlib does not provide direct support

for gamut handling other than white adjustment and gamut compression.

Associated with each colormap is an initial CCC transparently generated byTKébefore,

when you specify a colormap as an argument to an Xlib function, you are indirectly specifying a
CCC. Theras a default CCC associated with each screen. Newly created CCCs inherit attributes
from the default CCC, so the default CCC attributes can be modified to affie€GEs.

Xcms functions in which gamut mapping can occur reftatus and hae gecific status values
defined for them, as follows:

. XcmsFailure indicates that the function failed.

. XcmsSuccessndicates that the function succeeded. In addition, if the function performed
ary color corversion, the colors did not need to be compressed.

. XcmsSuccessWithCompressioimdicates the function performed color gersion and at
least one of the colors needed to be compressed. The gamut compression method is deter-
mined by the gamut compression procedure in the CCC that is specified directly as a func-
tion argument or in the CCC indirectly specified by means of the colormap argument.

85

6.4. Creating, Copying, and Destroying Colormaps
To aeate a colormap for a screen, 0&ereateColormap.

Colormap XCreateColormagisplay, w, visual, alloc)

Display *display;
Windoww;
Visual *visual;
int alloc;
display Specifies the connection to the X server.
w Specifies the winde on whose screen you want to create a colormap.
visual Specifies a visual type supported on the screen. If the visual type is not one sup-
ported by the screen,BadMatch error results.
alloc Specifies the colormap entries to be allocatéali can passAllocNone or Allo-
cAll.

The XCreateColormap function creates a colormap of the specified visual type for the screen on
which the specified winderesides and returns the colormap ID associated with it. Note that the
specified windw is only used to determine the screen.

The initial values of the colormap entries are undefined for the visual classgScale, Pseu-
doColor, and DirectColor. For StaticGray, StaticColor, and Tr ueColor, the entries hze
defined values, but those values are specific to the visual and are not definedn\s¥at-
icGray, StaticColor, and TrueColor, dloc must beAllocNone, or aBadMatch error results.
For the other visual classes, if allocAilocNone, the colormap initially has no allocated entries,
and clients can allocate therRor information about the visual types, see section 3.1.

If alloc is AllocAll , the entire colormap is allocated writable. The initial values of all allocated
entries are undefinedcor GrayScale and PseudoColor, the effect is as if aiXAllocColorCells

call returned all pixel values from zero to N — 1, where N is the colormap entries value in the
specified visual For DirectColor, the effect is as if adXAllocColorPlanes call returned a pixel

value of zero and red_mask, green_mask, and blue_mask values containing the same bits as the
corresponding masks in the specified visual. Haweén dl cases, none of these entries can be

freed by usingXFreeColors.

XCreateColormap can generat8adAlloc, BadMatch, BadValue, and BadWindow errors.

To aeate a n@ colormap when the allocation out of a previously shared colormap has failed
because of resource exhaustion, ¥&€opyColormapAndFree.

Colormap XCopColormapAndFreedisplay, colormap
Display *display;
Colormapcolormagp
display Specifies the connection to the X server.
colormap Specifies the colormap.

The XCopyColormapAndFree function creates a colormap of the same visual type and for the
same screen as the specified colormap and returnsviteloemap ID. It also mees dl of the
client’s existing allocation from the specified colormap to thes gelormap with their color

86

values intact and their read-only or writable characteristics intact and frees those entries in the
specified colormap. Color values in other entries in thegodormap are undefined. If the speci-
fied colormap was created by the client with alloc sétlkncAll , the nev colormap is also cre-

ated withAllocAll , dl color values for all entries are copied from the specified colormap, and
then all entries in the specified colormap are freed. If the specified colormap was not created by
the client withAllocAll , the allocations to be med are all those pixels and planes thavda

been allocated by the client usiXgllocColor , XAllocNamedColor, XAllocColorCells, or
XAllocColorPlanes and that hee rot been freed since thevere allocated.

XCopyColormapAndFree can generatBadAlloc andBadColor errors.
To destrgy a wlormap, useXFreeColormap.

XFreeColormapdisplay, colormap)

Display *display,

Colormapcolormap
display Specifies the connection to the X server.
colormap Specifies the colormap that you want to dgstro

The XFreeColormap function deletes the association between the colormap resource ID and the
colormap and frees the colormap storage. Heweéhis function has no effect on the default col-
ormap for a screen. If the specified colormap is an installed map for a screen, it is uninstalled
(seeXUninstallColormap). If the specified colormap is defined as the colormap for a window
(by XCreateWindow, XSetWindowColormap, or XChangeWindowAttributes), XFreeCol-

ormap changes the colormap associated with the wirnidoNone and generates @olormap-

Notify event. X does not define the colors displayed for a wimedth a colormap ofNone.

XFreeColormap can generate BadColor error.

6.5. Mapping Color Names to Values

To map a color name to an RGB value, idsokupColor .

87

Status XLookupColodisplay, colormap color_nameexact_def returnscreen_def retum
Display *display;
Colormapcolormagp
char *color_name
XColor *exact_def_return*screen_def_return

display Specifies the connection to the X server.
colormap Specifies the colormap.

color_ name Specifies the color name string (for example, red) whose color definition struc-
ture you want returned.

exact_def _return
Returns the exact RGB values.

screen_def _return
Returns the closest RGB values provided by the hardware.

The XLookupColor function looks up the string name of a color with respect to the screen asso-
ciated with the specified colormap. It returns both the exact color values and the closest values
provided by the screen with respect to the visual type of the specified colormap. If the color
name is not in the Host Portable Character Encoding, the result is implementation-dependent.
Use of uppercase or lowercase does not makeaokupColor returns nonzero if the name is
resolved; otherwise, it returns zero.

XLookupColor can generate BadColor error.
To map a color name to the exact RGB value, XiBarseColor.

Status XRrseColordisplay, colormap spec exact_def_return
Display *display,
Colormapcolormap
char *speg
XColor *exact_def _return

display Specifies the connection to the X server.
colormap Specifies the colormap.
spec Specifies the color name string; case is ignored.

exact_def return
Returns the exact color value for later use and set®diRed, DoGreen, and
DoBlue flags.

The XParseColor function looks up the string name of a color with respect to the screen associ-
ated with the specified colormap. It returns the exact caloiev Ifthe color name is not in the

Host Portable Character Encoding, the result is implementation-dependent. Use of uppercase or
lowercase does not matteXParseColor returns nonzero if the name is resolved; otherwise, it
returns zero.

XParseColor can generate BadColor error.

To map a color name to a value in an arbitrary color spaceXassLookupColor.

88

Status XcmsLookupColodfsplay, colormap color_string, color_exact_returncolor_screen_return
result_forma)
Display *display,
Colormapcolormap
char *color_string;
XcmsColor *tolor_exact_return*color_screen_return
XcmsColorFormatesult_format

display Specifies the connection to the X server.
colormap Specifies the colormap.
color_string Specifies the color string.

color_exact_return
Returns the color specification parsed from the color string or parsed from the
corresponding string found in a color-name database.

color_screen_return
Returns the color that can be reproduced on the screen.

result_format Specifies the color format for the returned color specifications
(color_screen_return and color_exact_retuguarents). Ithe format isXcm-
sUndefinedFormatand the color string contains a numerical color specification,
the specification is returned in the format used in that numerical color specifica-
tion. If the format isXcmsUndefinedFormatand the color string contains a
color name, the specification is returned in the format used to store the color in
the database.

The XcmsLookupColor function looks up the string name of a color with respect to the screen
associated with the specified colormap. It returns both the exact color values and the closest val-
ues provided by the screen with respect to the visual type of the specified colormap. The values
are returned in the format specified by result_format. If the color name is not in the Host Portable
Character Encoding, the result is implementation-dependent. Use of uppercase or lowercase does
not matter. XcmsLookupColor returnsXcmsSucces®r XcmsSuccessWithCompressioif

the name is resolved; otherwise, it retuktsnsFailure. If XcmsSuccessWithCompressiois

returned, the color specification returned in color_screen_return is the result of gamut compres-
sion.

6.6. Allocatingand Freeing Color Cells

There are tw ways of allocating color cells: explicitly as read-only entries, one pixel value at a
time, or read/write, where you can allocate a number of color cells and planes simultan&ously
read-only cell has its RGB value set by the seriRerad/write cells do not ka defined colors

initially; functions described in the next section must be used to store values into them. Although
it is possible for ayclient to store values into a read/write cell allocated by another client,
read/write cells normally should be consideredabei to the client that allocated them.

Read-only colormap cells are shared among clients. The server counts each allocation and free-
ing of the cell by clients. When the last client frees a shared cell, the cell is finally deallocated. If
a dngle client allocates the same read-only cell multiple times, the server counts each such alloca-
tion, not just the first one.

To dlocate a read-only color cell with an RGB value, ¥gdlocColor .

89

Status XAllocColor{isplay, colormap screen_in_oyt
Display *display;
Colormapcolormagp
XColor *screen_in_out

display Specifies the connection to the X server.
colormap Specifies the colormap.
screen_in_out Specifies and returns the values actually used in the colormap.

The XAllocColor function allocates a read-only colormap entry corresponding to the closest
RGB value supported by the hardwad@AllocColor returns the pixel value of the color closest

to the specified RGB elements supported by the hardware and returns the RGB value actually
used. Theorresponding colormap cell is read-only addition, XAllocColor returns nonzero

if it succeeded or zero if infled. Multipleclients that request the same effeetRGB value can

be assigned the same read-only erttnys allowing entries to be shared. When the last client
deallocates a shared cell, it is deallocat¥éllocColor does not use or affect the flags in the
XColor structure.

XAllocColor can generate BadColor error.
To dlocate a read-only color cell with a color in arbitrary format, ¥sssAllocColor.

Status XcmsAllocColordisplay, colormap, color_in_out result_forma)
Display *display,
Colormapcolormap
XcmsColor *tolor_in_out
XcmsColorFormatesult_format

display Specifies the connection to the X server.
colormap Specifies the colormap.

color_in_out Specifies the color to allocate and returns the pixel and color that is actually used
in the colormap.

result format Specifies the color format for the returned color specification.

The XcmsAllocColor function is similar toXAllocColor except the color can be specified in

ary format. TheXcmsAllocColor function ultimately callsXAllocColor to allocate a read-only
color cell (colormap entry) with the specified coldtfcmsAllocColor first corverts the color
specified to an RGB value and then passes thiAttmcColor . XcmsAllocColor returns the

pixel value of the color cell and the color specification actually allocated. This returned color
specification is the result of caarting the RGB value returned B¥AllocColor into the format
specified with the result_formatgament. Ifthere is no interest in a returned color specification,
unnecessary computation can be bypassed if result_format isah&iRGBFormat. The cor-
responding colormap cell is read-anly this routine returnXcmskFailure, the color_in_out

color specification is left unchanged.

XcmsAllocColor can generate BadColor error.

To dlocate a read-only color cell using a color name and return the closest color supported by the
hardware in RGB format, us€AllocNamedColor.

90

Status XAllocNamedColodjsplay, colormap color_name screen_def returrexact _def return
Display *display;,
Colormapcolormagp
char *color_name
XColor *screen_def_returytexact_def_return

display Specifies the connection to the X server.
colormap Specifies the colormap.

color_ name Specifies the color name string (for example, red) whose color definition struc-
ture you want returned.

screen_def_return
Returns the closest RGB values provided by the hardware.

exact_def _return
Returns the exact RGB values.

The XAllocNamedColor function looks up the named color with respect to the screen that is
associated with the specified colormap. It returns both the exact database definition and the clos-
est color supported by the screen. The allocated color cell is readid@ypixel value is

returned in screen_def_return. If the color name is not in the Host Portable Character Encoding,
the result is implementation-dependent. Use of uppercase or lowercase does notfmatter
screen_def_return and exact_def return point to the same structure, the pixel field will be set cor-
rectly, but the color values are undefinedAllocNamedColor returns nonzero if a cell is allo-

cated; otherwise, it returns zero.

XAllocNamedColor can generate BadColor error.

To dlocate a read-only color cell using a color name and return the closest color supported by the
hardware in an arbitrary format, ukemsAllocNamedCaolor.

91

Status XcmsAllocNamedColad{splay, colormap color_string, color_screen_returncolor_exact_return
result_forma)
Display *display,
Colormapcolormap
char *color_string;
XcmsColor *tolor_screen_return
XcmsColor *tolor_exact_return
XcmsColorFormatesult_format

display Specifies the connection to the X server.
colormap Specifies the colormap.
color_string Specifies the color string whose color definition structure is to be returned.

color_screen_return
Returns the pixel value of the color cell and color specification that actually is
stored for that cell.

color_exact_return
Returns the color specification parsed from the color string or parsed from the
corresponding string found in a color-name database.

result_format Specifies the color format for the returned color specifications
(color_screen_return and color_exact_retuguarents). Ithe format isXcm-
sUndefinedFormatand the color string contains a numerical color specification,
the specification is returned in the format used in that numerical color specifica-
tion. If the format isXcmsUndefinedFormatand the color string contains a
color name, the specification is returned in the format used to store the color in
the database.

The XcmsAllocNamedColor function is similar toXAllocNamedColor except that the color
returned can be in griormat specified. This function ultimately cak#\llocColor to allocate a
read-only color cell with the color specified by a color string. The color string is parsed into an
XcmsColor structure (se&XcmsLookupColor), corverted to an RGB value, and finally passed

to XAllocColor . If the color name is not in the Host Portable Character Encoding, the result is
implementation-dependent. Ustuppercase or lowercase does not matter.

This function returns both the color specification as a result of parsing (exact specification) and
the actual color specification stored (screen specification). This screen specification is the result
of corverting the RGB value returned BYAllocColor into the format specified in result_format.

If there is no interest in a returned color specification, unnecessary computation can be bypassed
if result_format is set tccmsRGBFormat. If color_screen_return and color_exact_return point

to the same structure, the pixel field will be set correltiythe color values are undefined.

XcmsAllocNamedColor can generate BadColor error.

To dlocate read/write color cell and color plane combinations f@seudoColormodel, use
XAllocColorCells.

92

Status XAllocColorCellsdisplay, colormap, contig, plane_masks_returmplanes
pixels_return npixels
Display *display,
Colormapcolormap
Bool contig;
unsigned longlane_masks_retufh
unsigned inhplanes
unsigned longpixels_returf];
unsigned inhpixels

display Specifies the connection to the X server.
colormap Specifies the colormap.
contig Specifies a Boolean value that indicates whether the planes must be contiguous.

plane_mask_return
Returns an array of plane masks.

nplanes Specifies the number of plane masks that are to be returned in the plane masks
array.

pixels_return Returns an array of pixel values.

npixels Specifies the number of pixel values that are to be returned in the pixels_return
array.

The XAllocColorCells function allocates read/write color cells. The number of colors must be
positive and the number of planes nogave, or aBadValue error results. If ncolors and
nplanes are requested, then ncolors pixels and nplane plane masks are returned. No mask will
have any lits set to 1 in common with gother mask or with anof the pixels. ByORing

together each pixel with zero or more masks, ncolof®®™distinct pixels can be produced.

All of these are allocated writable by the requési. GrayScale or PseudoColor, each mask

has exactly one bit set to Eor DirectColor, each has exactly three bits set to 1. If contig is
True and if all masks are ORed togetheesngle contiguous set of bits set to 1 will be formed
for GrayScale or PseudoColorand three contiguous sets of bits set to 1 (one within each pixel
subfield) forDirectColor. The RGB values of the allocated entries are undefix@dlocCol-
orCells returns nonzero if it succeeded or zero if it failed.

XAllocColorCells can generat®adColor and BadValue errors.

To dlocate read/write color resources foDaectColor model, useXAllocColorPlanes.

93

Status XAllocColorPlanesi{splay, colormap, contig, pixels_return ncolors, nreds ngreens
nblues rmask_returngmask_returnbmask_returh
Display *display,
Colormapcolormap
Bool contig;
unsigned longixels_returi];
int ncolors,
int nreds ngreens nblues
unsigned long fmask_return *gmask_return*bmask_return

display Specifies the connection to the X server.

colormap Specifies the colormap.

contig Specifies a Boolean value that indicates whether the planes must be contiguous.

pixels_return Returns an array of pixel valueXAllocColorPlanes returns the pixel values in
this array.

ncolors Specifies the number of pixel values that are to be returned in the pixels_return
array.

nreds

ngreens

nblues

Specify the number of red, green, and blue planes. The value you pass must be
nonngative.

rmask_return
gmask_return
bmask_return Return bit masks for the red, green, and blue planes.

The specified ncolors must be postiand nreds, ngreens, and nblues must be rgdine, or a
BadValue error results. If ncolors colors, nreds reds, ngreens greens, and nblues blues are
requested, ncolors pixels are returned; and the masksteals, ngreens, and nblues bits set to 1,
respectiely. If contig is True, each mask will hee a ontiguous set of bits set to 1. No mask

will have any lits set to 1 in common with sother mask or with anof the pixels. For Direct-
Color, each mask will lie within the corresponding pixel subfield. By ORing together subsets of
masks with each pixel value, ncolors®gismareensnblued gistinct pixel values can be produced.

All of these are allocated by the request. Hasein the colormap, there are only ncolors *
2"edsindependent red entries, ncolors™™@e"Sindependent green entries, and ncolor§™es
independent blue entries. This is triverefor PseudoColor. When the colormap entry of a

pixel value is changed (usirXStoreColors, XStoreColor, or XStoreNamedColor), the pixel

is decomposed according to the masks, and the corresponding independent entries are updated.
XAllocColorPlanes returns nonzero if it succeeded or zero if it failed.

XAllocColorPlanes can generatBadColor and BadValue errors.

To free colormap cells, us¢FreeColors.

94

XFreeColorsdisplay, colormap pixels, npixels planeg
Display *display;,
Colormapcolormagp
unsigned longixeld];
int npixels
unsigned longlanes

display Specifies the connection to the X server.

colormap Specifies the colormap.

pixels Specifies an array of pixel values that map to the cells in the specified colormap.
npixels Specifies the number of pixels.

planes Specifies the planes you want to free.

The XFreeColors function frees the cells represented by pixels whose values are in the pixels
array The planes argument should novéany lits set to 1 in common with gof the pixels.

The set of all pixels is produced by ORing together subsets of the planes argument with the pix-
els. Therequest frees all of these pixels that were allocated by the client gillgcColor ,
XAllocNamedColor, XAllocColorCells, and XAllocColorPlanes). Notethat freeing an indi-

vidual pixel obtained fronXAllocColorPlanes may not actually all it to be reused until all of

its related pixels are also freed. Similadyead-only entry is not actually freed until it has been
freed by all clients, and if a client allocates the same read-only entry multiple times, it must free
the entry that mantimes before the entry is actually freed.

All specified pixels that are allocated by the client in the colormap are freedf ene or more
pixels produce an erroif a ecified pixel is not a valid inaento the colormap, 8adValue

error results. If a specified pixel is not allocated by the client (that is, is unallocated or is only
allocated by another client) or if the colormap was created with all entries writable (by passing
AllocAll to XCreateColormap), a BadAccesserror results. If more than one pixel is in error,
the one that gets reported is arbitrary.

XFreeColors can generatB8adAccess BadColor, and BadValue errors.

6.7. Modifying and Querying Colormap Cells
To dore an RGB value in a single colormap cell, XStoreColor.

XStoreColor @isplay, colormap color)
Display *display;
Colormapcolormap
XColor *color;

display Specifies the connection to the X server.
colormap Specifies the colormap.
color Specifies the pixel and RGB values.

The XStoreColor function changes the colormap entry of the pixel value specified in the pixel
member of theXColor structure. ¥u specified this value in the pixel member of X@olor
structure. Thigixel value must be a read/write cell and a valid xridéo the colormap. If a
specified pixel is not a valid ingento the colormap, 8adValue error results.XStoreColor

95

also changes the red, green, and/or blue color componémispecify which color components
are to be changed by settibpRed, DoGreen, and/or DoBlue in the flags member of the
XColor structure. Ifthe colormap is an installed map for its screen, the changes are visible
immediately.

XStoreColor can generat®adAccess BadColor, and BadValue errors.
To dore multiple RGB values in multiple colormap cells, X&toreColors.

XStoreColorsdisplay, colormap color, ncolors)
Display *display;,
Colormapcolormap
XColor color([];

int ncolors,
display Specifies the connection to the X server.
colormap Specifies the colormap.
color Specifies an array of color definition structures to be stored.
ncolors Specifies the number &fColor structures in the color definition array.

The XStoreColors function changes the colormap entries of the pixel values specified in the
pixel members of th&XColor structures. Wu specify which color components are to be changed
by settingDoRed, DoGreen, and/or DoBlue in the flags member of th¢Color structures. If

the colormap is an installed map for its screen, the changes are visible immedi&teiseCol-

ors changes the specified pixels if yree allocated writable in the colormap byyattient, even

if one or more pixels generates an eribda specified pixel is not a valid indeénto the colormap,

a BadValue error results. If a specified pixel either is unallocated or is allocated readronly
BadAccesserror results. If more than one pixel is in ertbe one that gets reported is arbitrary.

XStoreColors can generat®adAccess BadColor, and BadValue errors.
To gore a color of arbitrary format in a single colormap cell, XismsStoreColor.

Status XcmsStoreColad{splay, colormap, color)
Display *display;,
Colormapcolormap
XcmsColor *olor;

display Specifies the connection to the X server.
colormap Specifies the colormap.
color Specifies the color cell and the color to stovalues specified in thiXcms-

Color structure remain unchanged on return.

The XcmsStoreColor function cowerts the color specified in thécmsColor structure into

RGB walues. ltthen uses this RGB specification ind@olor structure, whose three flags

(DoRed, DoGreen, and DoBlue) are set, in a call t&XStoreColor to change the color cell spec-

ified by the pixel member of thécmsColor structure. Thigixel value must be a valid inkléor

the specified colormap, and the color cell specified by the pixel value must be a read/write cell. If
the pixel value is not a valid indexBadValue error results. If the color cell is unallocated or is

96

allocated read-on)ya BadAccesserror results. If the colormap is an installed map for its screen,
the changes are visible immediately.

Note thatXStoreColor has no return value; therefore, domsSuccesseturn value from this
function indicates that the cearsion to RGB succeeded and the calktoreColor was made.

To dbtain the actual color stored, uXemsQueryColor. Because of the screarfiardware limi-
tations or gamut compression, the color stored in the colormap may not be identical to the color
specified.

XcmsStoreColor can generat®adAccess BadColor, and BadValue errors.
To gore multiple colors of arbitrary format in multiple colormap cells, XsmsStoreColors

Status XcmsStoreColordisplay, colormap colors, ncolors, compression_flags_retuyn
Display *display,
Colormapcolormap
XcmsColorcolorg[];
int ncolors;
Bool compression_flags_retufh

display Specifies the connection to the X server.
colormap Specifies the colormap.
colors Specifies the color specification arrayXa@msColor structures, each specifying

a owlor cell and the color to store in that céllalues specified in the array remain
unchanged upon return.

ncolors Specifies the number ofcmsColor structures in the color-specification array.

compression_flags_return
Returns an array of Boolean values indicating compression status. If a non-
NULL pointer is supplied, each element of the array is sét te if the corre-
sponding color was compressed a&fallse otherwise. Bss NULL if the com-
pression status is not useful.

The XcmsStoreColorsfunction cowerts the colors specified in the arrayXdmsColor struc-

tures into RGB values and then uses these RGB specificatidi@oior structures, whose three
flags OoRed, DoGreen, and DoBlue) are set, in a call t&XStoreColors to change the color

cells specified by the pixel member of the corresponicrgsColor structure. Eacpixel value
must be a valid indefor the specified colormap, and the color cell specified by each pixel value
must be a read/write cell. If a pixel value is not a valid indeBadValue error results. If a

color cell is unallocated or is allocated read-palBadAccesserror results. If more than one

pixel is in errorthe one that gets reported is arbitraifythe colormap is an installed map for its
screen, the changes are visible immediately.

Note thatXStoreColors has no return value; therefore, FomsSuccesseturn value from this
function indicates that cesrsions to RGB succeeded and the caK&toreColors was made.

To dbtain the actual colors stored, usemsQueryColors. Because of the screartardware
limitations or gamut compression, the colors stored in the colormap may not be identical to the
colors specified.

XcmsStoreColorscan generat®adAccess BadColor, and BadValue errors.

To dore a color specified by name in a single colormap cellX&ereNamedColor.

97

XStoreNamedColomisplay, colormap color, pixel, flags)

Display *display;,
Colormapcolormagp
char *color;
unsigned longpixel;
int flags;
display Specifies the connection to the X server.
colormap Specifies the colormap.
color Specifies the color name string (for example, red).
pixel Specifies the entry in the colormap.
flags Specifies which red, green, and blue components are set.

The XStoreNamedColor function looks up the named color with respect to the screen associated
with the colormap and stores the result in the specified colormap. The pixel argument determines
the entry in the colormap. The flags argument determines which of the red, green, and blue com-
ponents are setrYou can set this member to the bitwise inclesCR of the bitsDoRed,

DoGreen, and DoBlue. If the color name is not in the Host Portable Character Encoding, the
result is implementation-dependent. Use of uppercase or lowercase does notlfriagespeci-

fied pixel is not a valid indeinto the colormap, 8adValue error results. If the specified pixel

either is unallocated or is allocated read-palgadAccesserror results.

XStoreNamedColor can generat®adAccess BadColor, BadName, and BadValue errors.

The XQueryColor and XQueryColors functions tak pixel values in the pixel member of

XColor structures and store in the structures the RGB values for those pixels from the specified
colormap. Thevalues returned for an unallocated entry are undefined. These functions also set
the flags member in théColor structure to all three colors. If a pixel is not a valid md€o

the specified colormap,BadValue error results. If more than one pixel is in eytbe one that

gets reported is arbitrary.

To query the RGB value of a single colormap cell, X§gueryColor .

XQueryColor display, colormap def_in_ouj

Display *display;,

Colormapcolormap

XColor *def_in_out
display Specifies the connection to the X server.
colormap Specifies the colormap.

def_in_out Specifies and returns the RGB values for the pixel specified in the structure.
The XQueryColor function returns the current RGB value for the pixel inXl@olor structure
and sets th®oRed, DoGreen, and DoBlue flags.

XQueryColor can generat8adColor andBadValue errors.

To query the RGB values of multiple colormap cells, X§gueryColors.

98

XQueryColors flisplay, colormap defs_in_outncolors)
Display *display;
Colormapcolormagp
XColor defs_in_ouf;

int ncolors,
display Specifies the connection to the X server.
colormap Specifies the colormap.

defs_in_out Specifies and returns an array of color definition structures for the pixel specified
in the structure.

ncolors Specifies the number &fColor structures in the color definition array.

The XQueryColors function returns the RGB value for each pixel in eX€volor structure and
sets theDoRed, DoGreen, and DoBlue flags in each structure.

XQueryColors can generat®adColor and BadValue errors.
To query the color of a single colormap cell in an arbitrary formatXesesQueryColor.

Status XcmsQueryColod{splay, colormap color_in_out result_forma)
Display *display;
Colormapcolormap
XcmsColor *tolor_in_out
XcmsColorFormatesult_format
display Specifies the connection to the X server.
colormap Specifies the colormap.

color_in_out Specifies the pixel member that indicates the color cell to gUéwy color speci-
fication stored for the color cell is returned in tismsColor structure.

result format Specifies the color format for the returned color specification.

The XcmsQueryColor function obtains the RGB value for the pixel value in the pixel member
of the specifiedXcmsColor structure and then ceerts the value to the target format as specified
by the result_format gument. Ifthe pixel is not a valid indein the specified colormap, Bad-
Value error results.

XcmsQueryColor can generat®adColor and BadValue errors.

To query the color of multiple colormap cells in an arbitrary format,XmmsQueryColors.

99

Status XcmsQueryColordisplay, colormap colors_in_out ncolors, result_forma)
Display *display;
Colormapcolormagp
XcmsColorcolors_in_ouf];
unsigned intcolors,
XcmsColorFormatesult_format
display Specifies the connection to the X server.
colormap Specifies the colormap.

colors_in_out Specifies an array ofcmsColor structures, each pixel member indicating the
color cell to query The color specifications for the color cells are returned in
these structures.

ncolors Specifies the number &fcmsColor structures in the color-specification array.
result_format Specifies the color format for the returned color specification.

The XcmsQueryColors function obtains the RGB values for pixel values in the pixel members
of XcmsColor structures and then coats the values to the target format as specified by the
result_format ayjument. Ifa pixel is not a valid indeinto the specified colormap,BadValue

error results. If more than one pixel is in eytbe one that gets reported is arbitrary.

XcmsQueryColors can generat®adColor andBadValue errors.

6.8. ColorConversion Context Functions
This section describes functions to create, modifgt query Color Corersion Contexts (CCCs).

Associated with each colormap is an initial CCC transparently generated byTKébefore,
when you specify a colormap as an argument to a function, you are indirectly specifying a CCC.
The CCC attributes that can be modified by the X client are:

. Client White Point
. Gamut compression procedure and client data
. White point adjustment procedure and client data

The initial values for these attributes are implementation specific. The CCC attributes for subse-
qguently created CCCs can be defined by changing the CCC attributes of the default CCC. There
is a default CCC associated with each screen.

6.8.1. Gettingand Setting the Color Cowersion Context of a Colormap
To dbtain the CCC associated with a colormap, XisexsCCCOfColormap.

XecmsCCC XecmsCCCOfColormagisplay, colormap
Display *display;
Colormapcolormagp

display Specifies the connection to the X server.
colormap Specifies the colormap.

The XcmsCCCOfColormap function returns the CCC associated with the specified colormap.
Once obtained, the CCC attributes can be queried or modified. Unless the CCC associated with

100

the specified colormap is changed witbmsSetCCCOfColormap, this CCC is used when the
specified colormap is used as an argument to color functions.

To change the CCC associated with a colormap XgasSetCCCOfColormap.

XcmsCCC XcmsSetCCCOfColormattigplay, colormap ccc)
Display *display,
Colormapcolormap
XcmsCCcCccc;

display Specifies the connection to the X server.

colormap Specifies the colormap.
cce Specifies the CCC.

The XcmsSetCCCOfColormapfunction changes the CCC associated with the specified col-
ormap. ltreturns the CCC previously associated with the colormap. yfateenot used again in

the application, CCCs should be freed by calmnsFreeCCC. Seveal colormaps may share

the same CCC without restriction; this includes the CCCs generated by Xlib with each colormap.
Xlib, however, creates a ng CCC with each ne colormap.

6.8.2. Obtainingthe Default Color Corversion Context

You can change the default CCC attributes for subsequently created CCCs by changing the CCC
attributes of the default CCQA default CCC is associated with each screen.

To dbtain the default CCC for a screen, ugamsDefaultCCC.

XecmsCCC XemsDefultCCC display, screen_numbér
Display *display,
int screen_number

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

The XcmsDefaultCCC function returns the default CCC for the specified screen. Its visual is
the default visual of the screen. lts initial gamut compression and white point adjustment proce-
dures as well as the associated client data are implementation specific.

6.8.3. ColorConversion Context Macros

Applications should not directly modify mpart of theXcmsCCC. The following lists the C
language macros, their corresponding functionvatgrits for other language bindings, and what
data thg both can return.

101

DisplayOfCCC €cc)
XemsCCCccc;

Display *XcmsDisplayOfCCCdcc)
XcmsCCCccg;

cce Specifies the CCC.

Both return the display associated with the specified CCC.

VisualOfCCC ¢cc)
XemsCCCccc;

Visual *Xcms\sualOfCCC ¢cc)
XcmsCCcCeccg;

ccce Specifies the CCC.

Both return the visual associated with the specified CCC.

ScreenNumberOfCCE¢c)
XcmsCCCcecc;

int XcmsScreenNumberOfCCC¢c)
XcmsCCcCeccg;

cce Specifies the CCC.

Both return the number of the screen associated with the specified CCC.

ScreenWhitePointOfCC@¢c)
XemsCCCccc;

XcmsColor *XcmsScreenWhitePointOfCCEc)
XemsCCCccc;

cce Specifies the CCC.

Both return the white point of the screen associated with the specified CCC.

102

ClientWhitePointOfCCCdcc)
XemsCCCccc;

XcmsColor *XcmsClientWhitePointOfCCE¢c)
XcmsCCCccc;

cce Specifies the CCC.

Both return the Client White Point of the specified CCC.

6.8.4. Modifying Attributes of a Color Conversion Context
To st the Client White Point in the CCC, ugemsSetWhitePoint

Status XcmsSetWhitePoirdgc, color)
XecmsCCCeccc;
XcmsColor *tolor;

ccce Specifies the CCC.
color Specifies the me Client White Point.

The XcmsSetWhitePointfunction changes the Client White Point in the specified CCC. Note

that the pixel member is ignored and that the color specification is left unchanged upon return.
The format for the ne white point must beXcmsCIEXYZFormat , XcmsCIEuvYFormat,
XcmsCIExyYFormat, or XcmsUndefinedFormat If the color argument is NULL, this func-

tion sets the format component of the Client White Point specificati¥ortsUndefinedFor-

mat, indicating that the Client White Point is assumed to be the same as the Screen White Point.

This function returns nonzero status if the format for tivewhkite point is valid; otherwise, it
returns zero.

To st the gamut compression procedure and corresponding client data in a specified CCC, use
XcmsSetCompressionProc

XcmsCompressionProc XemsSetCompressionRiarg compression_pracclient_datg
XcmsCCCeccc;
XcmsCompressionPrammpression_prac
XPointerclient_datag

ccce Specifies the CCC.

compression_proc
Specifies the gamut compression procedure that is to be applied when a color lies
outside the screemtolor gamut. IfNULL is specified and a function using this
CCC must covert a color specification to a device-dependent format and
encounters a color that lies outside the scee@ior gamut, that function will
return XcmsFailure.

client data Specifies client data for the gamut compression procedure or NULL.

The XcmsSetCompressionProdunction first sets the gamut compression procedure and client

103

data in the specified CCC with the newly specified procedure and client data and then returns the
old procedure.

To =t the white point adjustment procedure and corresponding client data in a specified CCC, use
XcmsSetWhiteAdjustProc.

XcmsWhiteAdjustProc XcmsSetWhiteAdjustProcg, white_adjust_progclient_datg
XcmsCCCeccc;
XcmsWhiteAdjustProevhite _adjust_prog
XPointerclient_datag

cce Specifies the CCC.

white_adjust_proc
Specifies the white point adjustment procedure.

client_data Specifies client data for the white point adjustment procedure or NULL.

The XcmsSetWhiteAdjustProc function first sets the white point adjustment procedure and
client data in the specified CCC with the newly specified procedure and client data and then
returns the old procedure.

6.8.5. Crating and Freeing a Color Comersion Context

You can explicitly create a CCC within your application by callgmsCreateCCC. These
created CCCs can then be used by those functions that explicitly call for a @{aat. Old
CCCs that will not be used by the application should be freed XsimgFreeCCC.

To aeate a CCC, us¥cmsCreateCCC.

104

XecmsCCC XcmsCreateCCd@igplay, screen_numbewisual, client_white _pointcompression_prac
compression_client_datavhite_adjust_procwhite_adjust_client_dafa
Display *display,
int screen_number
Visual *visual
XcmsColor *tlient_white_point
XcmsCompressionPramompression_prgc
XPointercompression_client_data
XcmsWhiteAdjustProevhite_adjust_prog
XPointerwhite_adjust_client_data

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

visual Specifies the visual type.

client_white_point
Specifies the Client White Point. If NULL is specified, the Client White Point is
to be assumed to be the same as the Screen White Point. Note that the pixel
member is ignored.

compression_proc
Specifies the gamut compression procedure that is to be applied when a color lies
outside the screemtolor gamut. IfNULL is specified and a function using this
CCC must cowvert a color specification to a device-dependent format and
encounters a color that lies outside the sceeaidr gamut, that function will
return XcmsFailure.

compression_client_data
Specifies client data for use by the gamut compression procedure or NULL.

white_adjust_proc
Specifies the white adjustment procedure that is to be applied when the Client
White Point differs from the Screen White Point. NULL indicates that no white
point adjustment is desired.

white_adjust_client_data
Specifies client data for use with the white point adjustment procedure or NULL.
The XcmsCreateCCCfunction creates a CCC for the specified dispdaseen, and visual.

To free a CCC, us¥cmsFreeCCC.

void XcmsFreeCCCdcc)
XecmsCCCeccc;

cce Specifies the CCC.

The XcmsFreeCCCfunction frees the memory used for the specified CCC. Note that default
CCCs and those currently associated with colormaps are ignored.

105

6.9. Corverting between Color Spaces

To corvert an array of color specifications in arbitrary color formats to a single destination for-
mat, useXxcmsCorvertColors .

Status XcmsCaorertColors (ccc, colors_in_out ncolors, target_format, compression_flags_retuyn
XecmsCCCeccc;
XcmsColorcolors_in_ouf];
unsigned intcolors,
XcmsColorFormatarget_format,
Bool compression_flags_retufh

cce Specifies the CCC. If coersion is between device-independent color spaces
only (for example, TekHVC to CIELuv), the CCC is necessary only to specify
the Client White Point.

colors_in_out Specifies an array of color specifications. Pixel members are ignored and remain
unchanged upon return.

ncolors Specifies the number &fcmsColor structures in the color-specification array.
target format Specifies the target color specification format.

compression_flags_return
Returns an array of Boolean values indicating compression status. If a non-
NULL pointer is supplied, each element of the array is sé&t te if the corre-
sponding color was compressed dalise otherwise. Bss NULL if the com-
pression status is not useful.

The XcmsCorvertColors function comerts the color specifications in the specified array of
XcmsColor structures from their current format to a single target format, using the specified
CCC. Wherthe return value iXcmsFailure, the contents of the color specification array are left
unchanged.

The array may contain a mixture of color specification formats (for example, 3 CIE XYZ, 2 CIE
Luv, and so on). When the array contains both device-independent and device-dependent color
specifications and the target_format argument specifies a device-dependent format (for example,
XcmsRGBiFormat, XcemsRGBFormat), all specifications are ceerted to CIE XYZ format

and then to the target device-dependent format.

6.10. CallbackFunctions
This section describes the gamut compression and white point adjustment callbacks.

The gamut compression procedure specified in the CCC is called when an attemydrtaacon
color specification fromrXcmsCIEXYZ to a device-dependent format (typicakgmsRGBI)
results in a color that lies outside the screeofor gamut. Ifthe gamut compression procedure
requires client data, this data is passed via the gamut compression client data in the CCC.

During color specification carrsion between device-independent and device-dependent color
spaces, if a white point adjustment procedure is specified in the CCC, it is triggered when the
Client White Point and Screen White Point diffrrequired, the client data is obtained from the
CCC.

106

6.10.1. Pototype Gamut Compression Procedure
The gamut compression callback interface must adhere to the following:

typedef Status XcmsCompressionProcggc, colors_in_ouf ncolors, index, compression_flags_retuyn
XcmsCCcCccc,
XcmsColorcolors_in_out[];
unsigned inncolors,
unsigned inindex
Bool compression_flags_return]

CccC

Specifies the CCC.

colors_in_out Specifies an array of color specifications. Pixel members should be ignored and

ncolo
index

must remain unchanged upon return.
rs Specifies the number afcmsColor structures in the color-specification array.

Specifies the indeinto the array oXcmsColor structures for the encountered
color specification that lies outside the scre@nlor gamut. \alid values are 0
(for the first element) to ncolors - 1.

compression_flags_return

Returns an array of Boolean values for indicating compression status. If a non-
NULL pointer is supplied and a color at aei index is compressed, thefir ue
should be stored at the corresponding xidehis array; otherwise, the array
should not be modified.

When implementing a gamut compression procedure, consider the following rules and assump-

tions:

The gamut compression procedure can attempt to compress one or multiple specifications
at a time.

When called, elements 0 to inde 1 in the color specification array can be assumed to fall
within the screes’ wlor gamut. Inaddition, these color specifications are already in some
device-dependent format (typicalkcmsRGBI). If any modifications are made to these
color specifications, tlyamust be in their initial device-dependent format upon return.

When called, the element in the color specification array specified by tixeaigdeent
contains the color specification outside the sceeeribr gamut encountered by the calling
routine. Inaddition, this color specification can be assumed to beimsCIEXYZ .

Upon return, this color specification must bexXiemsCIEXYZ .

When called, elements from ind& ncolors — 1 in the color specification array may or
may not fall within the screemmlor gamut. Inaddition, these color specifications can be
assumed to be iIKcmsCIEXYZ . If any modifications are made to these color specifica-
tions, thg must be inXcmsCIEXYZ upon return.

The color specifications passed to the gamut compression procededréady been
adjusted to the Screen White Point. This means that at this point the color specification’s
white point is the Screen White Point.

If the gamut compression procedure uses a device-independent color space not initially
accessible for use in the color management systenXamsAddColorSpaceto ensure
that it is added.

107

6.10.2. SuppliedGamut Compression Procedures
The following equations are useful in describing gamut compression functions:

CIELab Psychometri€hroma= sqrt(a_star® + b_star?)

. _, b _star
CIELab Psychometritiue=tan ! ———p
A _star

CIELuv PsychometriChroma= sqrt(u_star? + v_star?)

star
CIELuv Psychometritiue = tarrt =" I
Y [u_star

The gamut compression callback procedures provided by Xlib are as follows:
. XcmsCIELabClipL

This brings the encountered out-of-gamut color specification into the scoskm’gamut

by reducing or increasing CIE metric lightness (L*) in the CIE L*a*b* color space until the
color is within the gmut. Ifthe Psychometric Chroma of the color specification is beyond
maximum for the Psychometric Hue Angle, then while maintaining the same Psychometric
Hue Angle, the color will be clipped to the CIE L*a*b* coordinates of maximum Psycho-
metric Chroma. Se&cmsCIELabQueryMaxC . No dient data is necessary.

. XcmsCIELabClipab

This brings the encountered out-of-gamut color specification into the scoskam’gamut
by reducing Psychometric Chroma, while maintaining Psychometric Hue Angle, until the
color is within the gmut. Noclient data is necessary.

. XcmsCIELabClipLab

This brings the encountered out-of-gamut color specification into the scoskm’gamut

by replacing it with CIE L*a*b* coordinates that fall within the color gamut while main-
taining the original Psychometric Hue Angle and whose vector to the original coordinates
is the shortest attainable. No client data is necessary.

. XcmsCIELuvClipL

This brings the encountered out-of-gamut color specification into the scoskm’gamut

by reducing or increasing CIE metric lightness (L*) in the CIE L*u*v* color space until the
color is within the gmut. Ifthe Psychometric Chroma of the color specification is beyond
maximum for the Psychometric Hue Angle, then, while maintaining the same Psychometric
Hue Angle, the color will be clipped to the CIE L*u*v* coordinates of maximum Psycho-
metric Chroma. Se&cmsCIELuvQueryMaxC . No dient data is necessary.

. XcmsCIELuvClipuv

This brings the encountered out-of-gamut color specification into the scoskam’gamut
by reducing Psychometric Chroma, while maintaining Psychometric Hue Angle, until the
color is within the gmut. Noclient data is necessary.

. XcmsCIELuvClipLuv

This brings the encountered out-of-gamut color specification into the scoskm’gamut

by replacing it with CIE L*u*v* coordinates that fall within the color gamut while main-
taining the original Psychometric Hue Angle and whose vector to the original coordinates
is the shortest attainable. No client data is necessary.

108

. XcmsTekHVCClipV

This brings the encountered out-of-gamut color specification into the scoskm’gamut

by reducing or increasing the Value dimension in the TekHVC color space until the color is
within the gamut. IfChroma of the color specification is beyond maximum for the particu-
lar Hue, then, while maintaining the same Hue, the color will be clipped to the Value and
Chroma coordinates that represent maximum Chroma for that particular Hue. No client
data is necessary.

. XcmsTekHVCClipC

This brings the encountered out-of-gamut color specification into the scoskm’gamut
by reducing the Chroma dimension in the TekHVC color space until the color is within the
gamut. Noclient data is necessary.

. XcmsTekHVCClipvC

This brings the encountered out-of-gamut color specification into the scoskm’gamut

by replacing it with TekHVC coordinates that fall within the color gamut while maintaining
the original Hue and whose vector to the original coordinates is the shortest attainable. No
client data is necessary.

6.10.3. Pototype White Point Adjustment Procedure
The white point adjustment procedure interface must adhere to the following:

typedef Status XcmsWhiteAdjustProc X{cc, initial_white_point target_white_point target_format,
colors_in_out ncolors, compression_flags_retuyn
XemsCCCccc;
XcmsColor fnitial_white_point
XcmsColor target_white_poing
XcmsColorFormatarget_format,
XcmsColorcolors_in_out[];
unsigned inhcolors,
Bool compression_flags_return]

cce Specifies the CCC.
initial_white_point
Specifies the initial white point.
targel_white_point
Specifies the target white point.
targel_format Specifies the target color specification format.

colors_in_out Specifies an array of color specifications. Pixel members should be ignored and
must remain unchanged upon return.

ncolors Specifies the number &fcmsColor structures in the color-specification array.

compression_flags_return
Returns an array of Boolean values for indicating compression status. If a non-
NULL pointer is supplied and a color at aei index is compressed, thefr ue
should be stored at the corresponding xidehis array; otherwise, the array
should not be modified.

109

6.10.4. SuppliedVhite Point Adjustment Procedures
White point adjustment procedures provided by Xlib are as follows:
. XcmsCIELabWhiteShiftColors

This uses the CIE L*a*b* color space for adjusting the chromatic character of colors to
compensate for the chromatic differences between the source and destination white points.
This procedure simply ceoarts the color specifications dcmsCIELab using the source

white point and then ceerts to the target specification format using the destinatioinite

point. Noclient data is necessary.

. XcmsCIELuvWhiteShiftColors

This uses the CIE L*u*v* color space for adjusting the chromatic character of colors to
compensate for the chromatic differences between the source and destination white points.
This procedure simply cosrts the color specifications #%cmsCIELuv using the source

white point and then cemrts to the target specification format using the destinatiohite

point. Noclient data is necessary.

. XecmsTekHVCWhiteShiftColors

This uses the TekHVC color space for adjusting the chromatic character of colors to com-
pensate for the chromatic differences between the source and destination white points. This
procedure simply carts the color specifications dcmsTekHVC using the source

white point and then ceerts to the target specification format using the destinatioinite

point. Anadvantage of this procedureepthose previously described is an attempt to min-
imize hue shift. No client data is necessary.

From an implementation point of wethese white point adjustment proceduresvedrthe color
specifications to a device-independent but white-point-dependent color space (for example, CIE
L*u*v*, CIE L*a*b*, TekHVC) using one white point and then caeting those specifications to

the target color space using another white point. In other words, the specification goes in the
color space with one white point but comes out with another white point, resulting in a chromatic
shift based on the chromatic displacement between the initial white point and target white point.
The CIE color spaces that are assumed to be white-point-independent are CIEIEWXY Z,

and CIE xyY When d&eloping a custom white point adjustment procedure that uses a device-
independent color space not initially accessible for use in the color management system, use
XcmsAddColorSpaceto ensure that it is added.

As an example, if the CCC specifies a white point adjustment procedure and if the Client White
Point and Screen White Point difféne XcmsAllocColor function will use the white point
adjustment procedure twice:

. Once to cowert to XcmsRGB
. A second time to camert from XcmsRGB

For example, assume the specification isiemsCIEuvY and the adjustment proceduredesm-
sCIELuvWhiteShiftColors . During cowversion toXcmsRGB, the call toXcmsAllocColor
results in the following series of color specificationvamsions:

. From XcmsCIEuvY to XcmsCIELuv using the Client White Point
. From XcmsCIELuv to XemsCIEuvY using the Screen White Point

. From XcmsCIEuvY to XcmsCIEXYZ (CIE uv'Y and XYZ are white-point-independent
color spaces)

. From XcmsCIEXYZ to XcmsRGBiI

110

. From XcmsRGBI to XcmsRGB

The resulting RGB specification is passeX#dlocColor , and the RGB specification returned
by XAllocColor is corverted back taXcmsCIEuvY by reversing the color corersion sequence.

6.11. GamutQuerying Functions

This section describes the gamut querying functions that Xliddes. Theséunctions allow
the client to query the boundary of the scre@nlor gamut in terms of the CIE L*a*b*, CIE
L*u*v*, and TekHVC color spaces. Functions are also provided thawv it to query the color
specification of:

. White (full-intensity red, green, and blue)

. Red (full-intensity red while green and blue are zero)

. Green (full-intensity green while red and blue are zero)
. Blue (full-intensity blue while red and green are zero)

. Black (zero-intensity red, green, and blue)

The white point associated with color specifications passed to and returned from these gamut
guerying functions is assumed to be the Screen White Point. This is a reasonable assumption,
because the client is trying to query the scieesior gamut.

The following naming corention is used for the Max and Min functions:

Xcms<color_spaceXQueryMaxdimensions>

Xcms<color_spacexQueryMincdimensions>

The <dimensions> consists of a letter or letters that identify the dimensions of the color space that
are not fied. For example XcmsTekHVCQueryMaxC is given a fixed Hue and Value for
which maximum Chroma is found.

6.11.1. RedGreen, and Blue Queries

To dbtain the color specification for black (zero-intensity red, green, and bluefcuosgQuery-
Black.

Status XcmsQueryBlack¢c, target_format, color_return)
XecmsCCCeccc;
XcmsColorFormatarget_format,
XcmsColor *tolor_return;

cce Specifies the CCC. The CCXient White Point and white point adjustment
procedures are ignored.
targel_format Specifies the target color specification format.

color_return Returns the color specification in the specified target format for zero-intensity
red, green, and blue. The white point associated with the returned color specifi-
cation is the Screen White Point. The value returned in the pixel member is
undefined.

The XcmsQueryBlack function returns the color specification in the specified target format for
zero-intensity red, green, and blue.

111

To dbtain the color specification for blue (full-intensity blue while red and green are zero), use
XcmsQueryBlue.

Status XcmsQueryBluegc, target_format, color_return)
XcmsCCCccc;
XcmsColorFormatarget_format,
XcmsColor *tolor_return;

cce Specifies the CCC. The CCient White Point and white point adjustment
procedures are ignored.

target format Specifies the target color specification format.

color_return Returns the color specification in the specified target format for full-intensity
blue while red and green are zero. The white point associated with the returned
color specification is the Screen White Point. The value returned in the pixel
member is undefined.

The XcmsQueryBlue function returns the color specification in the specified target format for
full-intensity blue while red and green are zero.

To dbtain the color specification for green (full-intensity green while red and blue are zero), use
XcmsQueryGreen

Status XcmsQueryGreeedc, target_format, color_return)
XcmsCCCeccc;
XcmsColorFormatarget_format,
XcmsColor *tolor_return;

cce Specifies the CCC. The CC&Xient White Point and white point adjustment
procedures are ignored.
targel_format Specifies the target color specification format.

color_return Returns the color specification in the specified target format for full-intensity
green while red and blue are zero. The white point associated with the returned
color specification is the Screen White Point. The value returned in the pixel
member is undefined.

The XcmsQueryGreenfunction returns the color specification in the specified target format for
full-intensity green while red and blue are zero.

To dbtain the color specification for red (full-intensity red while green and blue are zero), use
XcmsQueryRed

112

Status XcmsQueryRed¢c, target_format, color_return)
XecmsCCCeccc;
XcmsColorFormatarget_format,
XcmsColor *tolor_return;

cce Specifies the CCC. The CC&Xient White Point and white point adjustment
procedures are ignored.
targel_format Specifies the target color specification format.

color_return Returns the color specification in the specified target format for full-intensity red
while green and blue are zero. The white point associated with the returned color
specification is the Screen White Point. The value returned in the pixel member
is undefined.

The XcmsQueryRedfunction returns the color specification in the specified target format for
full-intensity red while green and blue are zero.

To dbtain the color specification for white (full-intensity red, green, and blue)XassQuery-
White.

Status XcmsQueryWhite¢c, target_format, color_return)
XcmsCCcCccc,
XcmsColorFormatarget_format,
XcmsColor *tolor_return;

cce Specifies the CCC. The CG&Xient White Point and white point adjustment
procedures are ignored.
target_format Specifies the target color specification format.

color_return Returns the color specification in the specified target format for full-intensity red,
green, and blue. The white point associated with the returned color specification
is the Screen White Point. The value returned in the pixel member is undefined.

The XcmsQueryWhite function returns the color specification in the specified target format for
full-intensity red, green, and blue.

6.11.2. CIELabQueries
The following equations are useful in describing the CIELab query functions:

CIELab Psychometri€hroma= sqrt(a_star’ + b_star?)

. [b starU
CIELab Psychometritiue= tanl ——
rA_starp

To dbtain the CIE L*a*b* coordinates of maximum Psychometric Chroma foven gisychome-
tric Hue Angle and CIE metric lightness (L*), u€kemsCIELabQueryMaxC .

113

Status XcmsCIELabQueryMax€dc, hue_angleL_star, color_return)
XecmsCCCeccc;
XcmsFloathue_angle
XcmsFloatl_star,
XcmsColor *tolor_return;

cce Specifies the CCC. The C&Xient White Point and white point adjustment
procedures are ignored.

hue_angle Specifies the hue angle (in degrees) at which to find maximum chroma.
L_star Specifies the lightness (L*) at which to find maximum chroma.

color_return Returns the CIE L*a*b* coordinates of maximum chroma displayable by the
screen for the gen hue angle and lightness. The white point associated with the
returned color specification is the Screen White Point. The value returned in the
pixel member is undefined.

The XcmsCIELabQueryMaxC function, given a hue angle and lightness, finds the point of
maximum chroma displayable by the screen. It returns this point in CIE L*a*b* coordinates.

To dbtain the CIE L*a*b* coordinates of maximum CIE metric lightness (L*) fonagPsycho-
metric Hue Angle and Psychometric Chroma, ¥sensCIELabQueryMaxL .

Status XcmsCIELabQueryMaxké€c, hue_angle chroma, color_return)
XcmsCCcCccc;
XcmsFloathue_angle
XcmsFloatchroma;
XcmsColor *tolor_return;

cce Specifies the CCC. The CCient White Point and white point adjustment
procedures are ignored.

hue_angle Specifies the hue angle (in degrees) at which to find maximum lightness.
chroma Specifies the chroma at which to find maximum lightness.

color_return Returns the CIE L*a*b* coordinates of maximum lightness displayable by the
screen for the gen hue angle and chroma. The white point associated with the
returned color specification is the Screen White Point. The value returned in the
pixel member is undefined.

The XcmsCIELabQueryMaxL function, gien a tue angle and chroma, finds the point in CIE
L*a*b* color space of maximum lightness (L*) displayable by the screen. It returns this point in
CIE L*a*b* coordinates. AnXcmsFailure return value usually indicates that theegi chroma

is beyond maximum for the\gn hue angle.

To dbtain the CIE L*a*b* coordinates of maximum Psychometric Chroma foven gisychome-
tric Hue Angle, useXcmsCIELabQueryMaxLC .

114

Status XcmsCIELabQueryMaxLE€¢c, hue_anglecolor_return)
XecmsCCCeccc;
XcmsFloathue_angle
XcmsColor *tolor_return;

cce Specifies the CCC. The CC&Xient White Point and white point adjustment
procedures are ignored.

hue_angle Specifies the hue angle (in degrees) at which to find maximum chroma.

color_return Returns the CIE L*a*b* coordinates of maximum chroma displayable by the
screen for the gen hue angle. The white point associated with the returned
color specification is the Screen White Point. The value returned in the pixel
member is undefined.

The XcmsCIELabQueryMaxLC function, gven a hue angle, finds the point of maximum
chroma displayable by the screen. It returns this point in CIE L*a*b* coordinates.

To dbtain the CIE L*a*b* coordinates of minimum CIE metric lightness (L*) fonaegiPsycho-
metric Hue Angle and Psychometric Chroma, ¥ssmsCIELabQueryMinL .

Status XcmsCIELabQueryMinlc€c, hue_anglechroma, color_return)
XcmsCCCccc;
XcmsFloathue _angle
XcmsFloatchroma;
XcmsColor *tolor_return;

cce Specifies the CCC. The CC&Xient White Point and white point adjustment
procedures are ignored.

hue_angle Specifies the hue angle (in degrees) at which to find minimum lightness.

chroma Specifies the chroma at which to find minimum lightness.

color_return Returns the CIE L*a*b* coordinates of minimum lightness displayable by the
screen for the gen hue angle and chroma. The white point associated with the
returned color specification is the Screen White Point. The value returned in the
pixel member is undefined.

The XcmsCIELabQueryMinL function, gven a fue angle and chroma, finds the point of mini-
mum lightness (L*) displayable by the screen. It returns this point in CIE L*a*b* coordinates.
An XcmsFailure return value usually indicates that theegi chroma is beyond maximum for the
given hue angle.

6.11.3. CIELuvQueries
The following equations are useful in describing the CIELuv query functions:

CIELuv Psychometri€hroma= sqrt(u_star® + v_star)

star
CIELuv Psychometritiue = tarit B'=>-2 U
y Lu_stard

115

To dbtain the CIE L*u*v* coordinates of maximum Psychometric Chroma fovendtsychome-
tric Hue Angle and CIE metric lightness (L*), ukemsCIELuvQueryMaxC .

Status XcmsCIELuvQueryMaxE¢c, hue_angleL_star, color_return)
XcmsCCCccc;
XcmsFloathue _angle
XcmsFloatl_star;
XcmsColor *tolor_return;

cce Specifies the CCC. The CCient White Point and white point adjustment
procedures are ignored.

hue_angle Specifies the hue angle (in degrees) at which to find maximum chroma.
L_star Specifies the lightness (L*) at which to find maximum chroma.

color_return Returns the CIE L*u*v* coordinates of maximum chroma displayable by the
screen for the gen hue angle and lightness. The white point associated with the
returned color specification is the Screen White Point. The value returned in the
pixel member is undefined.

The XcmsCIELuvQueryMaxC function, gven a tue angle and lightness, finds the point of
maximum chroma displayable by the screen. It returns this point in CIE L*u*v* coordinates.

To dbtain the CIE L*u*v* coordinates of maximum CIE metric lightness (L*) fonaegiPsycho-
metric Hue Angle and Psychometric Chroma, ¥sensCIELuvQueryMaxL .

Status XcmsCIELuvQueryMaxIc€c, hue_anglechroma, color_return)
XcmsCCcCccc;
XcmsFloathue _angle
XcmsFloatchroma;
XcmsColor *tolor_return;

cce Specifies the CCC. The CC&Xient White Point and white point adjustment
procedures are ignored.

hue_angle Specifies the hue angle (in degrees) at which to find maximum lightness.
L_star Specifies the lightness (L*) at which to find maximum lightness.

color_return Returns the CIE L*u*v* coordinates of maximum lightness displayable by the
screen for the gen hue angle and chroma. The white point associated with the
returned color specification is the Screen White Point. The value returned in the
pixel member is undefined.

The XcmsCIELuvQueryMaxL function, gven a hue angle and chroma, finds the point in CIE
L*u*v* color space of maximum lightness (L*) displayable by the screen. It returns this point in
CIE L*u*v* coordinates. AnXcmsFailure return value usually indicates that theegi chroma

is beyond maximum for thegin hue angle.

To dbtain the CIE L*u*v* coordinates of maximum Psychometric Chroma fovendtsychome-
tric Hue Angle, use&XcmsCIELuvQueryMaxLC .

116

Status XcmsCIELuvQueryMaxL@¢c, hue_anglecolor_return)
XecmsCCCeccc;
XcmsFloathue_angle
XcmsColor *tolor_return;

cce Specifies the CCC. The CC&Xient White Point and white point adjustment
procedures are ignored.

hue_angle Specifies the hue angle (in degrees) at which to find maximum chroma.

color_return Returns the CIE L*u*v* coordinates of maximum chroma displayable by the
screen for the gen hue angle. The white point associated with the returned
color specification is the Screen White Point. The value returned in the pixel
member is undefined.

The XcmsCIELuvQueryMaxLC function, gven a hue angle, finds the point of maximum
chroma displayable by the screen. It returns this point in CIE L*u*v* coordinates.

To dbtain the CIE L*u*v* coordinates of minimum CIE metric lightness (L*) foreegiPsycho-
metric Hue Angle and Psychometric Chroma, ¥ssmsCIELuvQueryMinL .

Status XcmsCIELuvQueryMinlocc, hue_anglechroma, color_return)
XcmsCCCccc;
XcmsFloathue _angle
XcmsFloatchroma;
XcmsColor *tolor_return;

cce Specifies the CCC. The CC&Xient White Point and white point adjustment
procedures are ignored.

hue_angle Specifies the hue angle (in degrees) at which to find minimum lightness.

chroma Specifies the chroma at which to find minimum lightness.

color_return Returns the CIE L*u*v* coordinates of minimum lightness displayable by the
screen for the gen hue angle and chroma. The white point associated with the
returned color specification is the Screen White Point. The value returned in the
pixel member is undefined.

The XcmsCIELuvQueryMinL function, gven a fue angle and chroma, finds the point of mini-
mum lightness (L*) displayable by the screen. It returns this point in CIE L*u*v* coordinates.
An XcmsFailure return value usually indicates that theegi chroma is beyond maximum for the
given hue angle.

6.11.4. EKHVC Queries
To dbtain the maximum Chroma for avgh Hue and Value, us&cmsTekHVCQueryMaxC .

117

Status Xcms@kHVCQueryMaxCécc, hue, value, color_return)

XecmsCCCeccc;
XcmsFloathue
XcmsFloatvalue
XcmsColor *tolor_return;
ccce Specifies the CCC. The CG&Xient White Point and white point adjustment
procedures are ignored.
hue Specifies the Hue in which to find the maximum Chroma.
value Specifies the Value in which to find the maximum Chroma.

color_return Returns the maximum Chroma along with the actual Hue aheeVatwhich the
maximum Chroma was found. The white point associated with the returned
color specification is the Screen White Point. The value returned in the pixel
member is undefined.

The XcmsTekHVCQueryMaxC function, given a Hue and Value, determines the maximum
Chroma in TekHVC color space displayable by the screen. It returns the maximum Chroma
along with the actual Hue and Value at which the maximum Chroma was found.

To dbtain the maximum Value for avgh Hue and Chroma, us¢cmsTekHVCQueryMaxV .

Status Xcms@kHVCQueryMaxV €cc, hue, chroma, color_return)
XcmsCCcCccc,
XcmsFloathue,
XcmsFloatchroma;
XcmsColor *tolor_return;

cce Specifies the CCC. The CCient White Point and white point adjustment
procedures are ignored.

hue Specifies the Hue in which to find the maximum Value.

chroma Specifies the chroma at which to find maximum Value.

color_return Returns the maximum Value along with the Hue and Chroma at which the maxi-
mum Value was found. The white point associated with the returned color speci-
fication is the Screen White Point. The value returned in the pixel member is
undefined.

The XcmsTekHVCQueryMaxV function, given a Hue and Chroma, determines the maximum
Value in TekHVC color space displayable by the screen. It returns the maximum Value and the
actual Hue and Chroma at which the maximum Value was found.

To dbtain the maximum Chroma and Value at which it is reached for a specified HXemse
sTekHVCQueryMaxVC.

118

Status Xcms@kHVCQueryMaxVC ¢cc, hue, color_return)
XecmsCCCeccc;
XcmsFloathue
XcmsColor *tolor_return;

cce Specifies the CCC. The CC&Xient White Point and white point adjustment
procedures are ignored.
hue Specifies the Hue in which to find the maximum Chroma.

color_return Returns the color specification in XcmsTekHVC for the maximum Chroma, the
Value at which that maximum Chroma is reached, and the actual Hue at which
the maximum Chroma was found. The white point associated with the returned
color specification is the Screen White Point. The value returned in the pixel
member is undefined.

The XcmsTekHVCQueryMaxVC function, gven a Hue, determines the maximum Chroma in
TekHVC color space displayable by the screen and the Value at which that maximum Chroma is
reached. Iteturns the maximum Chroma, the Value at which that maximum Chroma is reached,
and the actual Hue for which the maximum Chroma was found.

To dbtain a specified number of TekHVC specifications such thatctirgain maximum Values
for a specified Hue and the Chroma at which the maximum Values are reach¥édmise
sTekHVCQueryMaxVSamples.

Status Xcms@kHVCQueryMaxVSamplegg€c, hue, colors_return nsampley
XcmsCCcCccc,
XcmsFloathue;
XcmsColorcolors_return(];
unsigned inhsamples

ccc Specifies the CCC. The CCient White Point and white point adjustment
procedures are ignored.

hue Specifies the Hue for maximum Chroma/Value samples.

nsamples Specifies the number of samples.

colors_return Returns nsamples of color specifications in XemsTekHVC such that the Chroma
is the maximum attainable for the Value and Hue. The white point associated
with the returned color specification is the Screen White Point. The value
returned in the pixel member is undefined.

The XcmsTekHVCQueryMaxVSamplesreturns nsamples of maximum Value, the Chroma at
which that maximum Value is reached, and the actual Hue for which the maximum Chroma was
found. Thesesample points may then be used to plot the maximum Value/Chroma boundary of
the screers wlor gamut for the specified Hue in TekHVC color space.

To dbtain the minimum Value for agn Hue and Chroma, usécmsTekHVCQueryMinV .

119

Status Xcms@kHVCQueryMinV (ccc, hue, chroma, color_return)

XecmsCCCeccc;
XcmsFloathue
XcmsFloatchroma;
XcmsColor *tolor_return;
cce Specifies the CCC. The C&Xient White Point and white point adjustment
procedures are ignored.
hue Specifies the Hue in which to find the minimum Value.
value Specifies the Value in which to find the minimum Value.

color_return Returns the minimum Value and the actual Hue and Chroma at which the mini-
mum Value was found. The white point associated with the returned color speci-
fication is the Screen White Point. The value returned in the pixel member is
undefined.

The XcmsTekHVCQueryMinV function, given a Hue and Chroma, determines the minimum
Value in TekHVC color space displayable by the screen. It returns the minimum Value and the
actual Hue and Chroma at which the minimum Value was found.

6.12. ColorManagement Extensions
The Xlib color management facilities can be extended anvtays:
. Device-Independent Color Spaces

Device-independent color spaces that arevdale to CIE XYZ space can be added using
the XcmsAddColorSpacefunction.

. Color Characterization Function Set

A Color Characterization Function Set consists of device-dependent color spaces and their
functions that corert between these color spaces and the CIE XYZ color space, bundled
together for a specific class of outpuvides. Afunction set can be added using ¥em-
sAddFunctionSetfunction.

6.12.1. ColorSpaces

The CIE XYZ color space serves as the hub for aemions between device-independent and
device-dependent color spaces. Therefore, the knowledgeverican XcmsColor structure to

and from CIE XYZ format is associated with each color sp&oeexample, comersion from

CIE L*u*v* to RGB requires the knowledge to aant from CIE L*u*v* to CIE XYZ and from

CIE XYZ to RGB. This knowledge is stored as an array of functions that, when applied in series,
will convert the XcmsColor structure to or from CIE XYZ format. This color specification con-
version mechanism facilitates the addition of color spaces.

Of course, when caerting between only device-independent color spaces or only device-depen-
dent color spaces, shortcuts are taken wiesrppssible. Br example, corersion from TekHVC

to CIE L*u*v* is performed by intermediate cearsion to CIE u*v*Y and then to CIE L*u*v*,

thus bypassing cemrsion between CIE u*v*Y and CIE XYZ.

6.12.2. AddingDevice-Independent Color Spaces
To add a device-independent color space, XisensAddColorSpace

120

Status XcmsAddColorSpaocedlor_spacé
XcmsColorSpacecolor_space

color_space Specifies the device-independent color space to add.

The XcmsAddColorSpacefunction makes a device-independent color space (actuakgians-
ColorSpacestructure) accessible by the color management system. Because format values for
unregistered color spaces are assigned at run tinyesttbeld be treated as péte to the client.

If references to an unregistered color space must be made outside the client (for example, storing
color specifications in a file using the unregistered color space), then reference should be made by
color space prefix (seécmsFormatOfPrefix and XcmsPrefixOfFormat).

If the XcmsColorSpacestructure is already accessible in the color management systen,
sAddColorSpacereturnsXcmsSuccess

Note that adde&cmsColorSpacesmust be retained for reference by Xlib.

6.12.3. QueryingColor Space Format and Prefix

To dbtain the format associated with the color space associated with a specified color string pre-
fix, use XcmsFormatOfPrefix.

XcmsColorFormat XcmssrmatOfPrefix prefix)
char *prefix;

prefix Specifies the string that contains the color space prefix.

The XcmsFormatOfPrefix function returns the format for the specified color space prefix (for
example, the string “CIEXYZ). The prefix is case-insensie. If the color space is not accessi-
ble in the color management systeXemsFormatOfPrefix returnsXcmsUndefinedFormat

To dbtain the color string prefix associated with the color space specified by a color format, use
XcmsPrefixOfFormat.

char *XcmsPrefixOfBrmat format)
XcmsColorFormaformat;

format Specifies the color specification format.

The XcmsPrefixOfFormat function returns the string prefix associated with the color specifica-
tion encoding specified by the formagament. Otherwisaf no encoding is found, it returns
NULL. Thereturned string must be treated as read-only.

6.12.4. Ceating Additional Color Spaces

Color space specific information necessary for color spacesion and color string parsing is

stored in anXcmsColorSpacestructure. Therefore new gructure containing this information

is required for each additional color space. In the case of device-independent color spaces, a han-
dle to this ne structure (that is, by means of a global variable) is usually made accessible to the
client program for use with thécmsAddColorSpacefunction.

If a newXcmsColorSpacestructure specifies a color space not registered with the X Consor-
tium, they should be treated as pate to the client because format values for unregistered color

121

spaces are assigned at run time. If references to an unregistered color space must be made outside
the client (for example, storing color specifications in a file using the unregistered color space),

then reference should be made by color space prefix@asFormatOfPrefix and XcmsPre-

fixOfFormat).

typedef (*XcmsComnersionProc)();
typedef XcmsCoversionProc *XcmsFuncListPtr;
/* A NULL terminated list of function pointers*/

typedef struct _XcmsColorSpace {
char *prefix;
XcmsColorFormat format;
XcmsParseStringProc parseString;
XcmsFuncListPtr to_ CIEXYZ;
XcmsFuncListPtr from_CIEXYZ;
int inverse_flag;

} X cmsColorSpace;

The prefix member specifies the prefix that indicates a color string is in this colos Syaug’
format. For example, the strings “ciexyzr *“‘CIEXYZ’* for CIE XYZ, and “rgb’ or *‘RGB”

for RGB. The prefix is case insengiti The format member specifies the color specification for-
mat. Formats for unregistered color spaces are assigned at run time. The parseString member
contains a pointer to the function that can parse a color string ilroraaColor structure. This
function returns an integer (int): nonzero if it succeeded and zero otherwise. The to_ CIEXYZ
and from_CIEXYZ members contain pointers, each to a NULL terminated list of function point-
ers. Wherthe list of functions is»&cuted in series, it will corert the color specified in akcm-
sColor structure from/to the current color space format to/from the CIE XYZ format. Each func-
tion returns an integer (int): nonzero if it succeeded and zero otherwise. The white point to be
associated with the colors is specified explicéyen though white points can be found in the

CCC. Thenverse_flag membeif nonzero, specifies that for each function listed in to_ CIEXYZ,
its inverse function can be found in from_CIEXYZ such that:

Given: n= number of functions in each list

foreach i, suchthat0<=i<n
from_CIEXYZ[n - i - 1] is the inerse of to_CIEXYZ]i].

This allows Xlib to use the shortest gersion path, thus bypassing CIE XYZ if possible (for
example, TekHVC to CIE L*u*v*).

6.12.5. Rrse String Callback

The callback in theXcmsColorSpacestructure for parsing a color string for the particular color
space must adhere to the following software interface specification:

122

typedef int (*XcmsRrseStringProclor_string color_return)
char *color_string
XcmsColor *tolor_return;

color_string Specifies the color string to parse.
color_return Returns the color specification in the color spag@mat.

6.12.6. ColorSpecification Cowersion Callback

Callback functions in th&XcmsColorSpacestructure for coverting a color specification
between device-independent spaces must adhere to the following software interface specification:

Status CowersionProc ¢cc white_pointcolors_in_outncolors)
XcmsCCcCccc;
XcmsColor *white_point
XcmsColor *tolors_in_out
unsigned inhcolors,

cce Specifies the CCC.

white_point Specifies the white point associated with color specifications. The pixel member
should be ignored, and the entire structure remain unchanged upon return.

colors_in_out Specifies an array of color specifications. Pixel members should be ignored and
must remain unchanged upon return.

ncolors Specifies the number afcmsColor structures in the color-specification array.

Callback functions in th&XcmsColorSpacestructure for coverting a color specification to or
from a device-dependent space must adhere to the following software interface specification:

Status CowersionProc ¢cc colors_in_outncolors compression_flags_retuyn
XcmsCCcCeccg;
XcmsColor *tolors_in_out
unsigned inncolors,
Bool compression_flags_retufh

cce Specifies the CCC.

colors_in_out Specifies an array of color specifications. Pixel members should be ignored and
must remain unchanged upon return.

ncolors Specifies the number &fcmsColor structures in the color-specification array.

compression_flags_return
Returns an array of Boolean values for indicating compression status. If a non-
NULL pointer is supplied and a color at agi index is compressed, thefir ue
should be stored at the corresponding xidehis array; otherwise, the array
should not be modified.

Corversion functions arevailable globally for use by other color spaces. Thevewsion func-
tions provided by Xlib are:

123

Function

Converts from

Corverts to

XcmsCIELabToCIEXYZ
XemsCIELuvToCIEuvY
XcmsCIEXYZToCIELab
XemsCIEXYZToCIEuvY
XcmsCIEXYZToCIExyY
XcmsCIEXYZToRGBiI
XemsCIEuvYToCIELuv
XemsCIEuvYToCIEXYZ
XcmsCIEuvYToTekHVC
XemsCIExyYToCIEXYZ
XcmsRGBToRGBI
XcmsRGBIToCIEXYZ
XcmsRGBIiToRGB
XcmsTekHVCToCIEuvY

XcmsCIELabFormat
XcmsCIELuvFormat
XcmsCIEXYZFormat
XemsCIEXYZFormat
XemsCIEXYZFormat
XemsCIEXYZFormat
XemsCIEuvYFormat
XcemsCIEuvYFormat
XcmsCIEuvYFormat
XcmsCIExyYFormat
XcmsRGBFormat
XcmsRGBiFormat
XcmsRGBiFormat
XcmsTekHVCFormat

XemsCIEXYZFormat
XemsCIEuvYFormat
XcmsCIELabFormat
XcmsCIEuvYFormat
XcmsCIExyYFormat
XcmsRGBiFormat
XcmsCIELabFormat
XemsCIEXYZFormat
XcmsTekHVCFormat
XemsCIEXYZFormat
XcmsRGBiFormat
XemsCIEXYZFormat
XecmsRGBFormat
XcmsCIEuvYFormat

6.12.7. FunctionSets

Functions to covert between device-dependent color spaces and CIE XYZ may differ for differ-
ent classes of output devices (for example, color versus gray monitors). Therefore, the notion of a
Color Characterization Function Set has beemldped. Afunction set consists of device-
dependent color spaces and the functions thatdorolor specifications between these device-
dependent color spaces and the CIE XYZ color space appropriate for a particular class of output
devices. Thefunction set also contains a function that reads color characterization foatat of
window properties. lis this characterization data that will differ between devices within a class

of output deices. r details about o color characterization data is stored in root window
properties, see the section on Device Color Characterization linténeClient Communication
Conventions ManualThe LINEAR_RGB function set is provided by Xlib and will support most
color monitors. Function sets may require data that differs from those needed for the LIN-
EAR_RGB function set. In that case, its corresponding data may be stored on different root win-
dow properties.

6.12.8. AddingFunction Sets
To ad a function set, usécmsAddFunctionSet

Status XcmsAddFunctionSdtifiction_sel
XcmsFunctionSetftinction_set

function_set Specifies the function set to add.

The XcmsAddFunctionSetfunction adds a function set to the color management system. |If the
function set uses device-depend¥omsColorSpacestructures not accessible in the color man-
agement system¥cmsAddFunctionSetadds them. If an addedcmsColorSpacestructure is

for a device-dependent color space not registered with the X Consortiyrahthed be treated

as prvate to the client because format values for unregistered color spaces are assigned at run
time. Ifreferences to an unregistered color space must be made outside the client (for example,
storing color specifications in a file using the unregistered color space), then reference should be
made by color space prefix (s¥emsFormatOfPrefix and XcmsPrefixOfFormat).

124

Additional function sets should be added befonecafls to other Xlib routines are made. If not,
the XcmsPerScrninfo member of a previously create@msCCC does not hae the opportunity
to initialize with the added function set.

6.12.9. Ceating Additional Function Sets

The creation of additional function sets should be required only when an output device does not
conform to existing function sets or when additional device-dependent color spaces are necessary.
A function set consists primarily of a collection of device-dependemtsColorSpacestruc-

tures and a means to read and store a sera@nt characterization data. This data is stored in

an XcmsFunctionSetstructure. Ahandle to this structure (that is, by means of global variable)

is usually made accessible to the client program for useXeithsAddFunctionSet

If a function set uses medevice-dependenkKcmsColorSpacestructures, thewill be transpar-
ently processed into the color management system. Function sets can skemes@olorSpace
structure for a device-dependent color space. In addition, mukiptesColorSpacestructures
are allowed for a device-dependent color space; Yawa function set can reference only one of
them. TheseXcmsColorSpacestructures will differ in the functions to cgart to and from CIE
XYZ, thus tailored for the specific function set.

typedef struct _XcmsFunctionSet {
XcmsColorSpace *DDColorSpaces;
XcmsScreenlnitProc screenlnitProc;
XcmsScreenFreeProc screenFreeProc;
} X cmsFunctionSet;

The DDColorSpaces member is a pointer to a NULL terminated list of pointXisneCol-
orSpacestructures for the device-dependent color spaces that are supported by the function set.
The screenlnitProc member is set to the callback procedure (see the following interface specifica-
tion) that initializes theXcmsPerScrninfo structure for a particular screen.

The screen initialization callback must adhere to the following software interface specification:

typedef Status (*XcmsScreeninitProdigplay, screen_numbescreen_infd
Display *display,
int screen_number
XcmsPerScrninfo creen_info

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

screen_info Specifies theXcmsPerScrninfo structure, which contains the per screen infor-
mation.

The screen initialization callback in tdmsFunctionSetstructure fetches the color characteri-
zation data (device profile) for the specified screen, typicdllygroperties on the screesroot
window. It then initializes the specifiedcmsPerScrninfo structure. Ifsuccessful, the proce-
dure fills in theXcmsPerScrninfo structure as follows:

. It sets the screenData member to the address of the created device profile data structure
(contents known only by the function set).

125

. It next sets the screenWhitePoint member.
. It next sets the functionSet member to the address oKttnesFunctionSetstructure.
. It then sets the state membeidomsinitSuccessand finally returns<cmsSuccess

If unsuccessful, the procedure sets the state memb@misinitFailure and returnsXcmskFail-
ure.

The XcmsPerScrninfo structure contains:

typedef struct _XcmsPerScrninfo {
XcmsColor screenWhitePoint;
XPointer functionSet;
XPointer screenData;
unsigned char state;
char pad[3];

} X cmsPerScrninfo;

The screenWhitePoint member specifies the white point inherent to the screen. The functionSet
member specifies the appropriate function set. The screenData member specifies the device pro-
file. Thestate member is set to one of the following:

. XcmslnitNone indicates initialization has not been previously attempted.

. XcmslnitFailure indicates initialization has been previously attempted but failed.

. XcmslnitSuccessindicates initialization has been previously attempted and succeeded.
The screen free callback must adhere to the following software interface specification:

typedef void (*XcmsScreenFreeProsg(eenData
XPointerscreenData

screenData Specifies the data to be freed.

This function is called to free the screenData stored damsPerScrninfo structure.

126

Chapter 7

Graphics Context Functions

A number of resources are used when performing graphics operations in X. Most information
about performing graphics (for example, foreground ¢blrkground colgdine style, and so

on) is stored in resources called graphics contexts (GCs). Most graphics operations (see chapter
8) tale a GC as anrgument. Althoughn theory the X protocol permits sharing of GCs between
applications, it is expected that applications will use their own GCs when performing operations.
Sharing of GCs is highly discouraged because the library may cache GC state.

Graphics operations can be performed to either windows or pixmaps, which edilemte
called dravables. Eachdravable exists on a single screeA.GC is aeated for a specific screen
and dravable depth and can only be used withveliales of matching screen and depth.

This chapter discussesviato:
. Manipulate graphics context/state
. Use graphics context ceenience functions

7.1. Manipulating Graphics Context/State

Most attributes of graphics operations are stored in GCs. These include line width, line style,
plane mask, foreground, background, tile, stipple, clipping region, end style, join style, and so on.
Graphics operations (for example, drawing lines) use these values to determine the actual drawing
operation. Extensiort® X may add additional components to GCs. The contents of a GC are
private to Xlib.

Xlib implements a write-back cache for all elements of a GC that are not resource IDs to allow
Xlib to implement the transparent coalescing of changes to G@&xample, a call to{Set-
Foreground of a GC followed by a call t&XSetLineAttributes results in only a single-change

GC protocol request to the serv&Cs are neither expected nor encouraged to be shared between
client applications, so this write-back caching should present no problems. Applications cannot
share GCs without external synchronization. Therefore, sharing GCs between applications is
highly discouraged.

To =t an attribute of a GC, set the appropriate member of@€Values structure and OR in
the corresponding value bitmask in your subsequent cal€teateGC. The symbols for the
value mask bits and th€GCValues structure are:

127

/* GC attribute value mask bits */

#define GCFunction
#define GCPlaneMask
#define GCForeground
#define GCBackground
#define GCLineWidth
#define GCLineStyle
#define GCCapStyle
#define GCJoinStyle
#define GCFillStyle
#define GCFillRule
#define GCTile
#define GCStipple
#define GCTileStipXOrigin
#define GCTileStipYOrigin
#define GCFont
#define GCSubwindowMode
#define GCGraphicsExposures
#define GCClipXOrigin
#define GCClipYOrigin
#define GCClipMask
#define GCDashOffset
#define GCDashList
#define GCArcMode
/* Values */
typedef struct {

int function;

unsigned long plane_mask;
unsigned long foiground;
unsigned long background;
int line_width;

int line_style;

int cap_style;

int join_style;

int fill_style;

int fill_rule;

int arc_mode;

Pixmap tile;

Pixmap stipple;

int ts_x_origin;
intts_y_origin;

Font font;

int subwindev_mode;
Bool graphics_sposures;
int clip_x_origin;

int clip_y_origin;

Pixmap clip_mask;

int dash_dket;

(1L<<0)
(1L<<1)
(1L<<2)
(1L<<3)
(1L<<4)
(1L<<b)
(1L<<6)
(1L<<7)
(1L<<8)
(1L<<9)
(1L<<10)
(1L<<11)
(1L<<12)
(1L<<13)
(1L<<14)
(1L<<15)
(1L<<16)
(1L<<17)
(1L<<18)
(1L<<19)
(1L<<20)
(1L<<21)
(1L<<22)

/* logical operation */
/* plane mask */
[*foreground pixel */
[* background pixel */
/* line width (in pixels) */
/* LineSolid, LineOnOffDash, LineDoubleDash */
/* CapNotLast, CapButt, CapRound, CapProjecting */
* JoinMiter JoinRound, JoinBeel */
/* FillSolid, FillTiled, FillStippled FillOpaqueStippled*/
/* EvenOddRule, WindingRule */
/* ArcChord, ArcPieSlice */
/* tile pixmap for tiling operations */
[* stipple 1 plane pixmap for stippling */
[* offset for tile or stipple operations */

/* default text font for text operations */
[*ClipByChildren, Includelnferiors */
Iboolean, should exposures be generated */
[* origin for clipping */

/* bitmap clipping; other calls for rects */
[* patterned/dashed line information */

128

char dashes;
} X GCValues;

The default GC values are:

Component Default
function GXcopy
plane_mask Albnes
foreground 0
background 1

line_width 0

line_style LineSolid
cap_style CapButt
join_style JoinMiter
fill_style FillSolid
fill_rule EvenOddRule
arc_mode ArcPieSlice
tile Pixmapof unspecified size filled with foreground pixel

(that is, client specified pixel if gndse 0)
(subsequent changes to foreground do not affect this pixmap)

stipple Pixmapf unspecified size filled with ones
ts_x_origin 0

ts_y origin 0

font <implementatiomlependent>

subwindow_mode ClipByChildren
graphics_exposures True

clip_x_origin 0

clip_y_origin 0

clip_mask None

dash_ofiset 0

dashes qthat is, the list [4, 4])

Note that foreground and background are not setyoanes likely to be useful in a windo

The function attributes of a GC are used when you update a section wfbldréhe destina-
tion) with bits from somewhere else (the source). The function in a GC defingkhdnaav des-
tination bits are to be computed from the source bits and the old destinatio@Xdepy is typ-
ically the most useful because it will work on a color disgbay special applications may use
other functions, particularly in concert with particular planes of a color displag 16 GC func-
tions, defined in X11/X.h>, are:

Function Name Value Operation
GXclear 0x0 0

GXand Ox1 src AND dst
GXandReverse 0x2 src AND NO dst
GXcopy 0x3 src

129

Function Name Value Operation

GXandInverted 0x4 (NOT src) AND dst
GXnoop 0x5 dst

GXxor 0x6 src XOR dst

GXor 0x7 src OR dst

GXnor 0x8 (NOT src) AND (NOT dst)
GXequiv 0x9 (NOT src) XOR dst
GXinvert Oxa NOT dst

GXorReverse Oxb src OR (NQ dst)
GXcopylnverted 0xc NOT src

GXorln verted Oxd (NOT src) OR dst
GXnand Oxe (NOT src) OR (N dst)
GXset Oxf 1

Many graphics operations depend on either pixel values or planes in a GC. The planes attribute is
of type long, and it specifies which planes of the destination are to be modified, one bit per plane.
A monochrome display has only one plane and will be the least significant bit obrithe As

planes are added to the display hardwarey, Wik occupy more significant bits in the plane

mask.

In graphics operations,\gn a ource and destination pixel, the result is computed bitwise on cor-
responding bits of the pats. Thais, a Boolean operation is performed in each bit plane. The
plane_mask restricts the operation to a subset of plaesacro constanfllPlanes can be used

to refer to all planes of the screen simultaneoushe result is computed by the following:

((src FUNC dst) AND plane-mask) OR (dst AND (N@lane-mask))

Range checking is not performed on the values for foreground, background, or plane_mask. They
are simply truncated to the appropriate number of bits. The line-width is measured in pixels and
either can be greater than or equal to one (wide line) or can be the special value zero (thin line).

Wide lines are drawn centered on the path described by the graphics request. Unless otherwise
specified by the join-style or cap-style, the bounding box of a wide line with endpoints [x1, y1],
[X2, y2] and width w is a rectangle with vertices at the following real coordinates:

[X1-(w*sn/2), y1+(w*cs/2)], [x1+(w*sn/2), y1-(w*cs/2)],
[X2-(w*sn/2), y2+(w*cs/2)], [x2+(w*sn/2), y2-(w*cs/2)]

Here sn is the sine of the angle of the line, and cs is the cosine of the angle of tAeglixal.is

part of the line and so is drawn if the center of the pixel is fully inside the bounding box (which is
viewed as having infinitely thin edges). If the center of the pixel is exactly on the bounding box,
it is part of the line if and only if the interior is immediately to its right (x increasing direction).
Pixels with centers on a horizontal edge are a special case and are part of the line if and only if
the interior or the boundary is immediately vely increasing direction) and the interior or the
boundary is immediately to the right (x increasing direction).

Thin lines (zero line-width) are one-pixel-wide lines drawn using an unspecified, device-depen-
dent algorithm. There are only éveonstraints on this algorithm.

1. If a line is drawn unclipped from [x1,y1] to [x2,y2] and if another line is drawn unclipped
from [x1+dx,y1l+dy] to [x2+dx,y2+dy], a point [x,y] is touched by drawing the first line if
and only if the point [x+dx,y+dy] is touched by drawing the second line.

130

2. Theeffective st of points comprising a line cannot be affected by clipping. That is, a point
is touched in a clipped line if and only if the point lies inside the clipping region and the
point would be touched by the line when drawn unclipped.

A wide line drawn from [x1,y1] to [x2,y2] alays draws the same pixels as a wide line drawn
from [x2,y2] to [x1,y1], not counting cap-style and join-style. It is recommended that this prop-
erty be true for thin lines, but this is not requirédline-width of zero may differ from a line-

width of one in which pixels are dva. Thispermits the use of mgmmanufacturers’ line draw-

ing hardware, which may run matimes faster than the more precisely specified wide lines.

In general, drawing a thin line will be faster than drawing a wide line of width one. vdowe
because of their different drawing algorithms, thin lines may not mix well aesthetically with wide
lines. Ifitis desirable to obtain precise and uniform results across all displays, a client should
always use a line-width of one rather than a line-width of zero.

The line-style defines which sections of a line are drawn:
LineSolid The full path of the line is drawn.

LineDoubleDash The full path of the line is drawn, but theee dashes are filled differ-
ently from the odd dashes (see fill-style) withpButt style used where
even and odd dashes meet.

LineOnOffDash Only the @en dashes are drawn, and cap-style applies to all internal ends
of the individual dashes, excepapNotLast is treated aapBultt.

The cap-style defines Wwathe endpoints of a path are drawn:

CapNotLast This is equralent to CapButt except that for a line-width of zero the
final endpoint is not drawn.

CapButt The line is square at the endpoint (perpendicular to the slope of the line)
with no projection beyond.

CapRound The line has a circular arc with the diameter equal to the line-width, cen-
tered on the endpoint. (This is egalent to CapButt for line-width of
Z€ero).

CapProjecting The line is square at the end, but the path continues beyond the endpoint

for a distance equal to half the line-width. (This is egent to Cap-
Butt for line-width of zero).

The join-style defines kocorners are drawn for wide lines:

JoinMiter The outer edges of wlines extend to meet at an angle. Heevgif the
angle is less than 11 degrees, theloiaBeve join-style is used instead.

JoinRound The corner is a circular arc with the diameter equal to the line-width,
centered on the joinpoint.

JoinBevel The corner ha€apButt endpoint styles with the triangular notch filled.

For a line with coincident endpoints (x1=x2, y1=y2), when the cap-style is applied to both end-
points, the semantics depends on the line-width and the cap-style:

CapNotLast thin The results are device dependent, but the desired effect is that
nothing is drawn.

131

CapButt thin The results are device dependent, but the desired effect is that a
single pixel is drawn.

CapRound thin The results are the same as@apButt/thin.

CapProjecting thin The results are the same as@apButt/thin.

CapButt wide Nothing is drawn.

CapRound wide The closed path is a circle, centered at the endpoint, and with the
diameter equal to the line-width.

CapProjecting wide The closed path is a square, aligned with the coordinate axes,
centered at the endpoint, and with the sides equal to the line-
width.

For a line with coincident endpoints (x1=x2, y1=y2), when the join-style is applied at one or both
endpoints, the effect is as if the line was readdrom the @erall path. Howeer, if the total path
consists of or is reduced to a single point joined with itself, the effect is the same as when the cap-
style is applied at both endpoints.

The tile/stipple represents an infinite two-dimensional plane, with the tile/stipple replicated in all
dimensions. Whethat plane is superimposed on thevwdiale for use in a graphics operation,
the upper-left corner of some instance of the tile/stipple is at the coordinates withintbgl@ra
specified by the tile/stipple origin. The tile/stipple and clip origins are interpretededtathe
origin of whateer destination dravable is specified in a graphics request. The tile pixmap must
have the same root and depth as the GC, BadMatch error results. The stipple pixmap must
have depth one and must & the same root as the GC, oBadMatch error results.For stipple
operations where the fill-style EllStippled but not FillOpaqueStippled, the stipple pattern is
tiled in a single plane and acts as an additional clip mask to be ANDed with the clip-mask.
Although some sizes may be faster to use than othgrsizanpixmap can be used for tiling or
stippling.

The fill-style defines the contents of the source for line, text, and fill requrestall text and fill
requests (for exampl&DrawText, XDrawText16, XFillRectangle, XFillPolygon, and XFil-
IArc); for line requests with line-styleineSolid (for example XDrawLine , XDrawSegments
XDrawRectangle, XDrawArc); and for the een dashes for line requests with line-style
LineOnOffDash or LineDoubleDash, the following apply:

FillSolid Foreground
FillTiled Tile
FillOpaqueStippled A tile with the same width and height as stipple, but with back-

ground eerywhere stipple has a zero and with foregrowehe
where stipple has a one

FillStippled Foreground masked by stipple

When drawing lines with line-styleineDoubleDash, the odd dashes are controlled by the fill-
style in the following manner:

FillSolid Background
FillTiled Same as foren dashes
FillOpaqueStippled Same as forwen dashes

132

FillStippled Background masked by stipple

Storing a pixmap in a GC might or might not result in aydmgang made. If the pixmap is later

used as the destination for a graphics request, the change might or might not be reflected in the
GC. Ifthe pixmap is used simultaneously in a graphics request both as a destination and as a tile
or stipple, the results are undefined.

For optimum performance, you should dras much as possible with the same GC (without
changing its components). The costs of changing GC componentger@aing different GCs
depend on the display hardware and the server implementation. It is quite likely that some
amount of GC information will be cached in display hardware and that such hardware can only
cache a small number of GCs.

The dashes value is actually a simplified form of the more general patterns that can be set with
XSetDashes Specifying a value of N is equalent to specifying the two-element list [N, N] in
XSetDashes The value must be nonzero, oBadValue error results.

The clip-mask restricts writes to the destinatiomadide. If the clip-mask is set to a pixmap, it

must hae depth one and va the same root as the GC, oBadMatch error results. If clip-

mask is set tdNone, the pixels are atays drawn rgardless of the clip origin. The clip-mask also
can be set by calling theSetClipRectanglesor XSetRegionfunctions. Onlypixels where the
clip-mask has a bit set to 1 arewira Pixels are not drawn outside the aregered by the clip-

mask or where the clip-mask has a bit set to 0. The clip-mask affects all graphics requests. The
clip-mask does not clip sources. The clip-mask origin is interpretedvestathe origin of what-

eve destination dravable is specified in a graphics request.

You can set the subwindow-mode @ipByChildren or Includelnferiors . For ClipByChil-

dren, both source and destination windows are additionally clipped by alblle InputOut-

put children. For Includelnferiors , neither source nor destination wivdds dipped by inferi-

ors. Thiswill result in including subwindw contents in the source and drawing through subwin-
dow boundaries of the destination. The usdrafludelnferiors on a windev of one depth with
mapped inferiors of differing depth is not gl but the semantics are undefined by the core pro-
tocol.

The fill-rule defines what pixels are inside (drawn) for pathengin XFillPolygon requests and

can be set tevenOddRule or WindingRule. For EvenOddRule, a pint is inside if an infinite

ray with the point as origin crosses the path an odd number of tlree®VindingRule, a point

is inside if an infinite ray with the point as origin crosses an unequal number of clockwise and
counterclockwise directed pathgeeents. Aclockwise directed path segment is one that crosses

the ray from left to right as observed from the poiitcounterclockwise segment is one that

crosses the ray from right to left as observed from the point. The case where a directed line seg-
ment is coincident with the ray is uninteresting because you can simply choose a different ray that
is not coincident with a segment.

For both EvenOddRule andWindingRule, a point is infinitely small, and the path is an

infinitely thin line. A pixel is inside if the center point of the pixel is inside and the center point is
not on the boundanyf the center point is on the boundahe pixel is inside if and only if the
polygon interior is immediately to its right (x increasing direction). Pixels with centers on a hori-
zontal edge are a special case and are inside if and only if the polygon interior is immediately
below (y increasing direction).

The arc-mode controls filling in théFillArcs function and can be set farcPieSlice or Arc-
Chord. For ArcPieSlice, the arcs are pie-slice filledzor ArcChord , the arcs are chord filled.

The graphics-exposure flag contr@saphicsExposeevent generation foXCopyArea and
XCopyPlanerequests (and grsimilar requests defined by extensions).

133

To aeate a n@ GC that is usable on aygn screen with a depth of drable, useXCreateGC.

GC XCreateGCdisplay, d, valuemaskvalueg
Display *display,
Drawable d;
unsigned longaluemask
XGCValues *alues

display Specifies the connection to the X server.

d Specifies the dveable.

valuemask Specifies which components in the GC are to be set using the information in the
specified values structure. This argument is the bitwise inel@R of zero or
more of the valid GC component mask bits.

values Specifies apvalues as specified by the valuemask.

The XCreateGC function creates a graphics context and returns a GC. The GC can be used with
ary destination dravable having the same root and depth as the specifiadiolea Usewith
other dravables results in 8adMatch error.

XCreateGC can generat®adAlloc, BadDrawable, BadFont, BadMatch, BadPixmap, and
BadValue errors.

To copy components from a source GC to a destination GCX@EmpyGC.

XCopyGC (display; src, valuemaskdes)
Display *display;
GCsrc, dest
unsigned longaluemask
display Specifies the connection to the X server.
src Specifies the components of the source GC.

valuemask Specifies which components in the GC are to be copied to the destination GC.
This argument is the bitwise inclusiOR of zero or more of the valid GC com-
ponent mask bits.

dest Specifies the destination GC.

The XCopyGC function copies the specified components from the source GC to the destination
GC. Thesource and destination GCs mustdtne same root and depth, oBadMatch error
results. Thevaluemask specifies which component toyas for XCreateGC.

XCopyGC can generatBadAlloc, BadGC, and BadMatch errors.

To change the components in a@i GC, useXChangeGC.

134

XChangeGCdisplay, gc, valuemaskvalueg
Display *display;
GCgc;
unsigned longyaluemask
XGCValues *alues

display Specifies the connection to the X server.
gc Specifies the GC.

valuemask Specifies which components in the GC are to be changed using information in the
specified values structure. This argument is the bitwise inel@R of zero or
more of the valid GC component mask bits.

values Specifies apvalues as specified by the valuemask.

The XChangeGC function changes the components specified by valuemask for the specified GC.
The values argument contains the values to be set. The values and restrictions are the same as for
XCreateGC. Changing the clip-maskverrides aiy previous XSetClipRectanglesrequest on

the cont&t. Changinghe dash-offset or dash-list@rides ay previousXSetDashegequest on

the cont&t. Theorder in which components are verified and altered is server dependent. If an

error is generated, a subset of the components nvaylbhan altered.

XChangeGC can generatBadAlloc, BadFont, BadGC, BadMatch, BadPixmap, and Bad-
Value errors.

To dbtain components of awgin GC, useXGetGCValues.

Status XGetGC#lues flisplay, gc, valuemaskvalues_returi
Display *display,
GCgc;
unsigned longyaluemask
XGCValues ¥alues_return

display Specifies the connection to the X server.
gc Specifies the GC.

valuemask Specifies which components in the GC are to be returned in the values_return
argument. Thisargument is the bitwise inclug OR of zero or more of the valid
GC component mask bits.

values_return Returns the GC values in the specifk@CValues structure.

The XGetGCValues function returns the components specified by valuemask for the specified
GC. Ifthe valuemask contains a valid set of GC mask kitSKunction, GCPlaneMask,
GCForeground, GCBackground, GCLineWidth , GCLineStyle, GCCapStyle, GCJoin-

Style, GCFillStyle, GCFillRule , GCTile, GCStipple, GCTileStipXOrigin , GCTileStipYO-
rigin, GCFont, GCSubwindowMode, GCGraphicsExposures GCClipXOrigin , GCCLipY-
Origin , GCDashOffset or GCArcMode) and no error occurs{GetGCValues sets the
requested components in values_return and returns a nonzero status. Otherwise, it returns a zero
status. Notehat the clip-mask and dash-list (represented bya@€lipMask and GCDashList
bits, respectiely, in the valuemask) cannot be requested. Also note thavaidinesource ID

(with one or more of the three most significant bits set to 1) will be returné&dBont,

GCTile, and GCStipple if the component has wer been explicitly set by the client.

135

To free a gren GC, useXFreeGC.

XFreeGC fisplay, gc)

Display *display,

GCggc;
display Specifies the connection to the X server.
gc Specifies the GC.

The XFreeGC function destroys the specified GC as well as all the associated storage.
XFreeGC can generate BadGC error.

To dbtain theGContext resource ID for a gen GC, useXGContextFromGC.

GContext XGContetFromGC gc)
GCgc;

gc Specifies the GC for which you want the resource ID.

Xlib usually defers sending changes to the components of a GC to the server until a graphics
function is actually called with that GC. This permits batching of component changes into a sin-
gle server request. In some circumstances, hewit may be necessary for the client to explic-

itly force sending the changes to the servem example might be when a protocol extension uses
the GC indirectlyin such a way that the extension interface cannotkwbat GC will be used.

To force sending GC component changes, XiBkishGC.

void XFlushGC isplay, gc)

Display *display;,

GCgc;
display Specifies the connection to the X server.
gc Specifies the GC.

7.2. UsingGraphics Context Corvenience Routines

This section discusseswao et the:

. Foreground, background, plane mask, or function components
. Line attributes and dashes components

. Fill style and fill rule components

. Fill tile and stipple components

. Font component

. Clip region component

. Arc mode, subwinde mode, and graphics exposure components

136

7.2.1. Settingthe Foreground, Background, Function, or Plane Mask

To st the foreground, background, plane mask, and function components\en &Gi, use
XSetState

XSetStatedisplay, gc, foregound, background function, plane_mask

Display *display;,

GCgc;

unsigned londoregound, background

int function;

unsigned longlane_mask
display Specifies the connection to the X server.
gc Specifies the GC.
foregound Specifies the foreground you want to set for the specified GC.
background Specifies the background you want to set for the specified GC.
function Specifies the function you want to set for the specified GC.

plane_mask Specifies the plane mask.
XSetStatecan generat®adAlloc, BadGC, and BadValue errors.
To st the foreground of agn GC, useXSetForeground.

XSetForground display, gc, foregound)
Display *display;
GCgc;
unsigned londoregound;
display Specifies the connection to the X server.
gc Specifies the GC.
foregound Specifies the foreground you want to set for the specified GC.

XSetForeground can generat®adAlloc andBadGC errors.
To =t the background of awgh GC, useXSetBackground.

XSetBackgrounddisplay, gc, background
Display *display;,
GCgc;
unsigned longdpackground
display Specifies the connection to the X server.
gc Specifies the GC.
background Specifies the background you want to set for the specified GC.

XSetBackground can generat®adAlloc andBadGC errors.

137

To st the display function in awgn GC, useXSetFunction.

XSetFunctiondisplay, gc, function)
Display *display,
GCggc;
int function;
display Specifies the connection to the X server.
gc Specifies the GC.
function Specifies the function you want to set for the specified GC.

XSetFunction can generat8adAlloc, BadGC, and BadValue errors.
To =t the plane mask of augh GC, useXSetPlaneMask

XSetPlaneMasldisplay, gc, plane_mask
Display *display;,
GCgc;
unsigned longlane_mask
display Specifies the connection to the X server.
gc Specifies the GC.
plane_mask Specifies the plane mask.

XSetPlaneMaskcan generat®adAlloc andBadGC errors.

7.2.2. Settingthe Line Attributes and Dashes
To =t the line drawing components of aeji GC, useXSetLineAttributes .

138

XSetLineAttritutes display, gc, line_width, line_style cap_style join_style

Display *display;,
GCgc;
unsigned intine_width;
int line_style
int cap_style
int join_style
display Specifies the connection to the X server.
gc Specifies the GC.
line_width Specifies the line-width you want to set for the specified GC.
line_style Specifies the line-style you want to set for the specified @D.can pass
LineSolid, LineOnOffDash, or LineDoubleDash.
cap_style Specifies the line-style and cap-style you want to set for the specifiedfd@sC.
can pas<apNotLast, CapButt, CapRound, or CapProjecting.
join_style Specifies the line join-style you want to set for the specified @D.can pass

JoinMiter , JoinRound, or JoinBevel.
XSetLineAttributes can generatBadAlloc, BadGC, and BadValue errors.
To =t the dash-offset and dash-list for dashed line styles oba GC, useXSetDashes

XSetDasheddisplay, gc, dash_offsetdash_list n)
Display *display;,
GCgc;
int dash_offset
chardash_lisf];

intn;

display Specifies the connection to the X server.

gc Specifies the GC.

dash_offset Specifies the phase of the pattern for the dashed line-style you want to set for the
specified GC.

dash_list Specifies the dash-list for the dashed line-style you want to set for the specified
GC.

n Specifies the number of elements in dash_list.

The XSetDashedunction sets the dash-offset and dash-list attributes for dashed line styles in the
specified GC. There must be at least one element in the specified dash_IBhoMatue error

results. Thenitial and alternating elements (second, fourth, and so on) of the dash_list are the
even dashes, and the others are the odd dashes. Each element specifies a dash length in pixels.
All of the elements must be nonzero, dBadValue error results. Specifying an odd-length list

is equvalent to specifying the same list concatenated with itself to producesadength list.

The dash-offset defines the phase of the pattern, specifymgany pixels into the dash-list the
pattern should actually begin inyasingle graphics request. Dashing is continuous through path
elements combined with a join-style but is reset to the dash-offset between each sequence of
joined lines.

139

The unit of measure for dashes is the same for the ordinary coordinate system, ddbkally

length is measured along the slope of the line, but implementations are only required to match
this ideal for horizontal and vertical lineBaling the ideal semantics, it is suggested that the

length be measured along the major axis of the line. The major axis is defined as the x axis for
lines drawn at an angle of between —45 and +45 degrees or between 135 and 225 degrees from
the x axis. For al other lines, the major axis is the y axis.

XSetDashescan generatBadAlloc, BadGC, and BadValue errors.

7.2.3. Settingthe Fill Style and Fill Rule
To st the fill-style of a gien GC, useXSetFillStyle.

XSetFillStyle display; gc, fill_style)

Display *display,

GCggc;

int fill_style;
display Specifies the connection to the X server.
gc Specifies the GC.

fill_style Specifies the fill-style you want to set for the specified @@ can pasd-ill-
Solid, FillTiled , FillStippled, or FillOpaqueStippled.

XSetFillStyle can generat®adAlloc, BadGC, and BadValue errors.
To st the fill-rule of a gien GC, useXSetFillRule.

XSetFillRule display; gc, fill_rule)

Display *display;

GCgc;

int fill_rule;
display Specifies the connection to the X server.
gc Specifies the GC.

fill_rule Specifies the fill-rule you want to set for the specified @Qu can pas€ven-
OddRule or WindingRule.

XSetFillRule can generatBadAlloc, BadGC, and BadValue errors.

7.2.4. Settingthe Fill Tile and Stipple

Some displays & hardware support for tiling or stippling with patterns of specific sidémg

and stippling operations that restrict themselves to those specific sizes run much faster than such
operations with arbitrary size patterns. Xlib provides functions that you can use to determine the
best size, tile, or stipple for the display as well as to set the tile or stipple shape and the tile or
stipple origin.

To dbtain the best size of a tile, stipple, or cursee XQueryBestSize

140

Status XQueryBestSizdisplay, class which_screepwidth, height width_return height_return)
Display *display;,
int class
Drawable which_screen
unsigned intvidth, height,
unsigned int Yvidth_return *height_return

display Specifies the connection to the X server.

class Specifies the class that you are interested/ou can passlileShape Cursor-
Shape or StippleShape

which_screen Specifies apdrawable on the screen.

width
height Specify the width and height.

width_return
height_return Return the width and height of the object best supported by the display hardware.

The XQueryBestSizefunction returns the best or closest size to the specifiedsxeCursor-

Shape this is the largest size that can be fully displayed on the screen specified by which_screen.
For TileShape this is the size that can be tileastest. Br StippleShape this is the size that

can be stippledaistest. Br CursorShape, the dravable indicates the desired scredvor Tile-
Shapeand StippleShape the dravable indicates the screen and possibly the windass and

depth. AninputOnly window cannot be used as the dw&ble for TileShapeor StippleShape

or aBadMatch error results.

XQueryBestSizecan generat8adDrawable, BadMatch, and BadValue errors.
To dbtain the best fill tile shape, u¥®ueryBestTile.

Status XQueryBestlE (display, which_screepwidth, height width_return height_returr)
Display *display;
Drawable which_screen
unsigned intvidth, height,
unsigned int tvidth_return *height_return

display Specifies the connection to the X server.
which_screen Specifies apdrawable on the screen.
width

height Specify the width and height.

width_return
height_return Return the width and height of the object best supported by the display hardware.

The XQueryBestTile function returns the best or closest size, that is, the size that can be tiled
fastest on the screen specified by which_screen. Thedleindicates the screen and possibly
the windav class and depth. If amputOnly window is used as the dveeble, aBadMatch

error results.

XQueryBestTile can generatBadDrawable and BadMatch errors.

To dbtain the best stipple shape, u§@ueryBestStipple.

141

Status XQueryBestStippldisplay, which_screepwidth, height width_return height_return)
Display *display;
Drawable which_screen
unsigned intvidth, height
unsigned int tvidth_return *height_return

display Specifies the connection to the X server.
which_screen Specifies apdrawable on the screen.
width

height Specify the width and height.

width_return
height_return Return the width and height of the object best supported by the display hardware.

The XQueryBestStipple function returns the best or closest size, that is, the size that can be stip-
pled fastest on the screen specified by which_screen. Tiealdezdndicates the screen and pos-
sibly the windev class and depth. If amputOnly window is used as the dvesble, aBad-

Match error results.

XQueryBestStipple can generatBadDrawable and BadMatch errors.
To st the fill tile of a gien GC, useXSetTile.

XSetTile (display; gc, tile)
Display *display,
GCgc;
Pixmaptile;
display Specifies the connection to the X server.
gc Specifies the GC.
tile Specifies the fill tile you want to set for the specified GC.

The tile and GC must kia the same depth, orBadMatch error results.
XSetTile can generat®adAlloc, BadGC, BadMatch, and BadPixmap errors.

To st the stipple of a gen GC, useXSetStipple.

XSetStipple @lisplay, gc, stipple)

Display *display;,

GCgc;

Pixmapstipple;
display Specifies the connection to the X server.
gc Specifies the GC.

stipple Specifies the stipple you want to set for the specified GC.

The stipple must ha a eépth of one, or 8adMatch error results.

142

XSetStipple can generat®adAlloc, BadGC, BadMatch, and BadPixmap errors.
To et the tile or stipple origin of aygn GC, useXSetTSOrigin.

XSetTSOrigin fisplay, gc, ts_x_origin ts_y_origin
Display *display;
GCgc;
int ts_x_origin ts_y_origin
display Specifies the connection to the X server.
gc Specifies the GC.

ts_x_origin
ts_y origin Specify the x and y coordinates of the tile and stipple origin.

When graphics requests call for tiling or stippling, the paserigjin will be interpreted relate
to whaterer destination drevable is specified in the graphics request.

XSetTSOrigin can generat®adAlloc andBadGC errors.

7.2.5. Settingthe Current Font
To st the current font of agn GC, useXSetFont.

XSetFont (display, gc, font)

Display *display,

GCgc;

Font font;
display Specifies the connection to the X server.
gc Specifies the GC.
font Specifies the font.

XSetFont can generat8adAlloc, BadFont, and BadGC errors.

7.2.6. Settinghe Clip Region
Xlib provides functions that you can use to set the clip-origin and the clip-mask or set the clip-
mask to a list of rectangles.

To st the clip-origin of a gien GC, useXSetClipOrigin .

143

XSetClipOrigin display, gc, clip_x_origin, clip_y_origin)
Display *display;,
GCgc;
int clip_x_origin, clip_y_origin;
display Specifies the connection to the X server.
gc Specifies the GC.

clip_x_origin
clip_y_origin Specify the x and y coordinates of the clip-mask origin.

The clip-mask origin is interpreted reiai the origin of whateer destination dravable is spec-
ified in the graphics request.

XSetClipOrigin can generatBadAlloc andBadGC errors.
To st the clip-mask of a gén GC to he specified pixmap, us€SetClipMask.

XSetClipMask flisplay, gc, pixmap)
Display *display,
GCggc;
Pixmappixmap
display Specifies the connection to the X server.
gc Specifies the GC.
pixmap Specifies the pixmap dvone.

If the clip-mask is set thlone, the pixels are alays drawn (rgardless of the clip-origin).
XSetClipMask can generatBadAlloc, BadGC, BadMatch, and BadPixmap errors.

To st the clip-mask of a gén GC to he specified list of rectangles, us8etClipRectangles

144

XSetClipRectanglesdisplay, gc, clip_x_origin, clip_y_origin, rectangles n, ordering)
Display *display;,
GCgc;
int clip_x_origin, clip_y_origin;
XRectanglerectangle§] ;
intn;
int ordering;

display Specifies the connection to the X server.
gc Specifies the GC.

clip_x_origin
clip_y_origin Specify the x and y coordinates of the clip-mask origin.

rectangles Specifies an array of rectangles that define the clip-mask.
n Specifies the number of rectangles.

ordering Specifies the ordering relations on the rectangfes. can pasdJnsorted,
YSorted, YXSorted, or YXBanded.

The XSetClipRectanglesfunction changes the clip-mask in the specified GC to the specified list

of rectangles and sets the clip origin. The output is clipped to remain contained within the rectan-
gles. Theclip-origin is interpreted relaté o the origin of whateer destination dravable is spec-

ified in a graphics request. The rectangle coordinates are interpreteat rieltte clip-origin.

The rectangles should be nonintersecting, or the graphics results will be undefined. Note that the
list of rectangles can be empivhich effectvely disables output. This is the opposite of passing
None as the clip-mask iXCreateGC, XChangeGC, and XSetClipMask.

If known by the client, ordering relations on the rectangles can be specified with the ordering
argument. Thignay provide faster operation by the serdéan incorrect ordering is specified,

the X server may generateBadMatch error, but it is not required to do so. If no error is gener-
ated, the graphics results are undefingdsorted means the rectangles are in arbitrary order.
YSorted means that the rectangles are nondecreasing in their Y olgiBorted additionally
constrainsy Sorted order in that all rectangles with an equal Y origin are nondecreasing in their
X origin. YXBanded additionally constrainy XSorted by requiring that, forery possible Y
scanline, all rectangles that include that scanlive laaidentical Y origins and Y extents.

XSetClipRectanglescan generat®adAlloc, BadGC, BadMatch, and BadValue errors.

Xlib provides a set of basic functions for performing region arithmé&c.information about
these functions, see section 16.5.

7.2.7. Settinghe Arc Mode, Subwindav M ode, and Graphics Exposure
To st the arc mode of aygin GC, useXSetArcMode.

145

XSetArcMode @lisplay, gc, arc_mode
Display *display;,
GCgc;
intarc_mode
display Specifies the connection to the X server.
gc Specifies the GC.
arc_mode Specifies the arc modé&lou can passArcChord or ArcPieSlice.

XSetArcMode can generat®adAlloc, BadGC, and BadValue errors.
To st the subwindw mode of a gien GC, useXSetSubwindowMode

XSetSubwindwMode (display, gc, subwindow_mode
Display *display;,
GCgc;
int subwindow_mode
display Specifies the connection to the X server.
gc Specifies the GC.

subwindow_mode
Specifies the subwingdomode. You can pas€lipByChildren or Includelnfe-
riors.

XSetSubwindowModecan generat8adAlloc, BadGC, and BadValue errors.
To =t the graphics-exposures flag of wegiGC, useXSetGraphicsExposures

XSetGraphicsExposuregiéplay, gc, graphics_exposurgs

Display *display;,

GCgc;

Bool graphics_exposures
display Specifies the connection to the X server.
gc Specifies the GC.
graphics_exposures

Specifies a Boolean value that indicates whether you GeapithicsExposeand

NoExposeevents to be reported when callinggCopyArea and XCopyPlane
with this GC.

XSetGraphicsExposurescan generat®adAlloc, BadGC, and BadValue errors.

146

Chapter 8

Graphics Functions

Once you hee established a connection to a displkagu can use the Xlib graphics functions to:
. Clear and cop areas

. Draw points, lines, rectangles, and arcs

. Fill areas

. Manipulate fonts

. Draw text

. Transfer images between clients and the server

If the same draable and GC is used for each call, Xlib batches back-to-back ca{lBitaw-
Paint, XDrawLine , XDrawRectangle, XFillArc , and XFillRectangle. Note that this reduces
the total number of requests sent to the server.

8.1. ClearingAreas

Xlib provides functions that you can use to clear an area or the entirewiBggause pixmaps
do not hae defined backgrounds, theannot be filled by using the functions described in this
section. Insteadp accomplish an analogous operation on a pixmap, you shoukFil#Rect-
angle, which sets the pixmap to a known value.

To dear a rectangular area of agn window, use XClearArea.

XClearAreaf(lisplay, w, X, y, width, height, exoosure$
Display *display;,
Windoww;
intx,y;
unsigned intvidth, height
Bool exposures

display Specifies the connection to the X server.

w Specifies the winde.

X

y Specify the x and y coordinates, which are re¢ath the origin of the window
and specify the upper-left corner of the rectangle.

width

height Specify the width and height, which are the dimensions of the rectangle.

exposures Specifies a Boolean value that indicateBxposeevents are to be generated.

The XClearArea function paints a rectangular area in the specified wirabcording to the
specified dimensions with the wind@\dackground pixel or pixmap. The subwindow-mode
effectively is ClipByChildren . If width is zero, it is replaced with the current width of the win-
dow minus x. If height is zero, it is replaced with the current height of the wimdious y If

147

-

the windav has a defined background tile, the rectangle clipped Yylaldren is filled with this
tile. If the windav has backgroundNone, the contents of the wingoare not changed. In either
case, if exposures B ue, one or moreExposeevets are generated for regions of the rectangle
that are either visible or are being retained in a backing store. If you specify awvitidse

class islnputOnly , a BadMatch error results.

XClearArea can generatBadMatch, BadValue, and BadWindow errors.
To dear the entire area in avgh window, use XClearWindow .

XClearWindav(display, w)

Display *display;,

Windoww;
display Specifies the connection to the X server.
w Specifies the winde.

The XClearWindow function clears the entire area in the specified wingud is equialent to
XClearArea (display w, 0, 0, 0, Q False). If the windav has a defined background tile, the rect-
angle is tiled with a plane-mask of all ones &hdcopy function. Ifthe windav has background
None, the contents of the wingoare not changed. If you specify a windavhose class is
InputOnly , a BadMatch error results.

XClearWindow can generat8adMatch and BadWindow errors.

8.2. CopyingAreas
Xlib provides functions that you can use to'gamp aea or a bit plane.

To copy an aea between dveables of the same root and depth, ¥€&opyArea.

148

XCopyArea display, src, dest gc, src_x, src_y, width, height, dest_x dest_y
Display *display;
Drawable src, dest
GCgc;
int src_x, src_y,
unsigned intvidth, height,
int dest_x dest_y

display Specifies the connection to the X server.

src

dest Specify the source and destination rectangles to be combined.

gc Specifies the GC.

src_x

src_y Specify the x and y coordinates, which are re¢ab the origin of the source
rectangle and specify its upper-left corner.

width

height Specify the width and height, which are the dimensions of both the source and
destination rectangles.

dest_x

dest_y Specify the x and y coordinates, which are redath the origin of the destination

rectangle and specify its upper-left corner.

The XCopyArea function combines the specified rectangle of src with the specified rectangle of
dest. Thadravables must hee the same root and depth, oBadMatch error results.

If regions of the source rectangle are obscured avel o been retained in backing store or if
regions outside the boundaries of the sourcevabie are specified, those regions are not copied.
Instead, the following occurs on all corresponding destination regions that are either visible or are
retained in backing store. If the destination is a wimdgth a background other thawone, cor-
responding regions of the destination are tiled with that background (with plane-mask of all ones
and GXcopy function). Rgardless of tiling or whether the destination is a windw a gxmap,

if graphics-exposures i& ue, then GraphicsExposeevents for all corresponding destination

regions are generated. If graphics-exposurds i but no GraphicsExposeevents are gener-

ated, aNoExposeevent is generated. Note that by default graphics-exposuiBisin new

GCs.

This function uses these GC components: function, plane-mask, subwindow-mode, graphics-
exposures, clip-x-origin, clip-y-origin, and clip-mask.
XCopyArea can generat®adDrawable, BadGC, and BadMatch errors.

To ocopy a sngle bit plane of a gen drawable, useXCopyPlane.

149

XCopyPlane lisplay; src, dest gc, src_x, src_y, width, height, dest_x dest_y plane)
Display *display;
Drawable src, dest
GCgc;
int src_x, src_y,
unsigned intvidth, height,
int dest_x dest_y
unsigned longlane;

display Specifies the connection to the X server.

src

dest Specify the source and destination rectangles to be combined.

gc Specifies the GC.

src_x

src_y Specify the x and y coordinates, which are regat the origin of the source
rectangle and specify its upper-left corner.

width

height Specify the width and height, which are the dimensions of both the source and
destination rectangles.

dest_x

dest y Specify the x and y coordinates, which are redath the origin of the destination
rectangle and specify its upper-left corner.

plane Specifies the bit plane¥ou must set exactly one bit to 1.

The XCopyPlane function uses a single bit plane of the specified source rectangle combined
with the specified GC to modify the specified rectangle of dest. Theloles must hee the

same root but need notJeathe same depth. If the drvables do not hee the same root, Bad-
Match error results. If plane does noteaexactly one bit set to 1 and the value of plane is not
less than 2, wheren is the depth of src, BadValue error results.

Effectively, XCopyPlane forms a pixmap of the same depth as the rectangle of dest and with a
size specified by the sourcgian. ltuses the foreground/background pixels in the GC (fore-
ground gerywhere the bit plane in src contains a bit set to 1, backgroangivhere the bit

plane in src contains a bit set to 0) and thewabprit of aCopyArea protocol request is per-

formed with all the same exposure semantics. This can also be thought of as using the specified
region of the source bit plane as a stipple with a fill-stylEib®paqueStippled for filling a
rectangular area of the destination.

This function uses these GC components: function, plane-mask, foreground, background, subwin-
dow-mode, graphics-exposures, clip-x-origin, clip-y-origin, and clip-mask.

XCopyPlane can generatB8adDrawable, BadGC, BadMatch, and BadValue errors.

8.3. DrawingPaints, Lines, Rectangles, and Arcs
Xlib provides functions that you can use to draw:
. A single point or multiple points

. A single line or multiple lines

. A single rectangle or multiple rectangles

150

. A single arc or multiple arcs
Some of the functions described in the following sections use these structures:

typedef struct {
short x1, y1, X2, y2;
} X Segment;

typedef struct {
short x, y;
} X Paint;

typedef struct {

short x, y;

unsigned short width, height;
} X Rectangle;

typedef struct {

short x, y;

unsigned short width, height;

short anglel, angle2; [* Degrees * 64 */
} X Arc;

All x and y members are signed igexs. Thewidth and height members are 16-bit unsigned
integers. You should be careful not to generate coordinates and sizes out of the 16-bit ranges,
because the protocol only has 16-bit fields for these values.

8.3.1. DrawingSingle and Multiple Points

To draw a dngle point in a gien drawable, useXDrawPoint .

151

XDrawPoint(display, d, gc, X, y)
Display *display;,
Drawabled;
GCgc;
intx,y;
display Specifies the connection to the X server.
d Specifies the dreable.
gc Specifies the GC.

X
y Specify the x and y coordinates where you want the point drawn.

To draw multiple points in a gien drawable, useXDrawPoints.

XDrawPoints @isplay, d, gc, points, npoints modé

Display *display;,
Drawabled;
GCgc;
XPoint *points;
int npoints
int mode
display Specifies the connection to the X server.
d Specifies the dreable.
gc Specifies the GC.
points Specifies an array of points.
npoints Specifies the number of points in the array.
mode Specifies the coordinate mod¥ou can passCoordModeOrigin or Coord-
ModePrevious.

The XDrawPoint function uses the foreground pixel and function components of the GC to draw
a gngle point into the specified drable; XDrawPoints draws multiple points this wayCoord-
ModeOrigin treats all coordinates as relatito the origin, andCoordModePrevious treats all
coordinates after the first as relatio the previous pointXDrawPoints draws the points in the
order listed in the array.

Both functions use these GC components: function, plane-mask, foreground, subwindow-mode,
clip-x-origin, clip-y-origin, and clip-mask.

XDrawPoint can generat8adDrawable, BadGC, and BadMatch errors. XDrawPoints can
generateBadDrawable, BadGC, BadMatch, and BadValue errors.

8.3.2. DrawingSingle and Multiple Lines

To draw a dngle line between tapoints in a gien drawable, useXDrawLine .

152

XDrawLine (display, d, gc, x1, y1, x2, y2)

Display *display;
Drawabled;
GCgc;
intx1, y1, X2, y2;
display Specifies the connection to the X server.
d Specifies the dreable.
gc Specifies the GC.
x1
vyl
x2
y2 Specify the points (x1, y1) and (x2, y2) to be connected.

To draw multiple lines in a gien drawable, useXDrawLines.

XDrawLines (display, d, gc, points, npoints mode

Display *display,
Drawabled;
GCggc;
XPoint *points,
int npoints
int mode
display Specifies the connection to the X server.
d Specifies the dreable.
gc Specifies the GC.
points Specifies an array of points.
npoints Specifies the number of points in the array.
mode Specifies the coordinate mod¥ou can passCoordModeOrigin or Coord-
ModePrevious.

To draw multiple, unconnected lines in avgh drawable, useXDrawSegments

153

XDrawSeaments flisplay, d, gc, segmentsnsegments
Display *display;,
Drawabled;
GCgc;
XSegment segments
int nsegments

display Specifies the connection to the X server.

d Specifies the dreable.

gc Specifies the GC.

segments Specifies an array of segments.

nsegments Specifies the number of segments in the array.

The XDrawLine function uses the components of the specified GC te dilne between the
specified set of points (x1, y1) and (x2, y2). It does not perform joining at coincident endpoints.
For any gven line, XDrawLine does not dna a pixel more than once. If lines intersect, the
intersecting pixels are drawn multiple times.

The XDrawLines function uses the components of the specified GC to dpaints-1 lines
between each pair of points (point[i], point[i+1]) in the arra)k@boint structures. Itdraws the
lines in the order listed in the arrayhe lines join correctly at all intermediate points, and if the
first and last points coincide, the first and last lines also join corrdttyary given line,
XDrawlLines does not dna a pixel more than once. If thin (zero line-width) lines intersect, the
intersecting pixels are drawn multiple times. If wide lines intersect, the intersecting pixels are
drawn only once, as though the enfrdyLine protocol request were a single, filled shape.
CoordModeOrigin treats all coordinates as relagito the origin, andCoordModePrevious

treats all coordinates after the first as retatb the previous point.

The XDrawSegmentsfunction draws multiple, unconnected lind=or each segment,
XDrawSegmentsdraws a line between (x1, y1) and (x2, y2). It draws the lines in the order
listed in the array oKSegmentstructures and does not perform joining at coincident endpoints.
For any gven line, XDrawSegmentsdoes not dna a pxel more than once. If lines intersect, the
intersecting pixels are drawn multiple times.

All three functions use these GC components: function, plane-mask, line-width, line-style, cap-
style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. KigrawLines
function also uses the join-style GC component. All three functions also use these GC mode-
dependent components: foreground, background, tile, stipple, tile-stipple-x-origin, tile-stipple-y-
origin, dash-offset, and dash-list.

XDrawLine , XDrawLines, and XDrawSegmentscan generatBadDrawable, BadGC, and
BadMatch errors. XDrawLines also can generat®adValue errors.

8.3.3. DrawingSingle and Multiple Rectangles

To draw the outline of a single rectangle in &ayi drawable, useXDrawRectangle.

154

XDrawRectangledisplay, d, gc, X, y, width, height)

Display *display;,
Drawabled;
GCgc;
intx,y;
unsigned intvidth, height,
display Specifies the connection to the X server.
d Specifies the dreable.
gc Specifies the GC.
X
y Specify the x and y coordinates, which specify the upper-left corner of the rectan-
gle.
width
height Specify the width and height, which specify the dimensions of the rectangle.

To draw the outline of multiple rectangles in avgn drawable, useXDrawRectangles

XDrawRectanglesdisplay, d, gc, rectangles nrectangle$
Display *display;,
Drawabled;
GCgc;
XRectanglerectangleg];
int nrectangles

display Specifies the connection to the X server.
d Specifies the dveable.
gc Specifies the GC.

rectangles Specifies an array of rectangles.
nrectangles Specifies the number of rectangles in the array.

The XDrawRectangle and XDrawRectanglesfunctions drav the outlines of the specified rect-
angle or rectangles as if a five-poRalyLine protocol request were specified for each rectangle:

[x,y] [x+width,y] [x+width,y+height] [x,y+height] [X,y]

For the specified rectangle or rectangles, these functions do moagigel more than once.
XDrawRectanglesdraws the rectangles in the order listed in the arfayectangles intersect,

the intersecting pixels are drawn multiple times.

Both functions use these GC components: function, plane-mask, line-width, line-style, cap-style,
join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. yrélso use

these GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-ori-
gin, tile-stipple-y-origin, dash-offset, and dash-list.

XDrawRectangle and XDrawRectanglescan generat8adDrawable, BadGC, and Bad-
Match errors.

155

8.3.4. DrawingSingle and Multiple Arcs

To draw a dngle arc in a gien drawable, useXDrawArc .

XDrawArc (display, d, gc, X, y, width, height, anglel, angle2
Display *display,
Drawabled;
GCggc;
intx,y;
unsigned intvidth, height,
int anglel, angle2

display Specifies the connection to the X server.

d Specifies the dreable.

gc Specifies the GC.

X

y Specify the x and y coordinates, which are re¢abh the origin of the dnaable
and specify the upper-left corner of the bounding rectangle.

width

height Specify the width and height, which are the major and minor axes of the arc.

anglel Specifies the start of the arc relatio the three-o’clock position from the center,
in units of degrees * 64.

angle2 Specifies the path and extent of the arc nedati the start of the arc, in units of

degrees * 64.

To draw multiple arcs in a gien drawable, useXDrawArcs .

XDrawArcs (display, d, gc, arcs, narcs)

Display *display,
Drawable d;
GCggc;
XArc *arcs,
int narcs,
display Specifies the connection to the X server.
d Specifies the dreable.
gc Specifies the GC.
arcs Specifies an array of arcs.
narcs Specifies the number of arcs in the array.

XDrawArc draws a single circular or elliptical arc, ak@rawArcs draws multiple circular or
elliptical arcs. Each arc is specified by a rectangle anditgles. Thecenter of the circle or

ellipse is the center of the rectangle, and the major and minor axes are specified by the width and
height. Positre angles indicate counterclockwise motion, andaiee angles indicate clockwise
motion. Ifthe magnitude of angle2 is greater than 360 degkdasawArc or XDrawArcs

156

truncates it to 360 degrees.
For an ac specified as %, y, width, height, anglel, angle?], the origin of the major and minor

: idth heigh o . - L
axes is atf + WIZ Y+ elzg ﬁ and the infinitely thin path describing the entire circle or
heigh heigh
ellipse intersects the horizontal axis aty + &g ﬁ and [x +width, y + ©g ﬁ and intersects

. . 2
the vertical axis at{+ width , Y and [x + width , Y +heighf. Thesecoordinates can be frac-

tional and so are not truncated to discrete coordinates. The path should be defined by the ideal
mathematical pathFor a wide line with line-width W, the bounding outlines for filling arevgn

by the tw infinitely thin paths consisting of all points whose perpendicular distance from the

path of the circle/ellipse is equal to Iw/2 (which may be a fracticalaky. Thecap-style and

join-style are applied the same as for a line corresponding to the tangent of the circle/ellipse at the
endpoint.

For an ac specified as k, y, width, height, anglel, angle?], the angles must be specified in the
effectively skewed coordinate system of the ellipse (for a circle, the angles and coordinate sys-
tems are identical). The relationship between these angles and angles expressed in the normal
coordinate system of the screen (as measured with a protractor) is as follows:

width 7 :
* +
heightlJ adjust

skewed-angle= atangan(normal—angle)

The slewed-angle and normal-angle are expressed in radians (rather than in degrees scaled by 64)
in the range [0, 2] and where atan returns a value in the raﬁgg[7—2T] and adjust is:

0 for normal-angle in the range [g,]

. m 3
T for normal-angle in the range|, 7]
2 for normal-angle in the range—é{z, 2]

For any gven arc, XDrawArc and XDrawArcs do not drav a pxel more than once. If tavarcs

join correctly and if the line-width is greater than zero and the arcs intexéaetwArc and
XDrawArcs do not drav a pxel more than once. Otherwise, the intersecting pixels of intersect-
ing arcs are drawn multiple times. Specifying an arc with one endpoint and a clockwise extent
draws the same pixels as specifying the other endpoint and amalequcounterclockwise extent,
except as it affects joins.

If the last point in one arc coincides with the first point in the following arc, therts will join
correctly If the first point in the first arc coincides with the last point in the last arc, thar¢e
will join correctly. By specifying one axis to be zero, a horizontal or vertical line can be drawn.
Angles are computed based solely on the coordinate system and ignore the aspect ratio.

Both functions use these GC components: function, plane-mask, line-width, line-style, cap-style,
join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. yrélso use

these GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-ori-
gin, tile-stipple-y-origin, dash-offset, and dash-list.

XDrawArc and XDrawArcs can generatBadDrawable, BadGC, and BadMatch errors.

8.4. Filling Areas
Xlib provides functions that you can use to fill:

157

. A single rectangle or multiple rectangles
. A single polygon
. A single arc or multiple arcs

8.4.1. Filling Single and Multiple Rectangles

To fill a single rectangular area in argi drawable, useXFillRectangle.

XFillRectangle @isplay, d, gc, X, y, width, height)

Display *display,
Drawabled;
GCggc;
intx,y;
unsigned intvidth, height,
display Specifies the connection to the X server.
d Specifies the dreable.
gc Specifies the GC.
X
y Specify the x and y coordinates, which are re¢abh the origin of the dnaiable
and specify the upper-left corner of the rectangle.
width
height Specify the width and height, which are the dimensions of the rectangle to be

filled.

To fill multiple rectangular areas in avgin drawable, useXFillRectangles.

XFillRectanglesdisplay, d, gc, rectangles nrectangle$
Display *display,
Drawable d;
GCggc;
XRectangle tectangles
int nrectangles

display Specifies the connection to the X server.
d Specifies the dreable.
gc Specifies the GC.

rectangles Specifies an array of rectangles.
nrectangles Specifies the number of rectangles in the array.

The XFillRectangle and XFillRectangles functions fill the specified rectangle or rectangles as if
a four-pointFillPolygon protocol request were specified for each rectangle:

[X,y] [x+width,y] [x+width,y+height] [x,y+height]

158

Each function uses the x and y coordinates, width and height dimensions, and GC you specify.

XFillRectanglesfills the rectangles in the order listed in the arrégr ary given rectangle,
XFillRectangle and XFillRectangles do not drav a pixel more than once. If rectangles inter-
sect, the intersecting pixels are drawn multiple times.

Both functions use these GC components: function, plane-mask, fill-style, subwindow-mode,
clip-x-origin, clip-y-origin, and clip-mask. Tlyealso use these GC mode-dependent components:
foreground, background, tile, stipple, tile-stipple-x-origin, and tile-stipple-y-origin.

XFillRectangle and XFillRectangles can generatBadDrawable, BadGC, and BadMatch
errors.

8.4.2. Fillinga Sngle Polygon
To fill a polygon area in a gén drawable, useXFillPolygon.

XFillPolygon (display, d, gc, points, npoints shape modée

Display *display,
Drawabled;
GCggc;
XPoint *points;
int npoints
int shape
int mode
display Specifies the connection to the X server.
d Specifies the dreable.
gc Specifies the GC.
points Specifies an array of points.
npoints Specifies the number of points in the array.
shape Specifies a shape that helps the server to mepperformance. ¥u can pass
Complex, Convex, or Noncorvex.
mode Specifies the coordinate mod¥ou can passCoordModeOrigin or Coord-
ModePrevious.

XFillPolygon fills the region closed by the specified path. The path is closed automatically if the
last point in the list does not coincide with the first poXEillPolygon does not dna a pxel of

the region more than onc&oordModeOrigin treats all coordinates as relatito the origin, and
CoordModePrevious treats all coordinates after the first as retath the previous point.

Depending on the specified shape, the following occurs:

. If shape isComplex, the path may self-intersect. Note that contiguous coincident points in
the path are not treated as self-intersection.
. If shape isConvex, for every pair of points inside the polygon, the line segment connecting

them does not intersect the path. If known by the client, speciyonyex can improe
performance. Ifou specifyConvex for a path that is not ceax, the graphics results are
undefined.

. If shape isNoncorvex, the path does not self-intersect, but the shape is not wholgxon
If known by the client, specifyinloncorvex instead ofComplex may impraoe

159

performance. lfou specifyNoncorvex for a self-intersecting path, the graphics results
are undefined.

The fill-rule of the GC controls the filling behavior of self-intersecting polygons.

This function uses these GC components: function, plane-mask, fill-style, fill-rule, subwindow-
mode, clip-x-origin, clip-y-origin, and clip-mask. It also uses these GC mode-dependent compo-
nents: foreground, background, tile, stipple, tile-stipple-x-origin, and tile-stipple-y-origin.

XFillPolygon can generat®adDrawable, BadGC, BadMatch, and BadValue errors.

8.4.3. Filling Single and Multiple Arcs
To fill a single arc in a gen drawable, useXFillArc .

XFillArc (display, d, gc, X, Yy, width, height, anglel, angle?
Display *display;,

Drawabled;
GCgc;
intx,y;

unsigned intvidth, height
int anglel, angle2

display
d

gc

X

y

width

height
anglel

angle2

Specifies the connection to the X server.
Specifies the dreable.
Specifies the GC.

Specify the x and y coordinates, which are redath the origin of the dnaable
and specify the upper-left corner of the bounding rectangle.

Specify the width and height, which are the major and minor axes of the arc.

Specifies the start of the arc relatio the three-o’clock position from the center,
in units of degrees * 64.

Specifies the path and extent of the arc nedati the start of the arc, in units of
degrees * 64.

To fill multiple arcs in a gien drawable, useXFillArcs .

160

XFillArcs (display, d, gc, arcs, narcs)

Display *display;,
Drawabled;
GCgc;
XArc *arcs;
int narcs,
display Specifies the connection to the X server.
d Specifies the dreable.
gc Specifies the GC.
arcs Specifies an array of arcs.
narcs Specifies the number of arcs in the array.

For each arc XFillArc or XFillArcs fills the region closed by the infinitely thin path described
by the specified arc and, depending on the arc-mode specified in the GC, ondirer seg-
ments. Br ArcChord , the single line segment joining the endpoints of the arc is U=ad.
ArcPieSlice, the two line segments joining the endpoints of the arc with the center point are
used. XFillArcs fills the arcs in the order listed in the atrdyr ary given arc, XFillArc and
XFillArcs do not drav a gxel more than once. If regions intersect, the intersecting pixels are
drawn multiple times.

Both functions use these GC components: function, plane-mask, fill-style, arc-mode, subwindow-
mode, clip-x-origin, clip-y-origin, and clip-mask. Thalso use these GC mode-dependent com-
ponents: foreground, background, tile, stipple, tile-stipple-x-origin, and tile-stipple-y-origin.

XFillArc and XFillArcs can generat8adDrawable, BadGC, and BadMatch errors.

8.5. Font Metrics

Afont is a graphical description of a set of characters that are used to increase\efiicemc
eve a et of small, similar sized patterns are repeatedly used.

This section discusseswado:

. Load and free fonts

. Obtain and free font names

. Compute character string sizes
. Compute logical extents

. Query character string sizes

The X server loads fonts whesme a program requests awdont. Theserver can cache fonts for
quick lookup. Fonts are global across all screens in a serSeveaal levels are possible when
dealing with fonts. Most applications simply uskoadQueryFont to load a font and query the
font metrics.

Characters in fonts arega&ded as masks. Except for image text requests, the only pixels modi-
fied are those in which bits are set to 1 in the charattés means that it makes sense to draw
text using stipples or tiles (for example, mamenus gray-out unusable entries).

161

The XFontStruct structure contains all of the information for the font and consists of the font-

specific information as well as a pointer to an arra)(@harStruct structures for the characters
contained in the font. ThEFontStruct, XFontProp, and XCharStruct structures contain:

typedef struct {

short Ibearing;

short rbearing;

short width;

short ascent;

short descent;

unsigned short attrilies;
} X CharStruct;

typedef struct {
Atom name;
unsigned long card32;
} X FontProp;

typedef struct {
unsigned char bytel,;
unsigned char byte?2;
} X Char2b;

typedef struct {
XExtData *ext_data;
Font fid;
unsigned direction;
unsigned min_char_or_byte2;
unsigned max_char_or_byte2;
unsigned min_byte1;
unsigned max_byte1;
Bool all_chars xst;
unsigned defult_char;
int n_properties;
XFontProp *properties;
XCharStruct min_bounds;
XCharStruct max_bounds;
XCharStruct *per_char;
int ascent;
int descent;

} X FontStruct;

[* origin to left edge of raster */
[* origin to right edge of raster */
/* advance to next chaxrigin */
/* baseline to top edge of raster */
/* baseline to bottom edge of raster */
[*per char flags (not predefined) */

/* normal 16 bit characters ar®toytes */

/*hook for extension to hang data */
/* Font id for this font */
/* hint about the direction font is painted */
[* first character */
[* last character */
[* first vothat exists */
* lastwathat exists */
/* flag if all characters & ronzero size */
I*char to print for undefined character */
/* he mary properties there are */
/* pointer to array of additional properties */
/* minimum boundgepall existing char */
/* maximum boundsral existing char */
[* first_char to last_char information */
/* logical extent ake kaseline for spacing */
/* logical descent beldaseline for spacing */

X supports single byte/charactéro bytes/character matrix, and 16-bit character text operations.
Note that ap of these forms can be used with a font, but a single byte/character text request can
only specify a single byte (that is, the firsivrof a 2byte font). You should viev 2-byte fonts as

a two-dimensional matrix of defined characters: bytel specifies the range of defined rows and
byte2 defines the range of defined columns of the font. Single byte/character ¥eniseéneow
defined, and the byte2 range specified in the structure defines a range of characters.

162

The bounding box of a character is defined byXf#arStruct of that characterWhen charac-
ters are absent from a font, the default_char is used. When fertdlrgharacters of the same
size, only the information in th&FontStruct min and max bounds are used.

The members of th¥FontStruct have the following semantics:

. The direction member can be eitliantLeftToRight or FontRightToLeft . Itis just a
hint as to whether mo3tCharStruct elements hae a psitive (FontLeftToRight) or a
negative (FontRightToLeft) character width metric. The core protocol defines no support
for vertical text.

. If the min_bytel and max_bytel members are both zero, min_char_or_byte2 specifies the
linear character indecorresponding to the first element of the per_char paraly
max_char_or_byte2 specifies the linear charactexinfithe last element.

If either min_bytel or max_bytel are nonzero, both min_char_or_byte2 and
max_char_or_byte2 are less than 256, and the 2-byte charactevahaes corresponding
to the per_char array element N (counting from 0) are:
bytel = N/D + min_bytel
byte2 = N\D + min_char_or_byte2
where:
D = max_char_or_byte2 — min_char_or_byte2 + 1
/ = integer division
\ = integer modulus

. If the per_char pointer is NULL, all glyphs between the first and last charactegsnde
inclusive havethe same information, asvgn by both min_bounds and max_bounds.

. If all_chars_exist isTr ue, al characters in the per_char arraywd@aonzero bounding
boxes.

. The default_char member specifies the character that will be used when an undefined or
nonexistent character is printed. The default_char is a 16-bit character (not a 2-byte charac-
ter). For a font using 2-byte matrix format, the default_char has bytel in the most-signifi-
cant byte and byte2 in the least significant byte. If the default_char itself specifies an unde-
fined or nonexistent characteo printing is performed for an undefined or nonexistent
character.

. The min_bounds and max_bounds members contain the most extreme values of each indi-
vidual XCharStruct component wer al elements of this array (and ignore nonexistent
characters). Theounding box of the font (the smallest rectangle enclosing the shape
obtained by superimposing all of the characters at the same origin [x,y]) has its upper-left
coordinate at:

[x + min_bounds.lbearing, y — max_bounds.ascent]

Its width is:

max_bounds.rbearing — min_bounds.lbearing

Its height is:

max_bounds.ascent + max_bounds.descent

. The ascent member is the logical extent of the fonvalhe baseline that is used for deter-
mining line spacing. Specific characters may extend beyond this.

163

. The descent member is the logical extent of the font at owlibkobaseline that is used for
determining line spacing. Specific characters may extend beyond this.

. If the baseline is at Y-coordinatetlge logical extent of the font is inclusi ketween the
Y-coordinate values (y — font.ascent) and (y + font.descent Fypjcally, the minimum
interline spacing between rows of text isegi by ascent + descent.

For a character origin at [x,y], the bounding box of a character (that is, the smallest rectangle that
encloses the characteshape) described in terms BCharStruct components is a rectangle
with its upper-left corner at:

[x + Ibearing, y — ascent]
Its width is:
rbearing — Ibearing
Its height is:
ascent + descent
The origin for the next character is defined to be:
[X + width, y]

The Ibearing member defines the extent of the left edge of the character ink from the origin. The
rbearing member defines the extent of the right edge of the character ink from the origin. The
ascent member defines the extent of the top edge of the character ink from the origin. The
descent member defines the extent of the bottom edge of the character ink from the origin. The
width member defines the logical width of the character.

Note that the baseline (the y position of the character origin) is logically viewed as being the
scanline just belw nondescending characters. When descent is zero, only pixels with Y-coordi-
nates less than y are drawn, and the origin is logically viewed as being coincident with the left
edge of a nonkerned charactévhen lbearing is zero, no pixels with X-coordinate less than x are
dravn. Any of the XCharStruct metric members could be gntive. If the width is ngdive, the

next character will be placed to the left of the current origin.

The X protocol does not define the interpretation of the attributes membe{haStruct
structure. Anonexistent character is represented with all members ¥OksarStruct set to
zero.

A font is not guaranteed toveany poperties. Thenterpretation of the property value (for
example, long or unsigned long) must be detifrom a priori knowledge of the propertyA
basic set of font properties is specified in the X Consortium staXdasdical Font Description
Conventions

8.5.1. Loadingand Freeing Fonts
Xlib provides functions that you can use to load fonts, get font information, unload fonts, and free
font information. A few font functions use &Context resource ID or a font ID interchangeably.

To load a gien font, useXLoadFont.

164

Font XLoadFont (display, namé
Display *display;,
char name

display Specifies the connection to the X server.
name Specifies the name of the font, which is a null-terminated string.

The XLoadFont function loads the specified font and returns its associated font ID. If the font
name is not in the Host Portable Character Encoding, the result is implementation-dependent.
Use of uppercase or lowercase does not mattren the characters “2And “*' ' are used in a

font name, a pattern match is performed andnasiching font is used. In the pattern, the “?”
character will match ansingle characterand the “** character will match annumber of char-
acters. Astructured format for font names is specified in the X Consortium staXdargical

Font Description Conventiondf XLoadFont was uinsuccessful at loading the specified font, a
BadName error results.Fonts are not associated with a particular screen and can be stored as a
component of anGC. Whenthe font is no longer needed, cAlUnloadFont.

XLoadFont can generat®adAlloc and BadNameerrors.
To return information about arvalable font, useXQueryFont.

XFontStruct *XQueryBnt (display, font_ID)
Display *display;,
XID font_ID;

display Specifies the connection to the X server.
font_ID Specifies the font ID or th&Context ID.

The XQueryFont function returns a pointer to thé&FontStruct structure, which contains infor-
mation associated with the fonYou can query a font or the font stored in a GC. The font ID
stored in theXFontStruct structure will be thesContext ID, and you need to be careful when
using this ID in other functions (se&ContextFromGC). If the font does not exisKkQuery-
Font returns NULL. To free this data, us€FreeFontinfo.

To perform aXLoadFont and XQueryFont in a single operation, us€_oadQueryFont.

XFontStruct *XLoadQueryént (display, name
Display *display;,
char hame
display Specifies the connection to the X server.
name Specifies the name of the font, which is a null-terminated string.

The XLoadQueryFont function provides the most common way for accessing a féhbad-
QueryFont both opens (loads) the specified font and returns a pointer to the appropriate
XFontStruct structure. Ifthe font name is not in the Host Portable Character Encoding, the
result is implementation-dependent. If the font does not exisiadQueryFont returns NULL.

XLoadQueryFont can generate BadAlloc error.

165

To unload the font and free the storage used by the font structure that was allocAt@dery-
Font or XLoadQueryFont, use XFreeFont.

XFreefont(display, font_struc)

Display *display,

XFontStruct font_struct
display Specifies the connection to the X server.
font_struct Specifies the storage associated with the font.

The XFreeFont function deletes the association between the font resource ID and the specified
font and frees th&XFontStruct structure. Thdont itself will be freed when no other resource
references it. The data and the font should not be referenced again.

XFreeFont can generate BadFont error.
To return a gien font propertyuse XGetFontProperty .

Bool XGetFontPropertyfont_struct atom, value_returr)
XFontStruct font_struct
Atom atom;
unsigned long ¥alue_return
font_struct Specifies the storage associated with the font.
atom Specifies the atom for the property name you want returned.

value_return Returns the value of the font property.

Given the atom for that propertthe XGetFontProperty function returns the value of the speci-
fied font property. XGetFontProperty also returng-alse if the property was not defined or

True if it was defined.A set of predefined atoms exists for font properties, which can be found
in <X11/Xatom.h>. Thisset contains the standard properties associated with a font. Although it
is not guaranteed, it is likely that the predefined font properties will be present.

To wnload a font that was loaded by.oadFont, use XUnloadFont.

XUnloadFont (display, font)

Display *display;,

Font font;
display Specifies the connection to the X server.
font Specifies the font.

The XUnloadFont function deletes the association between the font resource ID and the speci-
fied font. The font itself will be freed when no other resource references it. The font should not
be referenced again.

XUnloadFont can generate BadFont error.

166

8.5.2. Obtainingand Freeing Font Names and Information

You obtain font names and information by matching a wildcard specification when querying a
font type for a list of wailable sizes and so on.

To return a list of theailable font names, us¥ListFonts.

char **XListFonts @display, pattern, maxnamesactual_count_returh
Display *display;,
char *pattern;
int maxnames
int *actual_count_return

display Specifies the connection to the X server.
pattern Specifies the null-terminated pattern string that can contain wildcard characters.
maxnames Specifies the maximum number of names to be returned.

actual_count_return
Returns the actual number of font names.

The XListFonts function returns an array ofalable font names (as controlled by the font

search path; se¥SetFontPath) that match the string you passed to the pattegyunaent. The

pattern string can containyaoharacters, but each asterisk (*) is a wildcard fgrraimber of

characters, and each question mark (?) is a wildcard for a single chakiatterpattern string is

not in the Host Portable Character Encoding, the result is implementation-dependent. Use of
uppercase or lowercase does not matich returned string is null-terminated. If the data

returned by the server is in the Latin Portable Character Encoding, then the returned strings are in
the Host Portable Character Encoding. Otherwise, the result is implementation-dependent. If
there are no matching font named,istFonts returns NULL. The client should callFree-
FontNameswhen finished with the result to free the memory.

To free a font name arrayse XFreeFontNames

XFreefontNameslfst)
char Hist[];

list Specifies the array of strings you want to free.

The XFreeFontNamesfunction frees the array and strings returnehyjstFonts or XList-
FontsWithinfo .

To obtain the names and information abowdilable fonts, useXListFontsWithInfo .

167

char **XListFontsWithinfo (display, pattern maxnamescount_returninfo_return)
Display *display;
char *pattern;
int maxnames
int *count_return
XFontStruct *info_return;

display Specifies the connection to the X server.

pattern Specifies the null-terminated pattern string that can contain wildcard characters.
maxnames Specifies the maximum number of names to be returned.

count_return Returns the actual number of matched font names.

info_return Returns the font information.

The XListFontsWithinfo function returns a list of font names that match the specified pattern

and their associated font information. The list of names is limited to size specified by maxnames.
The information returned for each font is identical to wkkhbadQueryFont would return

except that the per-character metrics are not returned. The pattern string can contharac:

ters, but each asterisk (*) is a wildcard foy aamber of characters, and each question mark (?)

is a wildcard for a single charactdf the pattern string is not in the Host Portable Character
Encoding, the result is implementation-dependent. Use of uppercase or lowercase does not mat-
ter. Each returned string is null-terminated. If the data returned by the server is in the Latin
Portable Character Encoding, then the returned strings are in the Host Portable Character Encod-
ing. Otherwisethe result is implementation-dependent. If there are no matching font names,
XListFontsWithInfo returns NULL.

To free only the allocated name arrthe client should calKFreeFontNames To free both the
name array and the font information array or to free just the font information tagajient
should callXFreeFontInfo.

To free font structures and font names, ¥§eeeFontInfo.

XFreeFontinfohamesfree_infq actual_coun}
char **names
XFontStruct free_infq
int actual_count

names Specifies the list of font names.
free_info Specifies the font information.

actual_count Specifies the actual number of font names.

The XFreeFontInfo function frees a font structure or an array of font structures and optionally

an array of font names. If NULL is passed for names, no font names are freed. If a font structure
for an open font (returned byLoadQueryFont) is passed, the structure is freed, but the font is

not closed; usXUnloadFont to close the font.

168

8.5.3. ComputingCharacter String Sizes

Xlib provides functions that you can use to compute the width, the logical extents, and the server
information about 8-bit and 2-byte text strings. The width is computed by adding the character
widths of all the characters. It does not matter if the font is an 8-bit or 2-byte font. These func-
tions return the sum of the character metrics in pixels.

To determine the width of an 8-bit character string, ¥3extWidth .

int XTextWidth (font_struct string, count)

XFontStruct font_struct

char *string;

int count,
font_struct Specifies the font used for the width computation.
string Specifies the character string.

count Specifies the character count in the specified string.

To determine the width of a 2-byte character string, XiSextWidth16 .

int XTextWidth16 (font_struct string, count)
XFontStruct font_struct
XChar2b *string;
int count,
font_struct Specifies the font used for the width computation.
string Specifies the character string.
count Specifies the character count in the specified string.

8.5.4. ComputingLogical Extents
To compute the bounding box of an 8-bit character string inendont, useXTextExtents.

169

XTextExtents font_struct string, nchars direction_return font_ascent_return
font_descent_returroverall_return)
XFontStruct font_struct
char *string;
int nchars
int *direction_return
int *font_ascent_returrrfont_descent_return
XCharStruct dwerall_return;

font_struct Specifies thexFontStruct structure.
string Specifies the character string.
nchars Specifies the number of characters in the character string.

direction_return
Returns the value of the direction hifoftLeftToRight or FontRightToLeft).

font_ascent_return
Returns the font ascent.

font_descent_return
Returns the font descent.

owverall_return Returns thewerall size in the specifiedCharStruct structure.

To compute the bounding box of a 2-byte character string inen fiont, useXTextExtents16.

XTextExtents16f{ont_struct string, nchars direction_return font_ascent_return
font_descent_returroverall_return)
XFontStruct font_struct
XChar2b *string;
int nchars
int *direction_return
int *font_ascent_returrrfont _descent_retutn
XCharStruct bwverall_return;

font_struct Specifies theXFontStruct structure.
string Specifies the character string.
nchars Specifies the number of characters in the character string.

direction_return
Returns the value of the direction hifohtLeftToRight or FontRightTolLeft).

font_ascent_return
Returns the font ascent.

font_descent_return
Returns the font descent.
overall_return Returns the eerall size in the specifiedCharStruct structure.

The XTextExtents and XTextExtents16 functions perform the size computation locally and,

170

thereby avoid the round-trip werhead ofXQueryTextExtents and XQueryTextExtents16.
Both functions return aXCharStruct structure, whose members are set to the values as follows.

The ascent member is set to the maximum of the ascent metrics of all characters in the string.
The descent member is set to the maximum of the descent metrics. The width member is set to
the sum of the character-width metrics of all characters in the stfmgach character in the

string, let W be the sum of the character-width metrics of all characters preceding it in the string.
Let L be the left-side-bearing metric of the character plud@f R be the right-side-bearing met-

ric of the character plus Wrhe Ibearing member is set to the minimum L of all characters in the
string. Therbearing member is set to the maximum R.

For fonts defined with linear indexing rather than 2-byte matrix indexing, X@ttar2b struc-
ture is interpreted as a 16-bit number with bytel as the most significant byte. If the font has no
defined default charactamdefined characters in the string are taken e ldhzero metrics.

8.5.5. QueryingCharacter String Sizes

To query the server for the bounding box of an 8-bit character string ireafgint, useXQuery-
TextExtents.

XQueryTextExtents flisplay, font_ID, string, nchars direction_return font_ascent_return
font_descent_returroverall_return)
Display *display;,
XID font_ID;
char *string;
int nchars
int *direction_return
int *font_ascent_returrrfont_descent_return
XCharStruct dwerall_return;

display Specifies the connection to the X server.

font_ID Specifies either the font ID or t&@Context ID that contains the font.
string Specifies the character string.

nchars Specifies the number of characters in the character string.

direction_return
Returns the value of the direction hifofitLeftToRight or FontRightToLeft).

font_ascent_return
Returns the font ascent.

font_descent_return
Returns the font descent.

owverall_return Returns thewerall size in the specifiedCharStruct structure.

To query the server for the bounding box of a 2-byte character string verafgnt, use
XQueryTextExtents16.

171

XQueryTextExtents16display, font_ID, string, nchars direction_return font_ascent_return

font_descent_returroverall_return)

Display *display,

XID font_ID;

XChar2b *string;

int nchars

int *direction_return

int *font_ascent_returrrfont_descent_return

XCharStruct dwverall_return;

display Specifies the connection to the X server.

font_ID Specifies either the font ID or tl&Context ID that contains the font.
string Specifies the character string.

nchars Specifies the number of characters in the character string.

direction_return
Returns the value of the direction hiffohtLeftToRight or FontRightToLeft).

font_ascent_return
Returns the font ascent.

font_descent_return
Returns the font descent.

owverall_return Returns thewerall size in the specifiedCharStruct structure.

The XQueryTextExtents and XQueryTextExtents16 functions return the bounding box of the
specified 8-bit and 16-bit character string in the specified font or the font contained in the speci-
fied GC. These functions query the X server and, therefore, suffer the roungethipaal that is
avaded by XTextExtents and XTextExtents16. Both functions return ZCharStruct struc-

ture, whose members are set to the values as follows.

The ascent member is set to the maximum of the ascent metrics of all characters in the string.
The descent member is set to the maximum of the descent metrics. The width member is set to
the sum of the character-width metrics of all characters in the s&Fmgach character in the

string, let W be the sum of the character-width metrics of all characters preceding it in the string.
Let L be the left-side-bearing metric of the character plud@f R be the right-side-bearing met-

ric of the character plus Wrhe Ibearing member is set to the minimum L of all characters in the
string. Therbearing member is set to the maximum R.

For fonts defined with linear indexing rather than 2-byte matrix indexing, ¥&tfar2b struc-
ture is interpreted as a 16-bit number with bytel as the most significant byte. If the font has no
defined default charactamdefined characters in the string are taken e ldhzero metrics.

Characters with all zero metrics are ignored. If the font has no defined defayltheharde-
fined characters in the string are also ignored.

XQueryTextExtents and XQueryTextExtents16 can generatBadFont and BadGC errors.

8.6. Drawing Text

This section discusseswido draw:
. Complex text

. Text characters

172

. Image text characters
The fundamental text functionéDrawText and XDrawText16 use the following structures:

typedef struct {

char *chars; [* pointer to string */

int nchars; /* number of characters */

int delta; [* delta between strings */

Font font; /* Font to print it in, None dohthange */
} X Textitem;
typedef struct {

XChar2b *chars; [* pointer to two-byte characters */

int nchars; [* number of characters */

int delta; /* delta between strings */

Font font; * font to print it in, None doh’change */
} X Textitem16;

If the font member is ndtlone, the font is changed before printing and also is stored in the GC.

If an error was generated during text drawing, the previous items maysden dravn. The

baseline of the characters are drawn starting at the x and y coordinates that you pass in the text
drawing functions.

For example, consider the background rectangle drawKDbsawlmageString. If you want the
upper-left corner of the background rectangle to be at pixel coordinate (x,y), pass the (x,y +
ascent) as the baseline origin coordinates to the text functions. The ascent is the font ascent, as
given in the XFontStruct structure. Ifyou want the lower-left corner of the background rectan-

gle to be at pixel coordinate (x,y), pass the (x,y — descent + 1) as the baseline origin coordinates
to the text functions. The descent is the font descentyas igithe XFontStruct structure.

8.6.1. DrawingComplex Text

To draw 8-bit characters in a gén drawable, useXDrawText .

173

XDrawText(display, d, gc, X, y, items nitemg

Display *display;,
Drawabled;
GCgc;
intx,y;
XTextltem *items
int nitems
display Specifies the connection to the X server.
d Specifies the dveable.
gc Specifies the GC.
X
y Specify the x and y coordinates, which are redath the origin of the specified
drawable and define the origin of the first character.
items Specifies an array of text items.
nitems Specifies the number of text items in the array.

To draw 2-byte characters in awgin drawable, useXDrawText16.

XDrawText16 (display, d, gc, X, y, items nitemg

Display *display,
Drawabled;
GCggc;
intx,y;
XTextltem16 %tems
int nitems
display Specifies the connection to the X server.
d Specifies the dreable.
gc Specifies the GC.
X
y Specify the x and y coordinates, which are redath the origin of the specified
drawvable and define the origin of the first character.
items Specifies an array of text items.
nitems Specifies the number of text items in the array.

The XDrawText16 function is similar toXDrawText except that it uses 2-byte or 16-bit charac-
ters. Bothfunctions allev complex spacing and font shifts between counted strings.

Each text item is processed in turh font member other thaNone in an item causes the font to

be stored in the GC and used for subsequent fetext element delta specifies an additional
change in the position along the x axis before the stringwendrahedelta is alvays added to

the character origin and is not dependent gncharacteristics of the font. Each character image,
as defined by the font in the GC, is treated as an additional mask for a fill operation on the draw-
able. Thedrawvable is modified only where the font character has a bit set to 1. If a text item gen-
erates eBadFont error, the previous text items may\Jebeen drawn.

174

For fonts defined with linear indexing rather than 2-byte matrix indexing, X@tiar2b struc-
ture is interpreted as a 16-bit number with bytel as the most significant byte.

Both functions use these GC components: function, plane-mask, fill-style, font, subwindow-
mode, clip-x-origin, clip-y-origin, and clip-mask. Thaso use these GC mode-dependent com-
ponents: foreground, background, tile, stipple, tile-stipple-x-origin, and tile-stipple-y-origin.

XDrawText and XDrawText16 can generat®adDrawable, BadFont, BadGC, and Bad-
Match errors.

8.6.2. DrawingText Characters
To draw 8-bit characters in a gén drawable, useXDrawsString .

XDrawsString (display, d, gc, X, y, string, length)

Display *display,
Drawable d;
GCgc;
intx,vy;
char *string;
int length;
display Specifies the connection to the X server.
d Specifies the dreable.
gc Specifies the GC.
X
y Specify the x and y coordinates, which are redath the origin of the specified
drawvable and define the origin of the first character.
string Specifies the character string.
length Specifies the number of characters in the string argument.

To draw 2-byte characters in ag@n drawable, useXDrawString16.

175

XDrawString16 @isplay, d, gc, X, y, string, length)

Display *display;
Drawabled;
GCgc;
intx,y;
XChar2b *string;
int length;
display Specifies the connection to the X server.
d Specifies the dreable.
gc Specifies the GC.
X
y Specify the x and y coordinates, which are redath the origin of the specified
drawable and define the origin of the first character.
string Specifies the character string.
length Specifies the number of characters in the string argument.

Each character image, as defined by the font in the GC, is treated as an additional mask for a fill
operation on the dvaeble. Thedrawable is modified only where the font character has a bit set to
1. For fonts defined with 2-byte matrix indexing and used WibbrawString16, each byte is

used as a byte2 with a bytel of zero.

Both functions use these GC components: function, plane-mask, fill-style, font, subwindow-
mode, clip-x-origin, clip-y-origin, and clip-mask. Thelso use these GC mode-dependent com-
ponents: foreground, background, tile, stipple, tile-stipple-x-origin, and tile-stipple-y-origin.

XDrawsString and XDrawString16 can generat®adDrawable, BadGC, and BadMatch
errors.

8.6.3. Drawinglmage Text Characters

Some applications, in particular terminal emulators, need to print image text in which both the
foreground and background bits of each character are painted. Ttestprannoying flicker on
mary displays.

To draw 8-bit image text characters in avgn drawable, useXDrawlmageString .

176

XDrawlmageStringdisplay, d, gc, X, y, string, length)

Display *display;,
Drawabled;
GCgc;
intx,y;
char *string;
int length;
display Specifies the connection to the X server.
d Specifies the dreable.
gc Specifies the GC.
X
y Specify the x and y coordinates, which are redath the origin of the specified
drawable and define the origin of the first character.
string Specifies the character string.
length Specifies the number of characters in the string argument.

To draw 2-byte image text characters in &ai drawable, useXDrawlmageString16.

XDrawlmageString16display, d, gc, X, y, string, length)

Display *display,
Drawabled;
GCgc;
intx,y;
XCharz2b *string;
int length;
display Specifies the connection to the X server.
d Specifies the dreable.
gc Specifies the GC.
X
y Specify the x and y coordinates, which are redath the origin of the specified
drawvable and define the origin of the first character.
string Specifies the character string.
length Specifies the number of characters in the string argument.

The XDrawlmageString16 function is similar toXDrawlmageString except that it uses 2-byte
or 16-bit characters. Both functions also use both the foreground and background pixels of the
GC in the destination.

The effect is first to fill a destination rectangle with the background pixel defined in the GC and
then to paint the text with the foregroundedix Theupper-left corner of the filled rectangle is at:

[x, y — font-ascent]

The width is:

177

oveall-width
The height is:
font-ascent + font-descent

The overall-width, font-ascent, and font-descent are as would be return&@bgryTextEx-
tents using gc and string. The function and fill-style defined in the GC are ignored for these
functions. Theeffective function isGXcopy, and the effectie fill-style is FillSolid .

For fonts defined with 2-byte matrix indexing and used WibrawlmageString, each byte is
used as a byte2 with a bytel of zero.

Both functions use these GC components: plane-mask, foreground, background, font, subwin-
dow-mode, clip-x-origin, clip-y-origin, and clip-mask.

XDrawlmageString and XDrawlmageString16 can generat®adDrawable, BadGC, and
BadMatch errors.

8.7. Transferring Images between Client and Sefer

Xlib provides functions that you can use to transfer images between a client and the server.
Because the server may requireetbe data formats, Xlib provides an image object that fully
describes the data in memory and that provides for basic operations on th¥bdadaould ref-
erence the data through the image object rather than referencing the data dileetye, some
implementations of the Xlib library may efficiently deal with frequently used data formats by
replacing functions in the procedure vector with special case functions. Supported operations
include destroying the image, getting a pixel, storing a pixel, extracting a subimage of an image,
and adding a constant to an image (see section 16.8).

All the image manipulation functions discussed in this sectiorermsk of theXimage structure,
which describes an image as it exists in the cBangmory.

178

typedef struct _Xlmage {

int width, height; [* size of image */

int xoffset; /*number of pixels offset in X direction */
int format; [* XYBitmap, XYPixmap, ZPixmap */
char *data; [* pointer to image data */

int byte_order; [* data byte orddrSBFirst, MSBFirst */
int bitmap_unit; [* quant. of scanline 8, 16, 32 */

int bitmap_bit_order; /* LSBFirst, MSBFirst */

int bitmap_pad; * 8, 16, 32 either XY or ZPixmap */
int depth; /* depth of image */

int bytes_per_line; * accelerator to next scanline */

int bits_per_piel; /* bits per pixel (ZPixmap) */

unsigned long red_mask; [* bits in z arrangement */

unsigned long green_mask;
unsigned long blue_mask;
XPointer obdata; /* hook for the object routines to hang on */
struct funcs { [* image manipulation routines */
struct _XImage *(*create_image)();
int (*destroy_image)();
unsigned long (*get_pixel)();
int (*put_pixel();
struct _XIlmage *(*sub_image)();
int (*add_pixel)();
H;
} XImage;

To initialize the image manipulation routines of an image structureXums#mage .

Status XlInitimageifmage)
XImage image;

xXimage Specifies the image.

The Xlnitimage function initializes the internal image manipulation routines of an image struc-
ture, based on the values of the various structure members. All fields other than the manipulation
routines must already be initialized. If the bytes per_line member isXmidmage will

assume the image data is contiguous in memory and set the bytes _per_line member to an appro-
priate value based on the other members; otherwise, the value of bytes per_line is not changed.
All of the manipulation routines are initialized to functions that other Xlib image manipulation
functions need to operate on the type of image specified by the rest of the structure.

This function must be called forywimage constructed by the client before passing it ya#rer
Xlib function. Image structures created or returned by Xlib do not need to be initialized in this
fashion.

This function returns a nonzero status if initialization of the structure is successful. It returns zero
if it detected some error or inconsistetit the structure, in which case the image is not changed.

To combine an image with a rectangle of aveliale on the displayuse XPutimage.

179

XPutlmage isplay, d, gc, image, src_x src_y, dest_x dest_y width, heighi)
Display *display;,
Drawabled;
GCgc;
XIlmage image;
int src_x src_y,
int dest_x dest_y
unsigned intvidth, height,

display Specifies the connection to the X server.

d Specifies the dreable.

gc Specifies the GC.

image Specifies the image you want combined with the rectangle.

Ssrc_x Specifies the offset in X from the left edge of the image defined bylthage
structure.

src_y Specifies the offset in Y from the top edge of the image defined B¥ithage
structure.

dest_x

dest y Specify the x and y coordinates, which are redath the origin of the dnaable
and are the coordinates of the subimage.

width

height Specify the width and height of the subimage, which define the dimensions of the

rectangle.

The XPutlmage function combines an image with a rectangle of the specifietbdi®. The

section of the image defined by the src_x, srigth, and height arguments is drawn on the
specified part of the dnable. If XYBitmap format is used, the depth of the image must be one,
or aBadMatch error results. The foreground pixel in the GC defines the source for the one bits
in the image, and the background pixel defines the source for the zeredid6YPixmap and
ZPixmap, the depth of the image must match the depth of theatita, or aBadMatch error

results.

If the characteristics of the image (for example, byte_order and bitmap_unit) differ from what the
server requiresXPutimage automatically makes the appropriate w@sions.

This function uses these GC components: function, plane-mask, subwindow-mode, clip-x-origin,
clip-y-origin, and clip-mask. It also uses these GC mode-dependent components: foreground and
background.

XPutimage can generat®adDrawable, BadGC, BadMatch, and BadValue errors.

To return the contents of a rectangle in\aegidrawable on the displayse XGetlmage. This
function specifically supports rudimentary screen dumps.

180

Xlmage *XGetlmagedisplay, d, X, y, width, height, plane_maskformat)
Display *display;,
Drawabled;
intx,y;
unsigned intvidth, height
unsigned longlane_mask

int format;

display Specifies the connection to the X server.

d Specifies the dreable.

X

y Specify the x and y coordinates, which are redath the origin of the dnaable
and define the upper-left corner of the rectangle.

width

height Specify the width and height of the subimage, which define the dimensions of the
rectangle.

plane_mask Specifies the plane mask.

format Specifies the format for the imag¥ou can passXYPixmap or ZPixmap.

The XGetlmage function returns a pointer to afimage structure. Thistructure provides you
with the contents of the specified rectangle of thevdvie in the format you specifyif the for-

mat argument iXYPixmap, the image contains only the bit planes you passed to the
plane_mask gument. Ifthe plane_mask argument only requests a subset of the planes of the
display the depth of the returned image will be the number of planes requested. If the format
argument iZPixmap, XGetlmage returns as zero the bits in all planes not specified in the
plane_mask gument. Thdunction performs no range checking on the values in plane_mask
and ignores extraneous bits.

XGetlmage returns the depth of the image to the depth member oflthage structure. The
depth of the image is as specified when thevdoke was created, except when getting a subset of
the planes irKYPixmap format, when the depth isvgn by the number of bits set to 1 in
plane_mask.

If the drawable is a pixmap, the gen rectangle must be wholly contained within the pixmap, or a
BadMatch error results. If the dweable is a windw, the windav must be vigvable, and it must

be the case that if there were no inferiorswarlapping windows, the specified rectangle of the
window would be fully visible on the screen and wholly contained within the outside edges of the
window, or a BadMatch error results. Note that the borders of the wima@an be included and

read with this request. If the windidhas backing-store, the backing-store contents are returned
for regions of the windw that are obscured by noninferior wive® If the windav does not

have backing-store, the returned contents of such obscured regions are undefined. The returned
contents of visible regions of inferiors of a different depth than the specified wadepth are

also undefined. The pointer cursor image is not included in the returned contents. If a problem
occurs,XGetlmage returns NULL.

XGetlmage can generatBadDrawable, BadMatch, and BadValue errors.

To ocopy the contents of a rectangle on the display to a location within a preexisting image struc-
ture, useXGetSublmage.

181

Xlmage *XGetSublmageadisplay, d, X, y, width, height, plane_maskformat, dest_image, dest_x
dest y
Display *display,
Drawabled;
intx,y;
unsigned intvidth, height,
unsigned longplane_mask
int format;
XIimage *dest_imae;
int dest_x dest_y

display Specifies the connection to the X server.

d Specifies the dreable.

X

y Specify the x and y coordinates, which are redath the origin of the dnaable
and define the upper-left corner of the rectangle.

width

height Specify the width and height of the subimage, which define the dimensions of the
rectangle.

plane_mask Specifies the plane mask.

format Specifies the format for the imag¥ou can passXYPixmap or ZPixmap.

dest_imge Specifies the destination image.

dest_x

dest y Specify the x and y coordinates, which are redath the origin of the destination

rectangle, specify its upper-left cornand determine where the subimage is
placed in the destination image.

The XGetSublmage function updates dest_image with the specified subimage in the same man-
ner asXGetlmage. If the format argument iXYPixmap, the image contains only the bit planes
you passed to the plane_masfjuament. Ifthe format argument iBPixmap, XGetSublmage

returns as zero the bits in all planes not specified in the plane_rgashkesut. Thdunction per-

forms no range checking on the values in plane_mask and ignores extraneous bits. As a con-
venience,XGetSublmagereturns a pointer to the sarfémage structure specified by

dest_image.

The depth of the destinatiofimage structure must be the same as that of thevabrke. If the
specified subimage does not fit at the specified location on the destination image, the right and
bottom edges are clipped. If the @&hle is a pixmap, the gén rectangle must be wholly con-
tained within the pixmap, or BadMatch error results. If the dveeble is a windw, the window
must be viwable, and it must be the case that if there were no inferiorgedapping windows,

the specified rectangle of the windavould be fully visible on the screen and wholly contained
within the outside edges of the windcor a BadMatch error results. If the winde has back-
ing-store, then the backing-store contents are returned for regions of thewtladl@are obscured

by noninferior windws. If the windav does not hee backing-store, the returned contents of

such obscured regions are undefined. The returned contents of visible regions of inferiors of a
different depth than the specified windew#pth are also undefined. If a problem occiXGet-
Sublmagereturns NULL.

182

XGetSublmage can generatBadDrawable, BadGC, BadMatch, and BadValue errors.

183

Chapter 9

Window and Session Manager Functions

Although it is difficult to categorize functions as exchebi for an application, a windw man-

ager or a £ssion managethe functions in this chapter are most often used by windanagers

and session managers. It is not expected that these functions will be used by most application
programs. Xlibprovides management functions to:

. Change the parent of a window

. Control the lifetime of a window

. Manage installed colormaps

. Set and retriee te font search path
. Grab the server

. Kill a client

. Control the screen ger

. Control host access

9.1. Changingthe Parent of a Window

To change a windovg parent to another winadoon the same screen, u¥&eparentWindow.
There is no way to me& a wndow between screens.

XReparentWindw (display; w, parent, x, y)
Display *display,
Windoww;
Windowparent;
intx,y;

display Specifies the connection to the X server.
w Specifies the winde.
parent Specifies the parent windo

X
y Specify the x and y coordinates of the position in thve perent windav.

If the specified winde is mapped XReparentWindow automatically performs abnmapWin-
dow request on it, rems it from its current position in the hieragcland inserts it as the child

of the specified parent. The winslds placed in the stacking order on top with respect to sibling
windows.

After reparenting the specified windoXReparentWindow causes the X server to generate a
ReparentNotify event. Theoveride_redirect member returned in thiset is set to the win-
dow’s orresponding attrilte. WWindow manager clients usually should ignore this windbt his
member is set tdr ue. Finally, if the specified winde was originally mapped, the X server
automatically performs MapWindow request on it.

184

The X server performs normal exposure processing on formerly obscuredwsindbeX server
might not generat&xposeevents for regions from the initidUnmapWindow request that are
immediately obscured by the finslapWindow request. ABadMatch error results if:

. The nev parent windw is not on the same screen as the old parent windo
. The nev parent wind is the specified winde or an inferior of the specified winda
. The nav parent islnputOnly , and the windav is not.

. The specified winde has aParentRelative background, and the weparent winda is not
the same depth as the specified wirdo

XReparentWindow can generat@adMatch and BadWindow errors.

9.2. Controlling the Lifetime of a Window

The sae-set of a client is a list of other clients’ windows that, ifythee inferiors of one of the
client's windows at connection close, should not be destroyed and should be remappedd the
unmapped. & further information about close-connection processing, see sectioha2afow

an applicatiors window to survive when a windw manager that has reparented a windails,

Xlib provides the sze-set functions that you can use to control the longevity of subwindows that
are normally destroyed when the parent is dgstto For example, a wind® manager that wants

to add decoration to a winddby adding a frame might reparent an applicationindowv. When

the frame is destroyed, the applicateonindow should not be destroyed but be returned to its
previous place in the wingohierarcly.

The X server automatically remes windows from the sge-set when thgare destroyed.
To add or remwe a wndow from the client saveset, useXChangeSaeSet.

XChangeSeeSet display, w, change_modg
Display *display;,
Windoww;
int change_mode
display Specifies the connection to the X server.
w Specifies the winde that you want to add to or delete from the clestveset.

change_mode Specifies the modeYou can passSetModelnsertor SetModeDelete

Depending on the specified mod& hangeSaeSet either inserts or deletes the specified win-
dow from the cliens saveset. Thespecified windw must hae been created by some other
client, or aBadMatch error results.

XChangeSaeSet can generat®adMatch, BadValue, and BadWindow errors.

To add a windav to the clients saveset, useXAddToSaveSet.

185

XAddToSaveSet display, w)
Display *display;
Windoww;
display Specifies the connection to the X server.
w Specifies the winde that you want to add to the clientaveset.

The XAddToSaveSet function adds the specified wingdao the clients saveset. Thespecified
window must hae been created by some other client, @adMatch error results.

XAddToSaveSet can generat@adMatch and BadWindow errors.
To remove a window from the client saveset, useXRemoveFromSaveSet.

XRemoveFromSa&eSet display, w)
Display *display;,
Windoww;

display Specifies the connection to the X server.
w Specifies the winde that you want to delete from the clientaveset.

The XRemoveFromSaveSet function remees the specified winde from the client saveset.
The specified winde must hae keen created by some other client, @alMatch error results.

XRemoveFromSaveSet can generatBadMatch and BadWindow errors.

9.3. Managinginstalled Colormaps

The X server maintains a list of installed colormayéndows using these colormaps are guaran-
teed to display with correct colors; windows using other colormaps may or may not display with
correct colors. Xlib provides functions that you can use to install a colormap, uninstall a col-
ormap, and obtain a list of installed colormaps.

At ary time, there is a subset of the installed maps that is viewed as an ordered list and is called
the required list. The length of the required list is at most M, where M is the minimum number of
installed colormaps specified for the screen in the connection setup. The required list is main-
tained as follars. Whena mlormap is specified tXInstallColormap , it is added to the head of

the list; the list is truncated at the tail, if necessarikeep its length to at most M. When a col-
ormap is specified tXUninstallColormap and it is in the required list, it is rewva from the

list. A colormap is not added to the required list when it is implicitly installed by the X server,
and the X server cannot implicitly uninstall a colormap that is in the required list.

To install a colormap, us¥InstallColormap .

186

XlnstallColormap (lisplay, colormap
Display *display;
Colormapcolormagp

display Specifies the connection to the X server.
colormap Specifies the colormap.

The XlnstallColormap function installs the specified colormap for its associated screen. All
windows associated with this colormap immediately display with true cofans associated the
windows with this colormap when you created them by caM@geateWindow, XCreateSim-
pleWindow, XChangeWindowAttributes, or XSetWindowColormap.

If the specified colormap is not already an installed colormap, the X server gendtates a
ormapNotify event on each windw that has that colormap. In addition, famery other col-
ormap that is installed as a result of a calKitnstallColormap , the X server generatesGol-
ormapNotify event on each windw that has that colormap.

XlInstallColormap can generate BadColor error.
To wninstall a colormap, usgUninstallColormap .

XUninstallColormapdisplay, colormap)
Display *display;
Colormapcolormagp

display Specifies the connection to the X server.
colormap Specifies the colormap.

The XUninstallColormap function remaes the specified colormap from the required list for its
screen. As result, the specified colormap might be uninstalled, and the X server might implic-
itly install or uninstall additional colormaps. Which colormaps get installed or uninstalled is
server dependent except that the required list must remain installed.

If the specified colormap becomes uninstalled, the X server genei@tdsrenapNotify event

on each winda that has that colormap. In addition, fmesy other colormap that is installed or
uninstalled as a result of a callXdJninstallColormap , the X server generatesGolormapNo-
tify event on each windwe that has that colormap.

XUninstallColormap can generate BadColor error.

To dbtain a list of the currently installed colormaps foraegiscreen, useXListinstalledCol-
ormaps.

187

Colormap *XListInstalledColormapsl{splay, w, num_returr)
Display *display;,
Windoww;
int *num_return

display Specifies the connection to the X server.

w Specifies the winde that determines the screen.
num_return Returns the number of currently installed colormaps.

The XListInstalledColormaps function returns a list of the currently installed colormaps for the
screen of the specified windo The order of the colormaps in the list is not significant and is no
explicit indication of the required list. When the allocated list is no longer needed, free it by
using XFree.

XListInstalledColormaps can generate BadWindow error.

9.4. Settingand Retrieving the Font Search Path

The set of fonts\ailable from a server depends on a font search path. Xlib provides functions to
set and retriee the search path for a server.

To st the font search path, u¥&etFontPath.

XSetFontRth (display, directories ndirs)
Display *display,
char **directories
int ndirs;

display Specifies the connection to the X server.

directories Specifies the directory path used to look for a font. Setting the path to the empty
list restores the default path defined for the X server.

ndirs Specifies the number of directories in the path.

The XSetFontPath function defines the directory search path for font lookup. There is only one
search path per X seryeot one per client. The encoding and interpretation of the strings are
implementation-dependent, but typicallyytepecify directories or font servers to be searched in

the order listed. An X server is permitted to cache font information internally; for example, it
might cache an entire font from a file and not check on subsequent opens of that font to see if the
underlying font file has changed. Hoveg when the font path is changed, the X server is guaran-
teed to flush all cached information about fonts for which there currently are no explicit resource
IDs allocated. The meaning of an error from this request is implementation-dependent.

XSetFontPath can generate BadValue error.

To get the current font search path, u@8etFontPath.

188

char **XGetFontRth (display, npaths_returi
Display *display;,
int *npaths_return

display Specifies the connection to the X server.
npaths_return Returns the number of strings in the font path array.

The XGetFontPath function allocates and returns an array of strings containing the search path.
The contents of these strings are implementation-dependent and are not intended to be interpreted
by client applications. When it is no longer needed, the data in the font path should be freed by
using XFreeFontPath.

To free data returned byGetFontPath, use XFreeFontPath.

XFreeFontRth (ist)
char **list;

list Specifies the array of strings you want to free.

The XFreeFontPath function frees the data allocated K¢etFontPath.

9.5. Grabbing the Sewer

Xlib provides functions that you can use to grab and ungrab the.s&hese functions can be
used to control processing of output on other connections by thewgydtem serverWhile
the server is grabbed, no processing of requests or close downsathearconnection will
occur A client closing its connection automatically ungrabs the seA#hough grabbing the
server is highly discouraged, it is sometimes necessary.

To grab the servewuse XGrabServer .

XGrabSerer (display)
Display *display;,

display Specifies the connection to the X server.

The XGrabServer function disables processing of requests and close downs on all other connec-
tions than the one this request\aad on. You should not grab the X servelyanore than is
absolutely necessary.

To ungrab the serveuse XUngrabServer .

189

XUngrabSerer (display)
Display *display;

display Specifies the connection to the X server.

The XUngrabServer function restarts processing of requests and close downs on other connec-
tions. You should g@oid grabbing the X server as much as possible.

9.6. Killing Clients

Xlib provides a function to cause the connection to a client to be closed and its resources to be
destrgyed. To destry a dient, useXKillClient .

XKillClient (display, resource
Display *display;,
XID resource

display Specifies the connection to the X server.
resource Specifies apresource associated with the client that you want to destrall-
Temporary .

The XKillClient function forces a close down of the client that created the resource if a valid
resource is specified. If the client has already terminated in &#tainPermanentor Retain-
Temporary mode, all of the cliend’ resources are desyed. If AllTemporary is specified, the
resources of all clients thatveatrminated inRetainTemporary are destroyed (see section 2.5).
This permits implementation of windomanager facilities that aid de@pging. Aclient can set

its close-down mode tRetainTemporary. If the client then crashes, its windows would not be
destrgyed. Theprogrammer can then inspect the applicaiamhdow tree and use the window
manager to destydhe zombie windows.

XKillClient can generate BadValue error.

9.7. Controlling the Screen Saer
Xlib provides functions that you can use to set or reset the mode of the sweeto $arce or
activate the screen ser, or to obtain the current screenveavalues.

To =t the screen ser mode, useXSetScreenSwaer .

190

XSetScreenSay (display, timeout interval, prefer_blanking allow_exposures
Display *display;,
int timeout interval;
int prefer_blanking
int allow_exposures

display Specifies the connection to the X server.
timeout Specifies the timeout, in seconds, until the screesr sarns on.
interval Specifies the interval, in seconds, between screen aterations.

prefer_blanking
Specifies hw to enable screen blankingfou can pas®DontPreferBlanking,
PreferBlanking, or DefaultBlanking.

allow_exposures
Specifies the screenwgamntrol values. Yu can pas®ontAllowExposures,
AllowExposures, or DefaultExposures

Timeout and interval are specified in secomiisimeout of O disables the screenasgbut an

activated screen s@r is not deactrated), and a timeout of —1 restores theadétf Othemegaive

values generate BadValue error. If the timeout value is nonzer¥SetScreenSaer enables the
screen sar. An interval of O disables the random-pattern motion. If no input from devices
(keyboard, mouse, and so on) is generated for the specified number of timeout seconds once the
screen sa&r is enabled, the screens is activated.

For each screen, if blanking is preferred and the hardware supports video blanking, the screen
simply goes blank. Otherwise, if either exposures are allowed or the screen can be regenerated
without sendingexposeevents to clients, the screen is tiled with the root wimdackground

tile randomly re-origined each interval seconds. Otherwise, the screens’ state do not change, and
the screen sar is not actvated. Thescreen saer is deactvated, and all screen states are restored

at the next &yboard or pointer input or at the next callXorceScreenSaer with mode
ScreenS&erReset

If the server-dependent screemesanethod supports periodic change, the interval argument

serves as a hint aboutvadong the change period should be, and zero hints that no periodic

change should be made. Examples of ways to change the screen include scrambling the colormap
periodically moving an icon image around the screen periodicatljiling the screen with the

root windav background tile, randomly re-origined periodically.

XSetScreenSeer can generate BadValue error.

To force the screenw& on or df, use XForceScreenSaer .

XForceScreenSar (display, mode

Display *display,
int mode
display Specifies the connection to the X server.
mode Specifies the mode that is to be appli¥du can passScreenSaerActi ve or
ScreenSaerReset

If the specified mode iScreenSaerActi ve and the screen ga currently is deactiated,

191

XForceScreenSaer actvates the screenwa even if the screen sar had been disabled with a
timeout of zero. If the specified modeSsreenSaerReset and the screenga currently is
enabled XForceScreenSsaer deactvates the screen g if it was actrated, and the actation
timer is reset to its initial state (as if device input had beenveetel

XForceScreenSsger can generate BadValue error.
To ectivate the screen sar, use XActi vateScreenSaer .

XActivateScreenSaer (display)
Display *display;

display Specifies the connection to the X server.

To reset the screens, use XResetScreenSaer .

XResetScreenSar (display)
Display *display;,

display Specifies the connection to the X server.

To get the current screenv@a values, useXGetScreenSaer .

XGetScreenSaer (display, timeout_returninterval_return prefer_blanking_return
allow_exposures_retudn
Display *display,
int *timeout_return *interval_return
int *prefer_blanking_return
int *allow_exposures_return

display Specifies the connection to the X server.

timeout_return Returns the timeout, in seconds, until the screeer sarns on.

interval_return
Returns the interval between screevesamvocations.

prefer_blanking_return
Returns the current screen blanking prefereDmn{PreferBlanking,
PreferBlanking, or DefaultBlanking).

allow_exposures_return
Returns the current screerveaontrol value DontAllowExposures, AllowEx-
posures or DefaultExposures).

9.8. Controlling Host Access
This section discusseswido:
. Add, get, or reme losts from the access control list

192

. Change, enable, or disable access

X does not provide anprotection on a per-windwbasis. Ifyou find out the resource ID of a
resource, you can manipulate o provide some minimal iel of protection, howeer, connec-

tions are permitted only from machines you trust. This is adequate on single-user workstations
but obviously breaks down on timesharing machines. Although provisions exist in the X protocol
for proper connection authentication, the lack of a standard authentication sersehdstlevel
access control as the only common mechanism.

The initial set of hosts allowed to open connections typically consists of:
. The host the winde system is running on.

. On POSIX-conformant systems, each host listed in/die/X?.hostsfile. The? indicates
the number of the displayrhis file should consist of host names separated by newlines.
DECnet nodes must terminate in :: to distinguish them from Internet hosts.

If a host is not in the access control list when the access control mechanism is enabled and if the
host attempts to establish a connection, the server refuses the connieiibange the access

list, the client must reside on the same host as the server and/or vaulstdragranted permis-

sion in the initial authorization at connection setup.

Servers also can implement other access control policies in addition to or in place of this host
access facility For further information about other access control implementations, see “X Win-
dow System Protocdl.

9.8.1. Adding,Getting, or Removing Hosts

Xlib provides functions that you can use to add, get, or verhasts from the access control list.
All the host access control functions use Xt¢ostAddress structure, which contains:

typedef struct {

int family; [* for example Familylnternet */

int length; /* length of address, in bytes */

char *address; [* pointer to where to find the address */
} X HostAddress;

The family member specifies which protocol address family to use (for example, TCP/IP or DEC-
net) and can b&amilyinternet , Familylnternet6 , FamilyServerinterpreted , FamilyDEC-

net, or FamilyChaos. The length member specifies the length of the address in bytes. The
address member specifies a pointer to the address.

For TCP/IR the address should be in network byte ardrer IP version 4 addresses, the family
should be Familylnternet and the length should be 4 byaersIP version 6 addresses, the family
should be Familylnternet6 and the length should be 16 bytes.

For the DECnet familythe server performs no automatic swapping on the address ByRtgmse

IV address is 2 bytes long. The first byte contains the least significant 8 bits of the node number.
The second byte contains the most significant 2 bits of the node number in the least significant 2
bits of the byte and the area in the most significant 6 bits of the byte.

For the Serverinterpreted famjlthe length is ignored and the address member is a pointer to a
XServerinterpretedAddress structure, which contains:

193

typedef struct {

int typelength; /* length of type string, in bytes */

int valuelength;/* length of value string, in bytes */

char *type; /* pointer to where to find the type string */
char *value; [*pointer to where to find the address */

} X ServerinterpretedAddress;

The type and value members point to strings representing the type and value of the server inter-
preted entry These strings may not be NULL-terminated so care should be used when accessing
them. Theaypelength and valuelength members specify the length in byte of the type and value
strings.

To add a single host, us¢AddHost.

XAddHost (display, hos?)

Display *display;,

XHostAddress host
display Specifies the connection to the X server.
host Specifies the host that is to be added.

The XAddHost function adds the specified host to the access control list for that digjlay
server must be on the same host as the client issuing the commamhdiaresserror results.

XAddHost can generatB8adAccessand BadValue errors.
To add multiple hosts at one time, us&ddHosts.

XAddHosts @isplay, hosts num_hosts

Display *display;,

XHostAddress hosts

int num_hosts
display Specifies the connection to the X server.
hosts Specifies each host that is to be added.

num_hosts Specifies the number of hosts.
The XAddHosts function adds each specified host to the access control list for that dishay
server must be on the same host as the client issuing the commamhd#keresserror results.

XAddHosts can generatBadAccessand BadValue errors.

To obtain a host list, us¥ListHosts.

194

XHostAddress *XListHosts{isplay, nhosts_returnstate returr)
Display *display;,
int *nhosts_return
Bool *state_return
display Specifies the connection to the X server.
nhosts_return Returns the number of hosts currently in the access control list.

state_return Returns the state of the access control.

The XListHosts function returns the current access control list as well as whether the use of the
list at connection setup was enabled or disabkdstHosts allows a program to find out what
machines can makoonnections. lalso returns a pointer to a list of host structures that were allo-
cated by the function. When no longer needed, this memory should be freed byXatteg

To remove a ingle host, useXRemoveHost.

XRemaoveHost (display, hosi)
Display *display;
XHostAddress host,
display Specifies the connection to the X server.

host Specifies the host that is to be resuh

The XRemoveHost function remees the specified host from the access control list for that dis-
play. The server must be on the same host as the client proced8adAacesserror results. If
you remae your machine from the access list, you can no longer connect to thaf aedvris
operation cannot beversed unless you reset the server.

XRemoveHost can generatBadAccessand BadValue errors.
To remove multiple hosts at one time, udd&RkemoveHosts.

XRemaoveHosts @isplay, hosts num_hosts

Display *display,

XHostAddress hosts

int num_hosts
display Specifies the connection to the X server.
hosts Specifies each host that is to be rgatb
num_hosts Specifies the number of hosts.

The XRemoveHosts function remwees each specified host from the access control list for that
display The X server must be on the same host as the client procedBadAacesserror
results. Ifyou remae your machine from the access list, you can no longer connect to that
server and this operation cannot beveesed unless you reset the server.

XRemoveHosts can generat®adAccessand BadValue errors.

195

9.8.2. ChangingEnabling, or Disabling Access Control
Xlib provides functions that you can use to enable, disable, or change access control.
For these functions toxecute successfullyhe client application must reside on the same host as

the X server and/or kia keen gven permission in the initial authorization at connection setup.

To change access control, us&etAccessControl

XSetAccessControtlisplay, mode

Display *display;
int mode
display Specifies the connection to the X server.
mode Specifies the modeYou can pas€nableAccessor DisableAccess

The XSetAccessControlfunction either enables or disables the use of the access control list at
each connection setup.

XSetAccessControlcan generat®adAccessand BadValue errors.
To enable access control, u¥&nableAccessControl

XEnableAccessContrati{splay)
Display *display;

display Specifies the connection to the X server.

The XEnableAccessControlfunction enables the use of the access control list at each connec-
tion setup.

XEnableAccessControlcan generate BadAccesserror.
To dsable access control, u¥®isableAccessControl

XDisableAccessControtiisplay)
Display *display;

display Specifies the connection to the X server.
The XDisableAccessControlfunction disables the use of the access control list at each connec-

tion setup.
XDisableAccessControlcan generate BadAccesserror.

196

Chapter 10

Events

A client application communicates with the X server through the connection you establish with
the XOpenDisplay function. Aclient application sends requests to the X serverthis con-
nection. Theseequests are made by the Xlib functions that are called in the client application.
Many Xlib functions cause the X server to generamnts, and the usertyping or moving the
pointer can generateents asynchronouslyThe X server returnssents to the client on the same
connection.

This chapter discusses the following topics associated wattie
. Event types

. Event structures

. Event masks

. Event processing

Functions for handlingvents are dealt with in the next chapter.

10.1. Ewent Types

An event is data generated asynchronously by the X server as a result of some device activity or
as side effects of a request sent by an Xlib function. Device-relegatsg@ropagate from the

source windw to ancestor windows until some client application has selectedvéait type or

until the event is explicitly discarded. The X server generally sendsvant¢o a client applica-

tion only if the client has specifically asked to be informed of taitaype, typically by setting

the event-mask attribute of the wingdo The mask can also be set when you create a windo

by changing the window’esent-mask. Yu can also mask outents that would propagate to
ancestor windows by manipulating the do-not-propagate mask of the windtibutes. Haov-

eve, MappingNotify events are aliays sent to all clients.

An event type describes a specifizeat generated by the X servdfor each eent type, a corre-
sponding constant name is defined ¥iL4/X.h>, which is used when referring to areet type.
The following table lists thevent category and its associatea® type or types. The processing
associated with theseents is discussed in section 10.5.

Event Category Event Type

Keyboard eents KeyPress KeyRelease

Pointer @ents ButtonPress, ButtonRelease MotionNotify
Window crossing gents EnterNotify , LeaveNotify

Input focus gents FocuslIn, FocusOut

Keymap state notificationvent KeymapNotify

Exposure eents Expose GraphicsExpose NoExpose

197

Event Category Event Type

Structure controlwents CirculateRequest, ConfigureRequest MapRequest,
ResizeRequest

Window state notification eents CirculateNotify , ConfigureNotify, CreateNotify,
DestroyNotify, GravityNotify , MapNotify , Map-
pingNotify , ReparentNotify, UnmapNotify,

VisibilityNotify
Colormap state notificatiorvent ColormapNotify
Client communication\ents ClientMessage PropertyNotify , SelectionClear,

SelectionNotify, SelectionRequest

10.2. Ewent Structures

For each @ent type, a corresponding structure is declaredXihl¢Xlib.h>. All the e/ent struc-
tures hae the following common members:

typedef struct {
int type;
unsigned long serial; [* # of last request processed by server */
Bool send_eent; [* true if this came from a SendEvent request */
Display *display; /* Display thewent was read from */
Window window;

} X AnyEvent;

The type member is set to theest type constant name that uniquely identified=itr example,

when the X server reportsGraphicsExposeevent to a client application, it sends 2iGraph-
icsExposeEventstructure with the type member setGoaphicsExpose The display member is

set to a pointer to the display theset was read on. The sendert member is set tdr ue if the

event came from &endEventprotocol request. The serial member is set from the serial number
reported in the protocol but expanded from the 16-bit least-significant bits to a full 32-bit value.
The windav member is set to the windathat is most useful to toolkit dispatchers.

The X server can sendents at ag time in the input stream. Xlib storesyagvents recered
while waiting for a reply in anvent queue for later use. Xlib also provides functions that allow
you to checkents in the gent queue (see section 11.3).

In addition to the individual structures declared for eaghteype, theXEvent structure is a
union of the individual structures declared for eagmetype. Depending on the type, you
should access members of eaetne by using theXxEvent union.

198

typedef union _XEvent {
int type; /* must not be changed */
XAnyEvent xany;
XKeyEvent xley;,
XButtonEvent xbutton;
XMotionEvent xmotion;
XCrossingEvent xcrossing;
XFocusChangeEvent xfocus;
XExposeEvent expose;
XGraphicsExposeEvent xgraphicsexpose;
XNoExposeEvent xnoexpose;
XVisibilityEvent xvisibility;
XCreateWindowEvent xcreatewindow;
XDestroyWindowEvent xdestroywindow;
XUnmapEvent xunmap;
XMapEvent xmap;
XMapRequestEvent xmaprequest;
XReparentEvent xreparent;
XConfigureEvent xconfigure;
XGravityEvent xgravity;
XResizeRequestEvent xresizerequest;
XConfigureRequestEvent xconfigurerequest;
XCirculateEvent xcirculate;
XCirculateRequestEvent xcirculaterequest;
XPropertyEvent xproperty;
XSelectionClearEvent xselectionclear;
XSelectionRequestEvent xselectionrequest;
XSelectionEvent xselection;
XColormapEvent xcolormap;
XClientMessageEvent xclient;
XMappingEvent xmapping;
XErrorEvent xerror;
XKeymapEvent xkymap;
long pad[24];

} X Event;

An XEvent structures first entry alvays is the type membgarhich is set to thevent type. The
second memberwbys is the serial number of the protocol request that generatedetiie €he
third member atlays is send_\eent, which is aBool that indicates if thewvent was sent by a dif-
ferent client. The fourth membemadys is a displaywhich is the display that thevent was read
from. Excepffor keymap &ents, the fifth memberahys is a windw, which has been carefully
selected to be useful to toolkit dispatcheFs.avoid breaking toolkits, the order of these first five
entries is not to change. Mosteats also contain a time membwhich is the time at which an
event occurred. In addition, a pointer to the genevienemust be cast before it is used to access
ary other information in the structure.

10.3. Eent Masks

Clients selectwent reporting of mostwents relatve o a window. To do tis, pass anvent mask
to an Xlib eent-handling function that takes aweat_mask agument. Theits of the gent

199

mask are defined ind.1/X.h>. Eachbit in the @ent mask maps to arvent mask name, which
describes thevent or ezents you want the X server to return to a client application.

Unless the client has specifically asked for them, masite are not reported to clients when

they are generated. Unless the client suppresses them by setting graphics-exposures in the GC to

False, GraphicsExposeand NoExposeare reported by default as a resulX@opyPlane and
XCopyArea. SelectionClear, SelectionRequest SelectionNotify, or ClientMessagecannot

be maskd. Selection-relategivents are only sent to clients cooperating with selections (see sec-

tion 4.5). When thedyboard or pointer mapping is chang&dppingNotify is aways sent to

clients.

The following table lists thevent mask constants you can pass to tleate mask argument and
the circumstances in which you would want to specify #eatemask:

Event Mask Circumstances

NoEventMask No events wanted

KeyPressMask Keyboard down eents wanted
KeyReleaseMask Keyboard up eents wanted
ButtonPressMask Pointer button downwents wanted
ButtonReleaseMask Pointer button upwents wanted
EnterWindowMask Pointer windev entry events wanted
LeaveWindowMask Pointer windav leave events wanted
PointerMotionMask Pointer motion eents wanted
PointerMotionHintMask Pointer motion hints wanted
Button1MotionMask Pointer motion while button 1 down
Button2MotionMask Pointer motion while button 2 down
Button3MotionMask Pointer motion while button 3 down
Button4MotionMask Pointer motion while button 4 down
Button5MotionMask Pointer motion while button 5 down
ButtonMotionMask Pointer motion while anbutton down
KeymapStateMask Keyboard state wanted at winsl@ntry and focus in
ExposureMask Any exposure wanted
VisibilityChangeMask Any change in visibility wanted
StructureNotifyMask Any change in winde structure wanted
ResizeRedirectMask Redirect resize of this window
SubstructureNotifyMask Substructure notification wanted
SubstructureRedirectMask Redirect structure requests on children
FocusChangeMask Any change in input focus wanted
PropertyChangeMask Any change in property wanted
ColormapChangeMask Any change in colormap wanted
OwnerGrabButtonMask Automatic grabs should aectte with owner_eents set

to True

10.4. Eent Processing Overview

The &/ent reported to a client application duringest processing depends on whiatere masks
you provide as thevent-mask attribute for a win@o For some eent masks, there is a one-to-
one correspondence between theneémask constant and theeat type constantFor example,
if you pass thevent maskButtonPressMask, the X server sends back oruttonPress events.
Most events contain a time membeavhich is the time at which arvent occurred.

200

In other cases, oneent mask constant can map toaal event type constantskor example, if
you pass thevent maskSubstructureNotifyMask , the X server can send baCkrculateNo-

tify , ConfigureNotify, CreateNotify, DestroyNotify, GravityNotify , MapNotify , Reparent-
Notify , or UnmapNotify events.

In another case, mvevent masks can map to oneeat type. For example, if you pass either
PointerMotionMask or ButtonMotionMask , the X server sends backvotionNotify event.

The following table lists thevent mask, its associatedant type or types, and the structure name
associated with thevent type. Some of these structures actually are typedefs to a generic struc-
ture that is shared betweenotevent types. Note that N.A. appears in columns for which the
information is not applicable.

Event Mask

Event Type

Structure

Generic Structure

ButtonMotionMask

Button1MotionMask
Button2MotionMask
Button3MotionMask
Button4MotionMask
Button5MotionMask

ButtonPressMask
ButtonReleaseMask
ColormapChangeMask
EnterWindavMask
LeaveWindowvMask

ExposureMask
GCGraphicsExposures in GC

FocusChangeMask

KeymapStateMask

KeyPressMask
KeyReleaseMask

OwnerGrabButtonMask

PointerMotionMask
PointerMotionHintMask

PropertyChangeMask
ResizeRedirectMask

StructureNotifyMask

MotionNotify

ButtonPress

ButtonRelease

ColormapNotify
EnterNotify
LeaeNotify

Expose
GraphicsExpose
NoExpose

deuslin
FocusOut

&mapNotify
KyPress
&Release
N.A.

MotionNotify
N.A.

PropertyNotify
ResizeRequest

CirculateNotify
ConfigureNotify
DestrgyNotify
GravityNotify
MapNotify

XPointerMovedEvent

XButtonPressedEnt
XButtonReleasedEant
XColormapEvent
XEnterWindowEent
XLeaveWindowEent

XExposeEvent
XGraphicsExposeht
XNoExposeEwnt

XFocusinEent
XecusOutEent

XKeymapEvent

XKeyPressedEsnt
Xi€yReleasedEent

N.A.

XPointerMovedEvent
N.A.

XPropertyEvent
XResizeRequestEvent

XCirculateEvent
XConfigureEent
XDestroyWindowEvent
XGravityEvent
XMapEwent

201

XMotionEent

XButtonEent

XButtonEent

XCrossingEent

XCrossingEsnt

XFocusChangeEvent

XFocusChangeEvent

XKeyEvent
XKeyEvent

XMotionEent

N.A.
N.A.
N.A.
N.A.
N.A.

VisibilityChangeMask

ClientMessage
MappingNotify
SelectionClear
SelectionNotify
SelectionRequest

WibilityNotify

XClientMessageEvent
XMappingEvent
XSelectionClearEvent
XSelectionEvent
XSelectionRequestEvent

XV isibilityEvent

Event Mask Event Type Structure Generic Structure
ReparentNotify XReparentEnt
UnmapNotify XUnmapEent

SubstructureNotifyMask CirculateNotify XCirculateEvent
ConfigureNotify XConfigureBent
CreateNotify XCreate\WdowEvent
Destrg/Notify XDestroyWindowEvent
GravityNotify XGravityEvent
MapNotify XMapEwent
ReparentNotify XReparentEnt
UnmapNotify XUnmapEent

SubstructureRedirectMask CirculateRequest XCirculateRequestEvent
ConfigureRequest XConfigureRequesthty
MapRequest XMapRequesté&ivt

The sections that folle describe the processing that occurs when you select the diffeeant e

masks. Theections are genized according to these processing categories:
. Keyboard and pointernvents
. Window crossing gents

. Input focus eents

. Keymap state notificationvents

. Exposure gents

. Window state notification eents
. Structure control eents
. Colormap state notificatiorvents

. Client communication\ents

10.5. Keyboard and Pointer Events

This section discusses:

. Pointer button eents
. Keyboard and pointernvents

10.5.1. Binter Button Events

The following describes thevent processing that occurs when a pointer button press is processed

with the pointer in some wingow and when no acte inter grab is in progress.

202

The X server searches the ancestors of w from the root down, looking foree geasito acti-
vate. If no matching pas# gab on the button exists, the X server automatically starts ae acti
grab for the client receiving theant and sets the last-pointer-grab time to the current server
time. Theeffect is essentially equalent to anXGrabButton with these client passed argu-
ments:

Argument Value

w The event window

ewvent_mask The clients ®lected pointerents on the eent window

pointer_mode GrabModeAsync

keyboard_mode GrabModeAsync

owner_events True, if the client has selectddwnerGrabButton-
Mask on the gent window, otherwiseFalse

confine_to None

cursor None

The actve gab is automatically terminated when the logical state of the pointer has all buttons
released. Clientsan modify the acte gab by callingXUngrabPointer and XChangeAc-
tivePointerGrab .

10.5.2. Keyboard and Pointer Events

This section discusses the processing that occurs foeyhedrd eents KeyPressand KeyRe-
leaseand the pointenents ButtonPress, ButtonRelease and MotionNotify . For information
about the kyboard @ent-handling utilities, see chapter 11.

The X server reportEeyPressor KeyReleaseevents to clients wanting information abougyk
that logically change state. Note that thegts are generated for akkys, even those mapped
to modifier bits. The X server reporittonPress or ButtonReleaseevents to clients wanting
information about buttons that logically change state.

The X server reportdlotionNotify events to clients wanting information about when the pointer
logically moves. TheX server generates thisent wheneer the pointer is meed and the pointer
motion begins and ends in the windoThe granularity oMotionNotify events is not guaran-
teed, but a client that selects thigm type is guaranteed to reeeid least oneent when the
pointer maes and then rests.

The generation of the logical changes lags the physical changes if dewitprecessing is
frozen.

To receve KeyPress KeyRelease ButtonPress, and ButtonReleaseevents, setkeyPress-
Mask, KeyReleaseMask ButtonPressMask, and ButtonReleaseMaskbits in the gent-mask
attribute of the windw.

To receve MotionNotify events, set one or more of the followingeat masks bits in thevent-
mask attribute of the winado

. Button1MotionMask — Button5MotionMask

The client application recats MotionNotify events only when one or more of the speci-
fied buttons is pressed.

. ButtonMotionMask

The client application recses MotionNotify events only when at least one button is
pressed.

203

. PointerMotionMask

The client application recats MotionNotify events independent of the state of the pointer
buttons.

. PointerMotionHintMask

If PainterMotionHintMask is selected in combination with one or more of thevabo
masks, the X server is free to send only MationNotify event (with the is_hint member
of the XPointerMovedEvent structure set tdNotifyHint) to the client for the eent win-
dow, until either the ky a button state changes, the pointenvisathe event windaw, or the
client callsXQueryPointer or XGetMotionEvents. The server still may sendotion-
Notify events without is_hint set tdlotifyHint .

The source of thevent is the vievable windav that the pointer is in. The windoused by the X
server to report theseents depends on the windaposition in the windw hierarcty and
whether ag intervening winde prohibits the generation of theseeats. Startingvith the
source windw, the X server searches up the windaerarcty until it locates the first window
specified by a client as having an interest in theeete Ifone of the intervening windows has
its do-not-propagate-mask set to prohibit generation ofuire &/pe, the eents of those types
will be suppressed. Clients can modify the actual windsed for reporting by performing
active gabs and, in the case afyoard &ents, by using the focus windo

The structures for thesgant types contain:

204

typedef struct {
int type;
unsigned long serial;
Bool send_eent;
Display *display;
Window window;
Window root;
Window subwindaw;
Time time;
int x, y;
int x_root, y_root;
unsigned int state;
unsigned int btton;
Bool same_screen;
} X ButtonEvent;

/* ButtonPress or ButtonRelease */

* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display theeent was read from */
[* “ event” window it is reported relatie © */
/* root windaw that the gent occurred on */
/* child window */
/* milliseconds */
[* pointer X, y coordinates irvent window */
/* coordinates relaé o root */

[*d&y a button mask */
[* detail */

/* same screen flag */

typedef XButtonEvent XButtonPressedEvent;
typedef XButtonEvent XButtonReleasedEvent;

typedef struct {
int type;
unsigned long serial;
Bool send_eent;
Display *display;
Window window;
Window root;
Window subwindow;
Time time;
intx,y;
int x_root, y_root;
unsigned int state;
unsigned int kycode;
Bool same_screen;
} X KeyEvent;

typedef XkeyEvent XKeyPressedEvent;
typedef XkeyEvent XKeyReleasedEvent;

typedef struct {
int type;
unsigned long serial;
Bool send_eent;
Display *display;
Window window;
Window root;
Window subwindaw;
Time time;
intx,y;
int x_root, y_root;
unsigned int state;
char is_hint;

[* KeyPress or I€yRelease */

[* # of last request processed by server */
[* true if this came from a SendEvent request */
/* Display theeent was read from */

[* “ event” window it is reported relatie o */
* root windaw that the gent occurred on */
/* child window */
/* milliseconds */
[* pointer X, y coordinates irvent window */
/* coordinates relaé o root */
[*dy a button mask */
[*detail */
/* same screen flag */

/* MotionNotify */
* # of last request processed by server */
[* true if this came from a SendEvent request */
/* Display thewent was read from */
/* “ event” window reported relatie to */

/* root windaw that the gent occurred on */
* child windaw */

/* milliseconds */

[* pointer X, y coordinates irvent window */
/* coordinates relaé o root */

[*dy a button mask */
/* detail */

205

Bool same_screen; /* same screen flag */
} X MotionEvent;
typedef XMotionEvent XPointerMadEvent;

These structures ta the following common members: wingproot, subwindw, time, X, v,
X_root, y_root, state, and same_screen. The windember is set to the windoon which the
event was generated and is referred to as weatavindov. As long as the conditions previously
discussed are met, this is the windased by the X server to report thesaet. Theroot member
is set to the source windaswoot windav. The x_root and y_root members are set to the
pointers wordinates relate © the root windows aigin at the time of thevent.

The same_screen member is set to indicate whethevaéheveindaw is on the same screen as the
root windaw and can be eithefr ue or False. If True, the event and root windows are on the
same screen. [False, the eyent and root windows are not on the same screen.

If the source winda is an nferior of the gent windaw, the subwinde member of the structure

is set to the child of thevent window that is the source windoor the child of the gent window
that is an ancestor of the source wiwd@therwise, the X server sets the subwiwdnember to
None. The time member is set to the time when t@newas generated and is expressed in mil-
liseconds.

If the event windaw is on the same screen as the root windihne x and y members are set to the
coordinates relate o the event window’s aigin. Otherwisethese members are set to zero.

The state member is set to indicate the logical state of the pointer buttons and megifiestk
prior to the gent, which is the bitwise incluggé OR of one or more of the button or modifiezyk
masks:Button1Mask, Button2Mask, Button3Mask, Button4Mask, Button5Mask, Shift-
Mask, LockMask, ControlMask, Mod1Mask, Mod2Mask, Mod3Mask, Mod4Mask, and
Mod5Mask.

Each of these structures also has a member that indicates thef@tthe XKeyPressedEvent
and XKeyReleasedEventstructures, this member is calledeyode. ltis set to a number that
represents a physica¢k an the keyboard. Thekeycode is an arbitrary representation foy &ay
on the keyboard (see sections 12.7 and 16.1).

For the XButtonPressedEventand XButtonReleasedEventstructures, this member is called
button. Itrepresents the pointer button that changed state and canBettivel , Button?2,
Button3, Button4, or Button5 value. For the XPointerMovedEvent structure, this member is
called is_hint. It can be set totifyNormal or NotifyHint .

Some of the symbols mentioned in this sectiorelixed values, as follows:

Symbol Value
Button1MotionMask (1L<<8)
Button2MotionMask (1L<<9)
Button3MotionMask (1L<<10)
Button4MotionMask (1L<<11)
Button5MotionMask (1L<<12)
Button1lMask (1<<8)
Button2Mask (1<<9)
Button3Mask (1<<10)
Button4Mask (1<<11)

206

Symbol Value

Button5Mask (1<<12)
ShiftMask (1<<0)
LockMask (1<<1)
ControlMask (1<<2)
Mod1Mask (1<<3)
Mod2Mask (1<<4)
Mod3Mask (1<<5)
Mod4Mask (1<<6)
Mod5Mask (1<<7)
Buttonl 1
Button2 2
Button3 3
Button4 4
Button5 5

10.6. Window Entry/Exit Events

This section describes the processing that occurs for the witrdesing gents EnterNotify

and LeaveNotify . If a pointer motion or a windw hierarcly change causes the pointer to be in a
different windav than before, the X server repoEsterNotify or LeaveNotify events to clients
who have flected for thesevents. All EnterNotify andLeaveNotify events caused by a hierar-
chy change are generated aftey &erarcly event (UnmapNotify, MapNotify , ConfigureNo-

tify , GravityNotify , CirculateNotify) caused by that change; howeg the X protocol does not
constrain the ordering dnterNotify andLeaveNotify events with respect téocusOut, Visi-
bilityNotify , and Exposeevents.

This contrasts wittMotionNotify events, which are also generated when the pointeemiat
only when the pointer motion begins and ends in a single windm EnterNotify or LeaveNo-
tify event also can be generated when some client application@labPointer and XUn-
grabPointer.

To receve EnterNotify or LeaveNotify events, set theenterWindowMask or LeaveWindow-
Mask bits of the gent-mask attribute of the wingo

The structure for theserant types contains:

207

typedef struct {

int type;

unsigned long serial;
Bool send_eent;
Display *display;
Window window;
Window root;
Window subwindaw;
Time time;

int x,y;

int x_root, y_root;
int mode;

int detail;

Bool same_screen;

[* EnterNotify or LeaeNotify */
* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display theeent was read from */
[* “ event” window reported relatie o */

/* root windaw that the gent occurred on */
/* child window */

/* milliseconds */

[* pointer X, y coordinates irvent window */

[* coordinates relaé o root */

/* NotifyNormal, NotifyGrab, NotifyUngrab */

/*
* N otifyAncestor NotifyVirtual, Notifylnferior,
* N otifyNonlinear,NotifyNonlinearVirtual
*/
/* same screen flag */

Bool focus; /* boolean focus */
unsigned int state; [*dy a button mask */
} X CrossingEvent;

typedef XCrossingEvent XEnterWindowEvent;
typedef XCrossingEvent XLeaWindowEvent;

The windav member is set to the windoon which theEnterNotify or LeaveNotify event was
generated and is referred to as thenewindow. This is the windwr used by the X server to
report the eent, and is relatie o the root windav on which the gent occurred. The root mem-
ber is set to the root windoof the screen on which theent occurred.

For a LeaveNotify event, if a child of the gent window contains the initial position of the

pointet the subwindes component is set to that child. Otherwise, the X server sets the subwin-
dow member toNone. For anEnterNotify event, if a child of the eent window contains the

final pointer position, the subwindocomponent is set to that child bione.

The time member is set to the time when teewas generated and is expressed in millisec-
onds. Thex and y members are set to the coordinates of the pointer position wetttenéndow.
This position is aliays the pointes final position, not its initial position. If thevent window is

on the same screen as the root wimdoand y are the pointer coordinates relatb the event
window’s arigin. Otherwisex and y are set to zero. The x_root and y_root members are set to
the pointers coordinates relate the root windows arigin at the time of thewvent.

The same_screen member is set to indicate whethevahievandaow is on he same screen as the
root windav and can be eithefr ue or False. If Tr ue, the event and root windows are on the
same screen. False, the event and root windows are not on the same screen.

The focus member is set to indicate whether #eatenvindaw is the focus windar or an nferior
of the focus winda. The X server can set this member to eiffeune or False. If True, the
event window is the focus windwa or an nferior of the focus winds. If False, the event win-
dow is not the focus winde or an inferior of the focus winde.

The state member is set to indicate the state of the pointer buttons and megfjestkprior to
the event. TheX server can set this member to the bitwise inolI$IR of one or more of the
button or modifier ky masks:Button1Mask, Button2Mask, Button3Mask, Button4Mask,

208

Button5Mask, ShiftMask, LockMask, ControlMask , Mod1Mask, Mod2Mask,
Mod3Mask, Mod4Mask, Mod5Mask.

The mode member is set to indicate whether Weate are normalents, pseudo-motionvents
when a grab aatétes, or pseudo-motiorvents when a grab deaddtes. TheX server can set
this member tdNotifyNormal , NotifyGrab , or NotifyUngrab .

The detail member is set to indicate the notify detail and casokieyAncestor, NotifyVirtual ,
Notifylnferior , NotifyNonlinear , or NotifyNonlinearVirtual .

10.6.1. NormalEntry/Exit Events

EnterNotify andLeaveNotify events are generated when the pointevesdrom one windw to
another windw. Normal events are identified b)XEnterWindowEvent or XLeaveWindow-
Event structures whose mode member is setlodifyNormal .

. When the pointer mes from windav A to window B and A is an inferior of B, the X
server does the following:

- It generates deaveNotify event on windav A, with the detail member of the
XLeaveWindowEvent structure set tdNotifyAncestor.

- It generates &deaveNotify event on each windw between windw A and window
B, exclusve, with the detail member of eactlieaveWindowEvent structure set to
NotifyVirtual .

- It generates aknterNotify event on windav B, with the detail member of th§En-
terwindowEvent structure set tdNotifylnferior .

. When the pointer mas from windav A to window B and B is an inferior of A, the X
server does the following:

- It generates &eaveNotify event on windav A, with the detail member of the
XLeaveWindowEvent structure set tiNotifyInferior .

- It generates ainterNotify event on each winde between windar A and window
B, exclusve, with the detail member of eactEnterWindowEvent structure set to
NotifyVirtual .

- It generates aknterNotify event on windav B, with the detail member of th€En-
terwWindowEvent structure set tdNotifyAncestor.

. When the pointer mes from windav A to window B and windaw C is their least common
ancestarthe X server does the following:

- It generates deaveNotify event on windav A, with the detail member of the
XLeaveWindowEvent structure set tdNotifyNonlinear .

- It generates &deaveNotify event on each windw between windw A and window
C, exclusie, with the detail member of eactlLeaveWindowEvent structure set to
NotifyNonlinearVirtual .

- It generates aknterNotify event on each winde between windas C and window
B, exclusve, with the detail member of eactEnterWindowEvent structure set to
NotifyNonlinearVirtual .

- It generates aknterNotify event on windav B, with the detail member of th€En-
terwindowEvent structure set téNotifyNonlinear .

. When the pointer mas from windav A to window B on dfferent screens, the X server
does the following:

209

- It generates &eaveNotify event on windav A, with the detail member of the
XLeaveWindowEvent structure set tiNotifyNonlinear .

- If window A is not a root windwy, it generates &eaveNotify event on each window
above window A up to and including its root, with the detail member of each
XLeaveWindowEvent structure set tiNotifyNonlinearVirtual .

- If window B is not a root windw, it generates ainterNotify event on each win-
dow from windawv B’s root down to but not including win#oB, with the detail
member of eaclKEnterWindowEvent structure set tiNotifyNonlinearVirtual .

- It generates aknterNotify event on windav B, with the detail member of th§En-
terWindowEvent structure set tdNotifyNonlinear .

10.6.2. Graband Ungrab Entry/Exit Events

Pseudo-motion modEnterNotify andLeaveNotify events are generated when a pointer grab
activates or deactites. Ewents in which the pointer grab acties are identified b)XEnterWin-
dowEvent or XLeaveWindowEvent structures whose mode member is setlaifyGrab .
Events in which the pointer grab dewates are identified b)XEnterwWindowEvent or
XLeaveWindowEvent structures whose mode member is séfitdifyUngrab (seeXGrab-
Painter).

. When a pointer grab agtites after apinitial warp into a confine_to wingoand before

generating anactual ButtonPress event that actrates the grab, G is the grab_windéor
the grab, and P is the winddhe pointer is in, the X server does the following:

- It generate€nterNotify andLeaveNotify events (see section 10.6.1) with the mode
members of the&XEnterWindowEvent and XLeaveWindowEvent structures set to
NotifyGrab . These eents are generated as if the pointer were to suddenly warp
from its current position in P to some position in G. Hesvethe pointer does not
warp, and the X server uses the pointer position as both the initial and final positions
for the eents.

. When a pointer grab deadies after generating piactual ButtonReleaseevent that
deactvates the grab, G is the grab_windéor the grab, and P is the winddhe pointer is
in, the X server does the following:

- It generate€nterNotify andLeaveNotify events (see section 10.6.1) with the mode
members of the&XEnterWindowEvent and XLeaveWindowEvent structures set to
NotifyUngrab . These eents are generated as if the pointer were to suddenly warp
from some position in G to its current position inHoweve, the pointer does not
warp, and the X server uses the current pointer position as both the initial and final
positions for the eents.

10.7. InputFocus Events

This section describes the processing that occurs for the input fes leocusin and Focu-
sOut. The X server can repoFocusin or FocusOut events to clients wanting information
about when the input focus changes. Teybkard is alvays attached to some winddtypically,
the root windev or a bp-level window), which is called the focus windo The focus window
and the position of the pointer determine the wimtloat receies keyboard input. Clients may
need to knav when the input focus changes to control highlighting of areas on the screen.

To receie Focusin or FocusOut events, set thd-ocusChangeMaskbit in the eent-mask
attribute of the windw.

210

The structure for theserant types contains:

typedef struct {
int type; /* Focuslin or FocusOut */
unsigned long serial; I* # of last request processed by server */
Bool send_eent; [* true if this came from a SendEvent request */
Display *display; /* Display thewent was read from */
Window window; /* window of event */
int mode; /* NotifyNormal, NotifyGrab, NotifyUngrab */
int detail;
/*
* N otifyAncestor NotifyVirtual, Notifylnferior,
* N otifyNonlinear,NotifyNonlinearVirtual, NotifyPointer,
* N otifyPointerRoot, NotifyDetailNone
*/
} X FocusChangeEvent;

typedef XFocusChangeEvent XFocusIinEvent;
typedef XFocusChangeEvent XFocusOutEvent;

The windav member is set to the windoon which theFocusin or FocusOut event was gener-
ated. Thids the windev used by the X server to report theeiet. Themode member is set to
indicate whether the focusents are normal focusrents, focus eents while grabbed, focus
events when a grab agtites, or focus\ents when a grab deaadtes. TheX server can set the
mode member tdotifyNormal , NotifyWhileGrabbed , NotifyGrab , or NotifyUngrab .

All FocusOut events caused by a windounmap are generated after ddgmapNotify event;
however, the X protocol does not constrain the orderingroéusOut events with respect to gen-
eratedEnterNotify , LeaveNotify , VisibilityNotify , and Exposeevents.

Depending on thevent mode, the detail member is set to indicate the notify detail and can be
NotifyAncestor, NotifyVirtual , Notifylnferior , NotifyNonlinear, NotifyNonlinearVirtual ,
NotifyPointer, NotifyPointerRoot, or NotifyDetailNone.

10.7.1. NormalFocus Events and Focus Events While Grabbed

Normal focus eents are identified byXFocusIinEvent or XFocusOutEvent structures whose
mode member is set tdotifyNormal . Focus &ents while grabbed are identified ByFocusin-
Event or XFocusOutEvent structures whose mode member is sélotify\WhileGrabbed .

The X server processes normal focus and foeeste while grabbed according to the following:

. When the focus mas from windav A to window B, A is an inferior of B, and the pointer
is in windaw P, the X server does the following:

- It generates &ocusOut event on windav A, with the detail member of th&€Focu-
sOutEvent structure set tdNotifyAncestor.

- It generates &ocusOut event on each windwe between winda A and windav B,
exclusive, with the detail member of eactFocusOutEvent structure set tdNoti-
fyVirtual .

- It generates &ocusin event on windav B, with the detail member of théFocu-
sOutEvent structure set tdNotifyInferior .

211

If window P is an nferior of windav B but window P is rot window A or an inferior
or ancestor of windme A, it generates &ocusin event on each winde below win-
dow B, down to and including windav P, with the detail member of eactiFocuslin-
Event structure set tiNotifyPointer .

When the focus mes from windav A to window B, B is an nferior of A, and the pointer
is in windaw P, the X server does the following:

If window P is an nferior of windav A but P is not an inferior of windeB or an
ancestor of B, it generatedracusOut event on each wind® from windav P up
but not including windav A, with the detail member of eactFocusOutEvent
structure set tdNotifyPointer .

It generates &ocusOut event on windav A, with the detail member of thé€Focu-
sOutEvent structure set tNotifylnferior .

It generates &ocusin event on each windw between windw A and windav B,
exclusive, with the detail member of eactiFocusInEvent structure set tiNoti-
fyVirtual .

It generates &ocusin event on windav B, with the detail member of théFocusin-
Event structure set tdNotifyAncestor.

When the focus ma@s from windav A to window B, window C is their least common
ancestarand the pointer is in winde P, the X server does the following:

If window P is an iferior of windav A, it generates &ocusOut event on each win-
dow from windav P up to lut not including windw A, with the detail member of the
XFocusOutEvent structure set tdNotifyPointer .

It generates &ocusOut event on windav A, with the detail member of th€Focu-
sOutEvent structure set tdNotifyNonlinear .

It generates &ocusOut event on each wind® between winder A and windav C,
exclusive, with the detail member of eactFocusOutEvent structure set tdNoti-
fyNonlinearVirtual .

It generates &ocusin event on each windw between C and B, exclus, with the
detail member of eackFocusinEvent structure set tdNotifyNonlinearVirtual .

It generates &ocuslin event on windav B, with the detail member of th&Focusin-
Event structure set tdNotifyNonlinear .

If window P is an inferior of windav B, it generates &ocusin event on each win-
dow below window B down to and including windav P, with the detail member of
the XFocusInEvent structure set tdNotifyPointer .

When the focus mas from windav A to window B on dfferent screens and the pointer is
in window P, the X server does the following:

If window P is an nferior of windav A, it generates &ocusOut event on each win-
dow from windav P up to lut not including windw A, with the detail member of
eachXFocusOutEvent structure set tiNotifyPointer .

It generates &ocusOut event on windav A, with the detail member of th&€Focu-
sOutEvent structure set tdNotifyNonlinear .

If window A is not a root windw, it generates &ocusOut event on each window
above window A up to and including its root, with the detail member of eadfocu-
sOutEvent structure set tdNotifyNonlinearVirtual .

212

If window B is not a root windwy, it generates &ocusln event on each window
from windaw B’s root down to but not including windoB, with the detail member
of eachXFocusInEvent structure set tdNotifyNonlinearVirtual .

It generates &ocusin event on windav B, with the detail member of eactio-
cusinEvent structure set téNotifyNonlinear .

If window P is an inferior of windav B, it generates &ocusin event on each win-
dow below window B down to and including windav P, with the detail member of
eachXFocusInEvent structure set tdNotifyPointer .

When the focus mas from windav A to PaointerRoot (events sent to the windounder
the pointer) oMNone (discard), and the pointer is in windd, the X server does the fol-
lowing:

If window P is an inferior of windav A, it generates &ocusOut event on each win-
dow from windav P up to lut not including windw A, with the detail member of
eachXFocusOutEvent structure set tdNotifyPointer .

It generates &ocusOut event on windav A, with the detail member of th€Focu-
sOutEvent structure set tdNotifyNonlinear .

If window A is not a root windw, it generates &ocusOut event on each window
above window A up to and including its root, with the detail member of eadfocu-
sOutEvent structure set tiNotifyNonlinearVirtual .

It generates &ocusin event on the root windwe of all screens, with the detail mem-
ber of eachXFocusInEvent structure set tdNotifyPointerRoot (or NotifyDetail-
None).

If the nev focus isPainterRoot, it generates &ocusin event on each wind® from
window P's root down to and including wineoP, with the detail member of each
XFocusInEvent structure set tdNotifyPointer .

When the focus mas from PointerRoot (events sent to the windounder the pointer) or
Noneto window A, and the pointer is in winde P, the X server does the following:

If the old focus idainterRoot, it generates &ocusOut event on each window
from windawv P up to ad including windev P's root, with the detail member of each
XFocusOutEvent structure set tdNotifyPointer .

It generates &ocusOut event on all root windows, with the detail member of each
XFocusOutEvent structure set tdNotifyPointerRoot (or NotifyDetailNone).

If window A is not a root windw, it generates &ocusin event on each window
from windaov A’s root down to but not including wingoA, with the detail member
of eachXFocusInEvent structure set tdNotifyNonlinearVirtual .

It generates &ocusin event on windav A, with the detail member of th€Fo-
cusinEvent structure set téNotifyNonlinear .

If window P is an nferior of windav A, it generates &ocusin event on each win-
dow below window A down to and including windav P, with the detail member of
eachXFocusInEvent structure set tdNotifyPointer .

When the focus mas from PointerRoot (events sent to the windounder the pointer) to
None (or vice versa), and the pointer is in wimdB, the X server does the following:

If the old focus igainterRoot, it generates &ocusOut event on each window
from windawv P up to ad including windev P's root, with the detail member of each
XFocusOutEvent structure set tdNotifyPointer .

213

- It generates &ocusOut event on all root windows, with the detail member of each
XFocusOutEvent structure set to eithéMotifyPointerRoot or NotifyDetailNone.

- It generates &ocuslin event on all root windows, with the detail member of each
XFocusInEvent structure set tdNotifyDetailNone or NotifyPointerRoot.

- If the naev focus isPainterRoot, it generates &ocusin event on each wind® from
window P's root down to and including wineoP, with the detail member of each
XFocusInEvent structure set tdNotifyPointer .

10.7.2. focus Events Generated by Grabs

Focus &ents in which the &board grab actetes are identified bXFocusinEvent or XFocu-
sOutEvent structures whose mode member is sétitifyGrab . Focus &ents in which the
keyboard grab deaafites are identified bi)XFocusinEvent or XFocusOutEvent structures
whose mode member is setNotifyUngrab (seeXGrabKeyboard).

. When a leyboard grab actates before generating yaactual KeyPressevent that actiates
the grab, G is the grab_wingpand F is the current focus, the X server does the following:

- It generated~ocusin and FocusOut events, with the mode members of tK&o-
cusinEvent and XFocusOutEvent structures set tblotifyGrab . These eents are
generated as if the focus were to change from F to G.

. When a leyboard grab deadfites after generating pmactual KeyReleaseevent that deac-
tivates the grab, G is the grab_wind@nd F is the current focus, the X server does the fol-
lowing:

- It generated-ocusin and FocusOut events, with the mode members of tK&o-
cusinEvent and XFocusOutEvent structures set tblotifyUngrab . These eents
are generated as if the focus were to change from G to F.

10.8. Key Map State Notification Events

The X server can repokteymapNotify events to clients that want information about changes in
their keyboard state.

To receve KeymapNotify events, set th&KeymapStateMaskbit in the eent-mask attribute of
the windav. The X server generates thigeat immediately aftervery EnterNotify and
FocusIn event.

The structure for thisvent type contains:

/* generated on EnterWindoand Focusin when &ymapState selected */

typedef struct {
int type; /* KeymapNotify */
unsigned long serial; [* # of last request processed by server */
Bool send_eent; [* true if this came from a SendEvent request */
Display *display; /* Display thewent was read from */

Window window;
char ley_vector[32];
} X KeymapEvent;

The windav member is not used but is present to aid some toolkits. @heséctor member is
set to the bit vector of theeloard. Eaclbit set to 1 indicates that the correspondiag ik aur-
rently pressed. The vector is represented as 32 bytes. Byte N (from 0) contains the by for k

214

8N to 8N + 7 with the least significant bit in the byte represengydiX.

10.9. Exposue Events

The X protocol does not guarantee to presdre contents of winde regons when the windows

are obscured or reconfigured. Some implementations may prdisersontents of windows.

Other implementations are free to degtitte contents of windows wherpmosed. Xexpects

client applications to assume the responsibility for restoring the contents of an exposed window
region. (Anexposed windw regon describes a formerly obscured windahose region

becomes visible.) Therefore, the X server seixisoseevents describing the windvoand the

region of the winde that has beerxposed. Anawe dient application usually redraws the entire
window. A more sophisticated client application redraws only the exposed region.

10.9.1. Exposdvents

The X server can repoExposeevents to clients wanting information about when the contents of
window regons hae tkeen lost. The circumstances in which the X server gendeaimsse

events are not as definite as those for otivents. Havever, the X server neer generates
Exposeevents on windows whose class you specifiedhasitOnly . The X server can generate
Exposeevents when no valid contents aneidable for regions of a winde and either the

regions are visible, the regions arewdble and the server is (perhaps newly) maintaining back-
ing store on the windg or the windav is not viewable but the server is (perhaps newly) honoring
the windows backing-store attribute ohlways or WhenMapped. The regions decompose into
an (arbitrary) set of rectangles, andExposeevent is generated for each rectangkar any

given window, the X server guarantees to report contiguously all of the regions exposed by some
action that causeSxposeevents, such as raising a winglo

To receive Exposeevents, set theexposureMask bit in the eent-mask attribute of the windo
The structure for thisvent type contains:

typedef struct {
int type; [* Expose */
unsigned long serial; * # of last request processed by server */
Bool send_eent; [* true if this came from a SendEvent request */
Display *display; /* Display theent was read from */
Window window;
intx,y;
int width, height;
int count; [* if nonzero, at least this mamore */
} X ExposeEvent;

The windav member is set to the exposed (damaged) windthe x and y members are set to

the coordinates relae o the windows arigin and indicate the upper-left corner of the rectangle.
The width and height members are set to the size (extent) of the rectangle. The count member is
set to the number dixposeevents that are to foll@. If count is zero, no morExposeevents

follow for this windav. Howevae, if count is nonzero, at least that numbeEaposeevents (and
possibly more) follav for this windav. Smple applications that do not want to optimize redis-

play by distinguishing between subareas of its windan just ignore alExposeevents with

nonzero counts and perform full redisplays wengs with zero counts.

215

10.9.2. GraphicsExposand NoExpose Events

The X server can repo@raphicsExposeevents to clients wanting information about when a
destination region could not be computed during certain graphics regK€sigyArea or
XCopyPlane. The X server generates thigeat wheneer a destination region could not be
computed because of an obscured or out-of-bounds sogioa.rénaddition, the X server guar-
antees to report contiguously all of the regions exposed by some graphics request (for example,
copying an area of a drvable to a destination drable).

The X server generateNbExposeevent when&er a graphics request that might produce a
GraphicsExposeevent does not produce anin other words, the client is really asking for a
GraphicsExposeevent but instead recetés aNoExposeevant.

To receve GraphicsExposeor NoExposeevents, you must first set the graphics-exposure
attribute of the graphics contextToue. You also can set the graphics-expose attribute when
creating a graphics context usiigreateGC or by callingXSetGraphicsExposures

The structures for thesgant types contain:

typedef struct {
int type; [* GraphicsExpose */
unsigned long serial; * # of last request processed by server */
Bool send_eent; [* true if this came from a SendEvent request */
Display *display; /* Display theent was read from */
Drawable dravable;
intx,y;
int width, height;
int count; [* if nonzero, at least this mamore */
int major_code; /* core is CopyArea or CopyPlane */
int minor_code; /* not defined in the core */

} X GraphicsExposeEvent;

typedef struct {
int type; /* NoExpose */
unsigned long serial; [* # of last request processed by server */
Bool send_eent; [* true if this came from a SendEvent request */
Display *display; /* Display thewent was read from */
Drawable dravable;
int major_code; /* core is CopyArea or CopyPlane */
int minor_code; /* not defined in the core */

} X NoExposeEvent;

Both structures ha these common members: diable, major_code, and minor_code. The

dravable member is set to the erable of the destination region on which the graphics request

was to be grformed. Themajor_code member is set to the graphics request initiated by the client
and can be eithex_CopyArea or X_CopyPlane. Ifitis X_CopyArea, a all to XCopyArea

initiated the request. If it i¥X_CopyPlang, a all to XCopyPlane initiated the request. These
constants are defined ilxX&1/Xproto.h>. Theminor_code membelike the major_code mem-

ber, indicates which graphics request was initiated by the client. vwhe minor_code mem-

ber is not defined by the core X protocol and will be zero in these cases, although it may be used
by an extension.

216

The XGraphicsExposeEventstructure has these additional members; wigth, height, and
count. Thex and y members are set to the coordinates velddithe dravable’s arigin and indi-
cate the upper-left corner of the rectangle. The width and height members are set to the size
(extent) of the rectangle. The count member is set to the numraphicsExposeevents to
follow. If count is zero, no mor&raphicsExposeevents follow for this windav. Howeve, if

count is nonzero, at least that numbeGoaphicsExposeevents (and possibly more) are to fol-
low for this windav.

10.10. Window State Change Events
The following sections discuss:

. CirculateNotify events
. ConfigureNotify events
. CreateNotify events

. DestroyNotify events

. GravityNotify events
. MapNotify events

. MappingNotify events
. ReparentNotify events
. UnmapNotify events

. VisibilityNotify events

10.10.1. CiculateNotify Events

The X server can repo@irculateNotify events to clients wanting information about when a
window changes its position in the stack. The X server generates/énistgpe wheneer a win-
dow is actually restacked as a result of a client application caMi@irculateSubwindows,
XCirculateSubwindowsUp, or XCirculateSubwindowsDown.

To receve CirculateNotify events, set theStructureNotifyMask bit in the eent-mask attribute
of the windav or the SubstructureNotifyMask bit in the eent-mask attribute of the parent win-
dow (in which case, circulating grchild generates arvent).

The structure for thisvent type contains:

typedef struct {
int type; [* CirculateNotify */
unsigned long serial; * # of last request processed by server */
Bool send_eent; /* true if this came from a SendEvent request */
Display *display; /* Display thewent was read from */
Window event;
Window window;
int place; /* PlaceOnTop, PlaceOnBottom */

} X CirculateEvent;

The event member is set either to the restacked windoto its parent, depending on whether
StructureNotify or SubstructureNotify was slected. Thavindov member is set to the win-
dow that was restadd. Theplace member is set to the windsvgbsition after the restack
occurs and is eithd?PlaceOnTop or PlaceOnBottom. If it is PlaceOnTop, the windav is now

217

on top of all siblings. If it iPlaceOnBottom, the windav is now below al siblings.

10.10.2. ConfigueNotify Events

The X server can repo@onfigureNotify events to clients wanting information about actual
changes to a window'date, such as size, position, borded stacking orderThe X server gen-
erates this\ent type wheneer one of the following configure windorequests made by a client
application actually completes:

. A window's d9ze, position, bordeand/or stacking order is reconfigured by calligon-
figureWindow.

. The windows position in the stacking order is changed by callfigopwerWindow ,
XRaiseWindow, or XRestackWindows.

. A window is moved by alling XMoveWindow.
. A window's gze is changed by callingResizeWindow.
. A window’s 9ze and location is changed by callikfylo veResizeWindow

. A window is mapped and its position in the stacking order is changed by calling
XMapRaised.

. A window’s border width is changed by callingSetWindowBorderWidth .

To receve ConfigureNotify events, set theéStructureNotifyMask bit in the @ent-mask attribute
of the windav or the SubstructureNotifyMask bit in the &ent-mask attribute of the parent win-
dow (in which case, configuring grechild generates arvent).

The structure for thisvent type contains:

typedef struct {
int type; /* ConfigureNotify */
unsigned long serial; [* # of last request processed by server */
Bool send_eent; [* true if this came from a SendEvent request */
Display *display; /* Display thewent was read from */

Window event;

Window window;

int x,y;

int width, height;

int border_width;

Window above;

Bool override_redirect;
} X ConfigureEvent;

The e/ent member is set either to the reconfigured windoto its parent, depending on whether
StructureNotify or SubstructureNotify was slected. Thavindov member is set to the win-
dow whose size, position, bordend/or stacking order was changed.

The x and y members are set to the coordinatesveskatine parent windovg arigin and indicate
the position of the upper-left outside corner of the wimd®he width and height members are
set to the inside size of the windaot including the borderThe border_width member is set to
the width of the windove border in pixels.

The ab@e member is set to the sibling wind@nd is used for stacking operations. If the X
server sets this member one, the windav whose state was changed is on the bottom of the

218

stack with respect to sibling winds. Havever, if this member is set to a sibling windahe
window whose state was changed is placed on top of this sibling windo

The override_redirect member is set to theewide-redirect attribute of the windo Window
manager clients normally should ignore this wiwdbthe oserride_redirect member i$r ue.

10.10.3. CeateNotify Events

The X server can repo@reateNotify events to clients wanting information about creation of
windows. TheX server generates thisent wheneer a dient application creates a winady
calling XCreateWindow or XCreateSimpleWindow.

To receve CreateNotify events, set theSubstructureNotifyMask bit in the eent-mask attribute
of the windav. Creating ag children then generates avest.

The structure for thevent type contains:

typedef struct {
int type; /* CreateNotify */
unsigned long serial; [* # of last request processed by server */
Bool send_eent; [* true if this came from a SendEvent request */
Display *display; /* Display thewent was read from */
Window parent; [*parent of the windw */
Window window; /* window id of window created */
int x,y; /* window location */
int width, height; [* size of winde */
int border_width; /* border width */
Bool override_redirect; [*creation should beverridden */
} X CreateWindowEvent;

The parent member is set to the created winslgarent. Thavindow member specifies the cre-
ated windwv. The x and y members are set to the created wirtddmerdinates relate o the
parent windows crigin and indicate the position of the upper-left outside corner of the created
window. The width and height members are set to the inside size of the created \{noto
including the border) and arenglys nonzero. The border_width member is set to the width of
the created window’border, in pixels. Theoveride_redirect member is set to theewide-redi-
rect attribute of the winda Window manager clients normally should ignore this wiwdbthe
override_redirect member i$r ue.

10.10.4. DestoyNotify Events

The X server can repoRestroyNotify events to clients wanting information about which win-
dows are destged. TheX server generates thisent when&er a dient application destroys a
window by calling XDestroyWindow or XDestroySubwindows

The ordering of th®estroyNotify events is such that for grgiven window, DestroyNotify is
generated on all inferiors of the winddefore being generated on the windidself. TheX pro-
tocol does not constrain the ordering among siblings and across subhierarchies.

To receve DestroyNotify events, set theStructureNotifyMask bit in the &ent-mask attribute of
the windav or the SubstructureNotifyMask bit in the eent-mask attribute of the parent window
(in which case, destroying yachild generates arvent).

219

The structure for thisvent type contains:

typedef struct {
int type; [* DestroyNotify */
unsigned long serial; I* # of last request processed by server */
Bool send_eent; [* true if this came from a SendEvent request */
Display *display; /* Display thewent was read from */

Window event;
Window window;
} X DestroyWindowEvent;

The event member is set either to the destroyed wimdoto its parent, depending on whether
StructureNotify or SubstructureNotify was ®lected. Thevindow member is set to the win-
dow that is destroyed.

10.10.5. GraityNotify Events

The X server can repo@ravityNotify events to clients wanting information about when a win-
dow is moved because of a change in the size of its parent. The X server generatearthis e
wheneer a dient application actually mas a dild window as a esult of resizing its parent by
calling XConfigureWindow, XMoveResizeWindow, or XResizeWindow.

To receve GravityNotify events, set theStructureNotifyMask bit in the eent-mask attribute of
the windav or the SubstructureNotifyMask bit in the eent-mask attribute of the parent window
(in which case, anchild that is m@ed because its parent has been resized generatesrah e

The structure for thisvent type contains:

typedef struct {
int type; [* GravityNotify */
unsigned long serial; I* # of last request processed by server */
Bool send_eent; [* true if this came from a SendEvent request */
Display *display; /* Display theent was read from */
Window event;
Window window;
intx,y;
} X GravityEvent;

The event member is set either to the windthat was mweed or to its parent, depending on
whetherStructureNotify or SubstructureNotify was ®lected. Thevindow member is set to

the child windev that was meed. Thex and y members are set to the coordinates veldtithe

new parent windows aigin and indicate the position of the upper-left outside corner of the win-
dow.

10.10.6. MapNotifyEvents

The X server can repoiapNotify events to clients wanting information about which windows
are mapped. The X server generates teatdype wheneer a dient application changes the
window’s gate from unmapped to mapped by callikilapWindow , XMapRaised, XMap-
Subwindows, XReparentWindow, or as a esult of sae-set processing.

220

To receve MapNotify events, set theStructureNotifyMask bit in the eent-mask attribute of
the windav or the SubstructureNotifyMask bit in the @ent-mask attribute of the parent window
(in which case, mapping rrhild generates arvent).

The structure for thisvent type contains:

‘ typedef struct {

int type; /* MapNotify */

unsigned long serial; [* # of last request processed by server */
Bool send_eent; [* true if this came from a SendEvent request */
Display *display; /* Display theeent was read from */

Window event;

Window window;

Bool override_redirect; [*boolean, is verride set... */
} X MapEvent;

The event member is set either to the windthat was mapped or to its parent, depending on
whetherStructureNotify or SubstructureNotify was slected. Theavindow member is set to
the windav that was mapped. Thevaride_redirect member is set to theswide-redirect
attribute of the winde. Window manager clients normally should ignore this wiwdbthe
override-redirect attribute i3r ue, because thesevents usually are generated from pop-ups,
which override structure control.

10.10.7. MappingNotifyEvents

The X server reportMappingNotify events to all clients. There is no mechanism to express dis-
interest in thiswent. TheX server generates thig@ant type wheneer a dient application suc-
cessfully calls:

. XSetModifierMapping to indicate which K€yCodes are to be used as modifiers
. XChangeKeyboardMapping to change thedyboard mapping

. XSetPointerMapping to set the pointer mapping

The structure for thisvent type contains:

' typedef struct {

int type; /* MappingNotify */

unsigned long serial; I* # of last request processed by server */

Bool send_eent; [* true if this came from a SendEvent request */

Display *display; /* Display thewent was read from */

Window window; /* unused */

int request; /* one of MappingModifieMappingkeyboard,
MappingPointer */

int first_keycode; [*first keycode */

int count; * defines range of changefikst_keycode*/

} X MappingEvent;

-

The request member is set to indicate the kind of mapping change that occurred anilapn be
pingMadifier , MappingKeyboard, or MappingPointer. If itis MappingModifier , the

221

modifier mapping was changed. If itNdappingKeyboard, the keyboard mapping was changed.

If it is MappingPointer, the pointer button mapping was changed. The fiestdde and count
members are set only if the request member was 8éappingKeyboard. The number in

first_keycode represents the first number in the range of the altered mapping, and count represents
the number of &ycodes altered.

To update the client applicatianknowledge of the déyboard, you should cakRefreshKey-
boardMapping .

10.10.8. RepaentNotify Events

The X server can repoReparentNotify events to clients wanting information about changing a
window’s parent. TheX server generates thisent wheneer a dient application callsKRepar-
entWindow and the windw is actually reparented.

To recevve ReparentNotify events, set theStructureNotifyMask bit in the eent-mask attribute
of the windav or the SubstructureNotifyMask bit in the &ent-mask attribute of either the old or
the nev parent windav (in which case, reparentingyachild generates anvent).

The structure for thisvent type contains:

typedef struct {
int type; [* ReparentNotify */
unsigned long serial; [* # of last request processed by server */
Bool send_eent; [* true if this came from a SendEvent request */
Display *display; /* Display thewent was read from */

Window event;

Window window;

Window parent;

int x, y;

Bool override_redirect;
} X ReparentEvent;

The event member is set either to the reparented windoto the old or the n& parent, depend-
ing on whetheiStructureNotify or SubstructureNotify was ®lected. Thavindow member is
set to the winde that was reparented. The parent member is set to thparent windev. The
x and y members are set to the reparented winglawdrdinates relate o the nev parent win-
dow’s aigin and define the upper-left outer corner of the reparented windloe werride_redi-
rect member is set to thearide-redirect attribute of the windospecified by the winde mem-
ber Window manager clients normally should ignore this wiwdbthe override_redirect mem-
ber isTrue.

10.10.9. UnmapNotifyEvents

The X server can repodnmapNotify events to clients wanting information about which win-
dows are unmapped. The X server generates\hig &/pe wheneer a dient application
changes the window’'date from mapped to unmapped.

To receive UnmapNotify events, set theéStructureNotifyMask bit in the eent-mask attribute of
the windav or the SubstructureNotifyMask bit in the @ent-mask attribute of the parent window
(in which case, unmappingaohild window generates anvent).

The structure for thisvent type contains:

222

typedef struct {

int type; /* UnmapNotify */

unsigned long serial; * # of last request processed by server */
Bool send_eent; /* true if this came from a SendEvent request */
Display *display; /* Display thewent was read from */

Window event;

Window window;

Bool from_configure;
} X UnmapEvent;

The e/ent member is set either to the unmapped windoto its parent, depending on whether
StructureNotify or SubstructureNotify was slected. Thiss the windev used by the X server
to report the went. Thewindow member is set to the windothat was unmapped. The
from_configure member is set Toue if the event was generated as a result of a resizing of the
window’s parent when the windwitself had a win_gravity o/nmapGravity .

10.10.10. \sibilityNotify Events

The X server can repo¥fisibilityNotify events to clients wanting grchange in the visibility of
the specified windw. A region of a windw is visible if someone looking at the screen can actu-
ally see it. The X server generates thisne when&er the visibility changes state. Howe, this
evant is never generated for windows whose classgriputOnly .

All VisibilityNotify events caused by a hieragcbhhange are generated aftey darerarcty event
(UnmapNotify, MapNotify , ConfigureNotify, GravityNotify , CirculateNotify) caused by

that change. AnwisibilityNotify event on a gven window is generated before arfyxpose

events on that winde, but it is not required that aWisibilityNotify events on all windows be
generated before diixposeevents on all windavs. TheX protocol does not constrain the order-
ing of VisibilityNotify events with respect té-ocusOut, EnterNotify , and LeaveNotify events.

To receve VisibilityNotify events, set thé/isibilityChangeMask bit in the &ent-mask attribute
of the windav.

The structure for thisvent type contains:

typedef struct {
int type; * VisibilityNotify */
unsigned long serial; * # of last request processed by server */
Bool send_eent; [* true if this came from a SendEvent request */
Display *display; /* Display theent was read from */
Window window;
int state;

} X VisibilityEvent;

The windav member is set to the windowhose visibility state changes. The state member is set
to the state of the windog/isibility and can beVisibilityUnobscured, VisibilityPartiallyOb-

scured, or VisibilityFullyObscured . The X server ignores all of a windawaubwindows when
determining the visibility state of the wind@nd processeVisibilityNotify events according to

the following:

223

. When the winder changes state from partially obscured, fully obscured, or naglsle to
viewable and completely unobscured, the X server generategdhievédth the state mem-
ber of theXVisibilityEvent structure set t¥/isibilityUnobscured.

. When the winder changes state from wigble and completely unobscured or notwable
to viewable and partially obscured, the X server generatesvém with the state member
of the XVisibilityEvent structure set t&/isibilityPartiallyObscured .

. When the windw changes state from wi@ble and completely unobscured,wable and
partially obscured, or not wieble to vievable and fully obscured, the X server generates
the event with the state member of thé@/isibilityEvent structure set t&/isibilityFully-
Obscured.

10.11. Structure Control Events
This section discusses:

. CirculateRequestevents
. ConfigureRequestevents
. MapRequestevents

. ResizeRequestvents

10.11.1. CiculateRequest Events

The X server can repo@irculateRequestevents to clients wanting information about when
another client initiates a circulate windoequest on a specified windo The X server generates
this event type wheneer a dient initiates a circulate windorequest on a windoand a subwin-
dow actually needs to be restaatk Theclient initiates a circulate windorequest on the window
by calling XCirculateSubwindows, XCirculateSubwindowsUp, or XCirculateSubwindows-
Down.

To receve CirculateRequestevents, set theSubstructureRedirectMask in the e/ent-mask
attribute of the windw. Then, in the future, the circulate windoequest for the specified win-
dow is not executed, and thus, grsubwindows position in the stack is not changeor exam-
ple, suppose a client application call€irculateSubwindowsUp to raise a subwindwoto the
top of the stack. If you had select@dbstructureRedirectMask on the windav, the X server
reports to you LirculateRequestevent and does not raise the subwindo the top of the
stack.

The structure for thisvent type contains:

typedef struct {
int type; /* CirculateRequest */
unsigned long serial; [* # of last request processed by server */
Bool send_eent; [* true if this came from a SendEvent request */
Display *display; /* Display thewent was read from */

Window parent;

Window window;

int place; /* PlaceOnTop, PlaceOnBottom */
} X CirculateRequestEvent;

The parent member is set to the parent winddhe windav member is set to the subwingao
be restackd. Theplace member is set to what thewEosition in the stacking order should be

224

and is eitheiPlaceOnTopor PlaceOnBottom. If it is PlaceOnTop, the subwindw should be
on top of all siblings. If it isPlaceOnBottom, the subwindw should be belw all siblings.

10.11.2. ConfigueRequest Events

The X server can repo@onfigureRequestevents to clients wanting information about when a
different client initiates a configure windaequest on anchild of a specified winds. The con-
figure windav request attempts to reconfigure a windogze, position, bordeend stacking
order The X server generates thigeat wheneer a dfferent client initiates a configure window
request on a windw by calling XConfigureWindow, XLowerWindow , XRaiseWindow,
XMapRaised, XMoveResizeWindow, XMoveWindow, XResizeWindow, XRestackWin-
dows, or XSetWindowBorderWidth .

To receve ConfigureRequestevents, set theSubstructureRedirectMask bit in the eent-mask
attribute of the windw. ConfigureRequestevents are generated wherCanfigureWindow
protocol request is issued on a child wiwdwy another client.For example, suppose a client
application callsXLowerWindow to lower a winda. If you had selecte8ubstructureRedi-
rectMask on the parent winde and if the werride-redirect attribute of the windois set to
False, the X server reports @onfigureRequestevent to you and does not lower the specified
window.

The structure for thisvent type contains:

typedef struct {
int type; [* ConfigureRequest */
unsigned long serial; [* # of last request processed by server */
Bool send_eent; [* true if this came from a SendEvent request */
Display *display; /* Display thewent was read from */

Window parent;
Window window;
int x, y;
int width, height;
int border_width;
Window above;
int detalil; /* Above, Below, Toplf, Bottomlf, Opposite */
unsigned long value_mask;
} X ConfigureRequestEvent;

The parent member is set to the parent winddhe windav member is set to the windowvhose

size, position, border width, and/or stacking order is to be reconfigured. The value_mask member
indicates which components were specified inGoafigureWindow protocol request. The cor-
responding values are reported aggin the request. The remaining values are filled in from

the current geometry of the wingipexcept in the case of abe (sibling) and detail (stack-mode),

which are reported adone and Above, respectiely, if they are not gven in the request.

10.11.3. MapRequesEvents

The X server can repoMapRequesteveants to clients wanting information about a different
client’s desire to map windes. Awindow is considered mapped when a map windequest
completes. Th& server generates thisent wheneer a dfferent client initiates a map window
request on an unmapped winderhose werride_redirect member is set Ealse. Clients initiate
map windav requests by callingtMapWindow , XMapRaised, or XMapSubwindows.

225

To receive MapRequestevants, set theSubstructureRedirectMask bit in the eent-mask
attribute of the windw. This means another clieatttempts to map a child windoby calling
one of the map windwe request functions is intercepted, and you are sdfd@ERequestinstead.
For example, suppose a client application calapWindow to map a windwa. If you (usually
a window manager) had select&@lbstructureRedirectMask on the parent winde and if the
override-redirect attribute of the windois st to False, the X server reports lapRequest
event to you and does not map the specified wiwddhus, this gent gives your windav man-
ager client the ability to control the placement of subwindows.

The structure for thisvent type contains:

typedef struct {
int type; /* MapRequest */
unsigned long serial; [* # of last request processed by server */
Bool send_eent; [* true if this came from a SendEvent request */
Display *display; /* Display thewent was read from */

Window parent;
Window window;
} X MapRequestEvent;

The parent member is set to the parent wind®he windav member is set to the windoto be
mapped.

10.11.4. ResizeRequegvents

The X server can repoResizeRequesevents to clients wanting information about another
client’s atempts to change the size of a winddrhe X server generates thigeat wheneer
some other client attempts to change the size of the specifiedwirydmlling XConfig-
ureWindow, XResizeWindow, or XMoveResizeWindow.

To receve ResizeRequesevants, set thdResizeRedirectbit in the eent-mask attribute of the
window. Any atempts to change the size by other clients are then redirected.

The structure for thisvent type contains:

typedef struct {
int type; /* ResizeRequest */
unsigned long serial; [* # of last request processed by server */
Bool send_eent; [* true if this came from a SendEvent request */
Display *display; /* Display thewent was read from */

Window window;
int width, height;
} X ResizeRequestEvent;

The windav member is set to the windowhose size another client attempted to change. The
width and height members are set to the inside size of the wjiledduding the border.

10.12. ColormapState Change Events

The X server can repo@olormapNotify events to clients wanting information about when the
colormap changes and when a colormap is installed or uninstalled. The X server generates this

226

event type wheneer a dient application:

. Changes the colormap member of tk®&etWindowAttributes structure by calling
XChangeWindowAttributes, XFreeColormap, or XSetWindowColormap

. Installs or uninstalls the colormap by callikinstallColormap or XUninstallColormap

To receve ColormapNotify events, set theColormapChangeMaskbit in the eent-mask
attribute of the windw.

The structure for thisvent type contains:

typedef struct {
int type; /* ColormapNotify */
unsigned long serial; I* # of last request processed by server */
Bool send_eent; [* true if this came from a SendEvent request */
Display *display; /* Display thewent was read from */
Window window;
Colormap colormap; /* colormap or None */
Bool new;
int state; /* Colormaplnstalled, ColormapUninstalled */

} X ColormapEvent;

The windav member is set to the windowhose associated colormap is changed, installed, or
uninstalled. Br a colormap that is changed, installed, or uninstalled, the colormap member is set
to the colormap associated with the windd-or a colormap that is changed by a calkteree-
Colormap, the colormap member is setltone. The nev member is set to indicate whether the
colormap for the specified windovas changed or installed or uninstalled and caiirie or

False. Ifitis True, the colormap was changed. If itkslse, the colormap was installed or
uninstalled. Thestate member is\&bys set to indicate whether the colormap is installed or unin-
stalled and can b€olormaplnstalled or ColormapUninstalled.

10.13. ClientCommunication Events
This section discusses:

. ClientMessageevents
. PropertyNotify events
. SelectionClearevents
. SelectionNotify events

. SelectionRequesevents

10.13.1. ClientMessag&vents

The X server generatédientMessageevents only when a client calls the functiXsendE-
vent.

The structure for thisvent type contains:

227

typedef struct {

int type; [* ClientMessage */

unsigned long serial; * # of last request processed by server */
Bool send_eent; /* true if this came from a SendEvent request */
Display *display; /* Display thewent was read from */

Window window;

Atom message_type;

int format;

union {
char b[20];
short s[10];
long I[5];

}data;
} X ClientMessageEvent;

The message_type member is set to an atom that indicatébdndata should be interpreted by

the receiving client. The format member is set to 8, 16, or 32 and specifies whether the data
should be viewed as a list of bytes, shorts, or longs. The data member is a union that contains the
members b, s, and I. The b, s, and | members represent data of twenty 8-bit values, ten 16-bit val-
ues, and fig R-bit values. Rrticular message types might not make of all thesealues. The

X server places no interpretation on the values in the windessage_type, or data members.

10.13.2. PopertyNotify Events

The X server can repoRropertyNotify events to clients wanting information about property
changes for a specified winslo

To receve PropertyNotify events, set th&PropertyChangeMask bit in the eent-mask attribute
of the windav.

The structure for thisvent type contains:

typedef struct {
int type; [* PropertyNotify */
unsigned long serial; [* # of last request processed by server */
Bool send_eent; [* true if this came from a SendEvent request */
Display *display; /* Display thewent was read from */
Window window;
Atom atom;
Time time;
int state; * PropertyNewValue or PropertyDelete */
} X PropertyEvent;

The windav member is set to the windowhose associated property was changed. The atom
member is set to the propedy@om and indicates which property was changed or desired. The

time member is set to the server time when the property was changed. The state member is set to
indicate whether the property was changed toravadue or deleted and can PeopertyNew-

Value or PropertyDelete. The state member is setRwopertyNewValue when a property of

the windav is changed usingKChangeProperty or XRotateWindowProperties (even when

adding zero-length data usixChangeProperty) and when replacing all or part of a property

228

with identical data usingChangeProperty or XRotateWindowProperties. The state member
is set toPropertyDelete when a property of the windois deleted usingKDeleteProperty or, if
the delete argument & ue, XGetWindowProperty .

10.13.3. SelectionCleaEvents

The X server reportSelectionClearevents to the client losing ownership of a selection. The X
server generates thigent type when another client asserts ownership of the selection by calling
XSetSelectionOwner

The structure for thisvent type contains:

typedef struct {
int type; /* SelectionClear */
unsigned long serial; [* # of last request processed by server */
Bool send_eent; [* true if this came from a SendEvent request */
Display *display; /* Display thewent was read from */

Window window;
Atom selection;
Time time;

} X SelectionClearEvent;

The selection member is set to the selection atom. The time member is set to the last change time
recorded for the selection. The widanember is the winde that was specified by the current
owner (the owner losing the selection) inXSetSelectionOwnercall.

10.13.4. SelectionRequegvents

The X server reportSelectionRequesevents to the owner of a selection. The X server gener-
ates this eent wheneer a dient requests a selection e@rsion by callingXConvertSelection
for the owned selection.

The structure for thisvent type contains:

typedef struct {

int type; [* SelectionRequest */

unsigned long serial; * # of last request processed by server */
Bool send_eent; /* true if this came from a SendEvent request */
Display *display; /* Display thewent was read from */

Window owner;
Window requestor;
Atom selection;
Atom target;
Atom property;
Time time;

} X SelectionRequestEvent;

The owner member is set to the windihat was specified by the current owner in{&etSelec-
tionOwner call. Therequestor member is set to the wind@questing the selection. The selec-
tion member is set to the atom that names the seledt@rexample, PRIMAF is used to

229

indicate the primary selection. The target member is set to the atom that indicates the type the
selection is desired in. The property member can be a property naswoaar The time member
is set to the timestamp @urrentTime value from theConvertSelection request.

The owner should camert the selection based on the specified target type and sesléaion-
Notify event back to the requestoA complete specification for using selections isegiin the X
Consortium standarater-Client Communication Conventions Manual

10.13.5. SelectionNotif\fevents

This event is generated by the X server in response@omavertSelection protocol request when
there is no owner for the selection. When there is an qwrshould be generated by the owner
of the selection by usingSendEvent The owner of a selection should send thinéto a
requestor when a selection has beewvewed and stored as a property or when a selection con-
version could not be performed (which is indicated by setting the property memnidend).

If Noneis specified as the property in tG®nvertSelection protocol request, the owner should
choose a property name, store the result as that property on the requestet siddben send a
SelectionNotify giving that actual property name.

The structure for thisvent type contains:

typedef struct {
int type; [* SelectionNotify */
unsigned long serial; [* # of last request processed by server */
Bool send_eent; [* true if this came from a SendEvent request */
Display *display; /* Display thewent was read from */

Window requestor;
Atom selection;
Atom target;
Atom property; /* atom or None */
Time time;
} X SelectionEvent;

The requestor member is set to the wimdssociated with the requestor of the selection. The
selection member is set to the atom that indicates the seleEtioexample, PRIMAF is used

for the primary selection. The target member is set to the atom that indicatesviéréedaype.

For example, PIXMAP is used for a pixmap. The property member is set to the atom that indi-
cates which property the result was stored on. If thearsion failed, the property member is set
to None. The time member is set to the time thevapsion took place and can be a timestamp or
CurrentTime .

230

Chapter 11

Event Handling Functions

This chapter discusses the Xlib functions you can use to:
. Select @ents

. Handle the output buffer and theeat queue

. Select @ents from the eent queue

. Send and getvents

. Handle protocol errors

Note

Some toolkits use their owwent-handling functions and do not allgyou to
interchange thesevent-handling functions with those in XlitFor further
information, see the documentation supplied with the toolkit.

Most applications simply arevent loops: thg wait for an ent, decide what to do with it,
execute some amount of code that results in changes to the dsplaien wait for the next
evant.

11.1. Selectingevents

There are tw ways to select thevents you want reported to your client application. One way is
to set the eent_mask member of th€SetWindowAttributes structure when you caXCre-
ateWindow and XChangeWindowAttributes. Another way is to us&Selectinput.

XSelectinputdisplay, w, event_mask
Display *display,
Windoww;
long event_mask

display Specifies the connection to the X server.

w Specifies the winde whose gents you are interested in.
ewent_mask Specifies thewent mask.

The XSelectlnput function requests that the X server report trents associated with the speci-
fied event mask. Initially X will not report ai of these gents. Eents are reported reledi o a
window. If a window is not interested in a deviceent, it usually propagates to the closest ances-
tor that is interested, unless the do_not_propagate mask prohibits it.

Setting the gent-mask attribute of a winadooverrides ay previous call for the same winadout
not for other clients. Multiple clients can select for the saveats on the same windowith the
following restrictions:

. Multiple clients can selecvents on the same windobecause theinent masks are dis-
joint. Whenthe X server generates arest, it reports it to all interested clients.

231

. Only one client at a time can selé€girculateRequest, ConfigureRequest or MapRe-
quest events, which are associated with ther@ maskSubstructureRedirectMask.

. Only one client at a time can seledRasizeRequesevent, which is associated with the
evant maskResizeRedirectMask

. Only one client at a time can selecBattonPress event, which is associated with the
event maskButtonPressMask

The server reports theant to all interested clients.
XSelectlnput can generate BadWindow error.

11.2. Handlingthe Output Buffer

The output buffer is an area used by Xlib to store requests. The functions described in this sec-
tion flush the output buffer if the function would block or not returnvente Thatis, all requests
residing in the output buffer thatwerot yet been sent are transmitted to the X serveese
functions differ in the additional tasks thmight perform.

To flush the output buffeuse XFlush.

XFlush (display)
Display *display,

display Specifies the connection to the X server.

The XFlush function flushes the output buffeiMost client applications need not use this func-
tion because the output buffer is automatically flushed as needed by ¢&Heriding, XNex-

tEvent, and XWindowEvent. Events generated by the server may be enqueued into the library’s
evet queue.

To flush the output buffer and then wait until all request liaen processed, u&ync.

XSync (display, discard)
Display *display,
Bool discard;

display Specifies the connection to the X server.

discard Specifies a Boolean value that indicates wheXync discards all gents on
the event queue.

The XSync function flushes the output buffer and then waits until all requegtstean receied
and processed by the X servémy arors generated must be handled by the error haniber
each protocol error reced by Xlib, XSync calls the client applicatiog’aror handling routine
(see section 11.8.2). Arevents generated by the server are enqueued into the |beent
queue.

Finally, if you passedralse, XSync does not discard therents in the queue. If you passed
True, XSync discards all gents in the queue, including thoseeets that were on the queue
before XSync was alled. Clientapplications seldom need to c&lBync.

232

11.3. Ewent Queue Management
Xlib maintains anwent queue. Howeer, the operating system also may be buffering data in its
network connection that is not yet read into thenequeue.

To check the number ofvents in the gent queue, usXEventsQueued

int XEventsQueuediisplay, mode

Display *display,
int mode
display Specifies the connection to the X server.
mode Specifies the modeYou can pasQueuedAlready, QueuedAfterFlush, or

QueuedAfterReading

If mode isQueuedAlready, XEventsQueuedreturns the number offents already in thevent
gueue (and nexr performs a system call). If mode @ueuedAfterFlush, XEventsQueued
returns the number of/ents already in the queue if the number is nonzero. If there aneents e
in the queueXEventsQueuedflushes the output buffesttempts to read morevents out of the
applications connection, and returns the number read. If mod@usuedAfterReading,
XEventsQueuedreturns the number ofvents already in the queue if the number is nonzero. If
there are nowents in the queueXEventsQueuedattempts to read moreents out of the appli-
cation’s cnnection without flushing the output buffer and returns the number read.

XEventsQueuedalways returns immediately without 1/O if there aneats already in the queue.
XEventsQueuedwith modeQueuedAfterFlush is identical in behavior t&XPending.
XEventsQueuedwith modeQueuedAlready is identical to theXQLength function.

To return the number ofvents that are pending, ud@ending.

int XPending ¢lisplay)
Display *display;,

display Specifies the connection to the X server.

The XPending function returns the number ofants that hee keen recaied from the X server
but havenot been remeed from the gent queue. XPending is identical toXEventsQueued
with the modeQueuedAfterFlush specified.

11.4. Manipulating the Event Queue

Xlib provides functions that let you manipulate terd queue. This section discussesvho:
. Obtain events, in orderand remae them from the queue

. Peek at gents in the queue without removing them

. Obtain events that match thevent mask or the arbitrary predicate procedures that you pro-
vide

11.4.1. Retuning the Next Event
To get the nexteent and remwee it from the queue, us€NextEvent.

233

XNextEvent (display, event_returr)
Display *display;,
XEvent *event_return

display Specifies the connection to the X server.
ewvent_return Returns the nextvent in the queue.

The XNextEvent function copies the firstvent from the gent queue into the specifie¢Event
structure and then remes it from the queue. If thevent queue is empty{NextEvent flushes
the output buffer and blocks until ameat is receved.

To peek at thewent queue, usXPeekEvent

XPeekEent display, event_return
Display *display,
XEvent *event_return

display Specifies the connection to the X server.
ewvent_return Returns a copof the matchedwent’s associated structure.

The XPeekEventfunction returns the firstvent from the gent queue, but it does not reweothe
event from the queue. If the queue is empfPeekEventflushes the output buffer and blocks
until an eent is recefed. Itthen copies thevent into the client-supplieXEvent structure with-
out removing it from thevent queue.

11.4.2. Selectindevents Using a Predicate Procedure

Each of the functions discussed in this section requires you to pass a predicate procedure that
determines if anvent matches what youamt. Your predicate procedure must decide if thene

is useful without calling anXlib functions. If the predicate directly or indirectly causes the state
of the erent queue to change, the result is not defined. If Xlib has been initialized for threads, the
predicate is called with the display locked and the result of a call by the predicagexiian

function that locks the display is not defined unless the caller has first Kalbet#tDisplay .

The predicate procedure and its associated arguments are:

Bool (*predicatd (display, event arg)
Display *display,
XEvent *event;
XPointerarg;

display Specifies the connection to the X server.
ewent Specifies thexEvent structure.
arg Specifies the argument passed in fromXifEvent , XCheckIfEvent, or

XPeeklIfEvent function.

The predicate procedure is called once for eaehtén the queue until it finds a match. After
finding a match, the predicate procedure must réfuue. If it did not find a match, it must
return False.

234

To check the gent queue for a matchingent and, if found, remee the event from the queue,
useXIfEvent .

XIfEvent(display event_return predicate arg)
Display *display,
XEvent *event_return
Bool (*predicate ();
XPointerarg;

display Specifies the connection to the X server.
event_return Returns the matchedent’s associated structure.

predicate Specifies the procedure that is to be called to determine if theveakire the
gueue matches what you want.

arg Specifies the user-supplied argument that will be passed to the predicate proce-
dure.

The XIfEvent function completes only when the specified predicate procedure rdturagor
an event, which indicates arvent in the queue matcheXIfEvent flushes the output buffer if it
blocks waiting for additionalvents. XIfEvent removes the matching eent from the queue and
copies the structure into the client-supplivent structure.

To check the gent queue for a matchingent without blocking, us&XChecklIfEvent.

Bool XChecklIfEent (display, event_return predicate arg)
Display *display,
XEvent *event_return
Bool (*predicatd ();
XPointerarg;

display Specifies the connection to the X server.

ewvent_return Returns a copof the matchedwent’s associated structure.

predicate Specifies the procedure that is to be called to determine if theveakirethe
gueue matches what you want.

arg Specifies the user-supplied argument that will be passed to the predicate proce-
dure.

When the predicate procedure finds a max&heckIfEvent copies the matchedient into the
client-suppliedXEvent structure and returnsr ue. (This event is remaed from the queue.) If
the predicate procedure finds no mat€@hecklfEvent returnsFalse, and the output buffer will
have keen flushed. All earliervents stored in the queue are not discarded.

To check the eent queue for a matchingyent without removing thevent from the queue, use
XPeeklIfEvent.

235

XPeeklIfEvent (display, event_return predicate arg)
Display *display;
XEvent *event_return
Bool (*predicatd ();
XPointerarg;

display Specifies the connection to the X server.

ewvent_return Returns a copof the matchedwent’s associated structure.

predicate Specifies the procedure that is to be called to determine if theveakirethe
gueue matches what you want.

arg Specifies the user-supplied argument that will be passed to the predicate proce-

dure.

The XPeekIfEvent function returns only when the specified predicate procedure réfiunes
for an eent. Afterthe predicate procedure finds a madReekIfEvent copies the matched
evant into the client-supplieXEvent structure without removing theent from the queue.
XPeeklIfEvent flushes the output buffer if it blocks waiting for additionadrés.

11.4.3. Selectindevents Using a Windav or Event Mask

The functions discussed in this section let you selexite by windev or event types, allowing
you to processvents out of order.

To remove the next gent that matches both a wind@nd an &ent mask, useXWindowEvent.

XWindowEwent (display, w, event_maskewent_returr)
Display *display;,
Windoww;
long event_mask
XEvent *event_return
display Specifies the connection to the X server.
w Specifies the winde whose gents you are interested in.
event_mask Specifies thevent mask.

ewent_return Returns the matchedent’s associated structure.

The XWindowEvent function searches theent queue for anvent that matches both the speci-

fied windaw and event mask. When it finds a matcKWindowEvent removes that ezent from

the queue and copies it into the specifidtlvent structure. Thether @ents stored in the queue

are not discarded. If a matchingeat is not in the queuesWindowEvent flushes the output
buffer and blocks until one is rewed.

To remove the next gent that matches both a wind@nd an gent mask (if any), us&XCheck-
WindowEvent. This function is similar toXWindowEvent except that it neer blocks and it
returns aBool indicating if the gent was returned.

236

Bool XCheckWindowEent (display, w, event_maskewent_return
Display *display;
Windoww;
long event_mask
XEvent *event_return

display Specifies the connection to the X server.

w Specifies the winde whose gents you are interested in.
event_mask Specifies thewent mask.

ewent_return Returns the matchedent’s associated structure.

The XCheckWindowEvent function searches theent queue and then thgents available on
the server connection for the firsteat that matches the specified wimdand event mask. If it
finds a matchXCheckWindowEvent removes that event, copies it into the specifiedEvent
structure, and returnE ue. The other gents stored in the queue are not discarded. Ifvbete
you requested is novalable, XCheckWindowEvent returnsFalse, and the output buffer will
have been flushed.

To remove the next gent that matches arvent mask, useXMaskEvent.

XMaskEwent (display, event_maskewent_return
Display *display,
long event_mask
XEvent *event_return

display Specifies the connection to the X server.

ewent_mask Specifies thewent mask.
ewvent_return Returns the matchedent's associated structure.

The XMaskEvent function searches the@nt queue for thevents associated with the specified
mask. Wherit finds a matchXMaskEvent removes that ezent and copies it into the specified
XEvent structure. Thether &ents stored in the queue are not discarded. Ifvbete/ou
requested is not in the queugylaskEvent flushes the output buffer and blocks until one is
receved.

To return and remee the next gent that matches arvent mask (if any), usXCheck-
MaskEvent. This function is similar toMaskEvent except that it neer blocks and it returns a
Bool indicating if the gent was returned.

237

Bool XCheckMaskEent (display, event_maskewvent_return
Display *display;,
longevent_mask
XEvent *event_return

display Specifies the connection to the X server.
ewvent_mask Specifies thewent mask.
ewvent_return Returns the matchedent’s associated structure.

The XCheckMaskEvent function searches theent queue and then pevents aailable on the
server connection for the firstemt that matches the specified mask. If it finds a mat€heck-
MaskEvent removes that event, copies it into the specifiedEvent structure, and returnfr ue.
The other gents stored in the queue are not discarded. If¥leteyou requested is notalable,
XCheckMaskEvent returnsFalse, and the output buffer will hae keen flushed.

To return and remee the next gent in the queue that matches amerd type, useXCheckType-
dEvent.

Bool XCheckTypedEent (display, event_type event_returr)
Display *display,
int event_type
XEvent *event_return

display Specifies the connection to the X server.
ewent_type Specifies thevent type to be compared.

ewent_return Returns the matchedent’s associated structure.

The XCheckTypedEventfunction searches theent queue and then pevents available on the
server connection for the firstemt that matches the specified type. If it finds a max@heck-
TypedEvent removes that event, copies it into the specifiedEvent structure, and return ue.
The other gents in the queue are not discarded. If theneis not &ailable, XCheckTypedE-
vent returnsFalse, and the output buffer will hae been flushed.

To return and remee the next gent in the queue that matches aerd type and a winde, use
XCheckTypedWindowEvent.

238

Bool XCheckTypedWindowEent (display, w, event_type event_return
Display *display;,
Windoww;
int event_type
XEvent *event_return

display Specifies the connection to the X server.

w Specifies the winde.
ewent_type Specifies thevent type to be compared.

ewent_return Returns the matchedent’s associated structure.

The XCheckTypedWindowEvent function searches theent queue and then amevents avail-
able on the server connection for the firsne that matches the specified type and windd it
finds a matchXCheckTypedWindowEvent removes the event from the queue, copies it into the
specifiedXEvent structure, and returriirue. The other gents in the queue are not discarded.
If the event is not aailable, XCheckTypedWindowEvent returnsFalse, and the output buffer
will have keen flushed.

11.5. Puttingan Event Back into the Queue
To push an eent back into theeent queue, usXPutBackEvent.

XPutBackEent (display, event)
Display *display,
XEvent *ewvent;

display Specifies the connection to the X server.
ewent Specifies thewvent.

The XPutBackEvent function pushes arvent back onto the head of the dispagent queue
by copying the eent into the queue. This can be useful if you readvanteand then decide that
you would rather deal with it latefThere is no limit to the number of times in succession that
you can callXPutBackEvent.

11.6. Sendingevents to Other Applications

To nd an eent to a specified windg use XSendEvent This function is often used in selec-
tion processingFor example, the owner of a selection should X8endEventto send &Selec-
tionNotify event to a requestor when a selection has beevedmial and stored as a property.

239

Status XSendEant (display, w, propagate event_maskevent_senl
Display *display;,
Windoww;
Bool propagate
long event_mask
XEvent *event_send

display Specifies the connection to the X server.
w Specifies the winde the event is to be sent to, dPainterWindow , or InputFo-
cus.

propagate Specifies a Boolean value.
ewent_mask Specifies thewent mask.
event_ send Specifies thewvent that is to be sent.

The XSendEventfunction identifies the destination windpdetermines which clients should
receve the specifiedents, and ignores gractive gabs. Thidunction requires you to pass an
event mask. For a dscussion of the validvent mask names, see section 10.3. This function uses
the w argument to identify the destination windas ollows:

. If wis PainterwWindow , the destination winde is the windav that contains the pointer.

. If wis InputFocus and if the focus winde contains the pointethe destination windeis
the windav that contains the pointer; otherwise, the destination wiriddhe focus win-
dow.

To determine which clients should reeeithe specifiedents, XSendEventuses the propagate
argument as follows:

. If event_mask is the empty set, theest is sent to the client that created the destination
window. If that client no longer exists, ngent is sent.

. If propagate id-alse, the event is sent toeery client selecting on destinationyaof the
event types in thevent_mask argument.

. If propagate isTr ue and no clients hae ®lected on destination aof the e/ent types in

event-mask, the destination is replaced with the closest ancestor of destination for which
some client has selected a typeverg-mask and for which no intervening wirvdbas

that type in its do-not-propate-mask. Iho such winder exists or if the windw is an
ancestor of the focus windoand InputFocus was aiginally specified as the destination,
the event is not sent to anclients. Otherwisethe event is reported towery client selecting

on the final destination grof the types specified irvent_mask.

The erent in the XEvent structure must be one of the coverds or one of thevents defined by

an extension (or BadValue error results) so that the X server can correctly byte-swap the con-
tents as necessaryhe contents of thevent are otherwise unaltered and unchecked by the X
server except to force sendent to Tr ue in the forwardedent and to set the serial number in
the event correctly; therefore these fields and the display field are ignor@&$egdEvent

XSendEventreturns zero if the carrsion to wire protocol format failed and returns nonzero
otherwise.

XSendEventcan generat8adValue and BadWindow errors.

240

11.7. GettingPainter Motion History

Some X server implementations will maintain a more complete history of pointer motion than is
reported by eent notification. The pointer position at each pointer hardware interrupt may be
stored in a buffer for later retud. This buffer is called the motion history buffeFor example,

a few goplications, such as paint programs, want teelapecise history of where the pointer
traveled. Hawever, this historical information is highly excegsifor most applications.

To determine the approximate maximum number of elements in the motion, be&&Display-
MotionBufferSize.

unsigned long XDisplayMotionBtdrSize @isplay)
Display *display;,

display Specifies the connection to the X server.

The server may retain the recent history of the pointer motion and do so to a finer granularity than
is reported byMotionNotify events. TheXGetMotionEvents function makes this historyail-
able.

To get the motion history for a specified windand time, useXGetMotionEvents.

XTimeCoord *XGetMotionEents @display, w, start, stop, nevents_returh
Display *display,
Windoww;
Timestart, stop;
int *nevents_return

display Specifies the connection to the X server.

w Specifies the winde.

start

stop Specify the time interval in which theents are returned from the motion history

buffer. You can pass a timestamp@urrentTime .
nevents_returnReturns the number ofents from the motion history buffer.

The XGetMotionEvents function returns alleents in the motion history buffer that fall between

the specified start and stop times, inalasand that hae wordinates that lie within the specified
window (including its borders) at its present placement. If the server does not support motion his-
tory, if the start time is later than the stop time, or if the start time is in the futureemis are
returned;XGetMotionEvents returns NULL. If the stop time is in the future, it is eglent to
specifyingCurrentTime . The return type for this function is a structure defined as follows:

typedef struct {
Time time;
short x, y;
} X TimeCoord,;

The time member is set to the time, in milliseconds. The x and y members are set to the

241

coordinates of the pointer and are reported k&ati the origin of the specified windo To free
the data returned from this call, u&Eree.

XGetMotionEvents can generate BadWindow error.

11.8. HandlingProtocol Errors

Xlib provides functions that you can use to enable or disable synchronization and to use the
default error handlers.

11.8.1. Enablingor Disabling Synchronization

When debugging X applications, it often is veryarient to require Xlib to belva g/n-

chronously so that errors are reported ag tieeur The following function lets you disable or
enable synchronous behaviddote that graphics may occur 30 or more times more slowly when
synchronization is enabled. On POSIX-conformant systems, there is also a global vatidle
bug that, if set to nonzero before starting a program under a debugigérrce synchronous
library behavior.

After completing their work, all Xlib functions that generate protocol requests call what is known
as an after functionXSetAfterFunction sets which function is to be called.

int (*XSetAfterFunction@isplay, procedurg)()
Display *display;,
int (* procedurg ();

display Specifies the connection to the X server.
procedure Specifies the procedure to be called.

The specified procedure is called with only a display poit&etAfterFunction returns the
previous after function.

To enable or disable synchronization, us8ynchronize.

int (*XSynchronize @isplay, onoff))()
Display *display,
Bool onoff,

display Specifies the connection to the X server.

onoff Specifies a Boolean value that indicates whether to enable or disable synchro-
nization.

The XSynchronize function returns the previous after function. If dnafTrue, XSynchronize
turns on synchronous behavidf onoff is False, XSynchronize turns of synchronous behavior.

11.8.2. Usinghe Default Error Handlers

There are tw default error handlers in Xlib: one to handle typically fatal conditions (for example,
the connection to a display server dying because a machine crashed) and one to handle protocol
errors from the X serveiThese error handlers can be changed to user-supplied routines if you
prefer your own error handling and can be changed as often as golf Bither function is

passed a NULL pointeit will reinvoke the default handlerThe action of the default handlers is

to print an explanatory message and exit.

242

To =t the error handleuse XSetErrorHandler .

int (*XSetErrorHandlerkandler)) ()
int (* handler) (Display *, XErrorEvent *)

handler Specifies the prograsmaupplied error handler.

Xlib generally calls the progras&aupplied error handler whewer an eror is recered. Itis not

called onBadName errors fromOpenFont, LookupColor, or AllocNamedColor protocol

requests or oBadFont errors from aQueryFont protocol request. These errors generally are
reflected back to the program through the procedural @&terfBecausthis condition is not

assumed to be fatal, it is acceptable for your error handler to return; the returned value is ignored.
However, the error handler should not callyaiunctions (directly or indirectly) on the display that

will generate protocol requests or that will look for inpugres. Theprevious error handler is
returned.

The XErrorEvent structure contains:

typedef struct {
int type;
Display *display; /* Display thewent was read from */
unsigned long serial; /* serial number of failed request */
unsigned char error_code; * error code of failed request */
unsigned char request_code; /* Major op-code of failed request */
unsigned char minor_code; /* Minor op-code of failed request */
XID resourceid; [* resource id */

} X ErrorEvent;

The serial member is the number of requests, starting from one ysetiteonetwork connection
since it was opened. It is the number that was the validextRequestimmediately before the
failing call was made. The request_code member is a protocol request of the procedure that
failed, as defined inX11/Xproto.h>. Thefollowing error codes can be returned by the func-
tions described in this chapter:

Error Code Description

BadAccess A client attempts to grab aigbutton combination already
grabbed by another client.

A client attempts to free a colormap entry that it had not already
allocated or to free an entry in a colormap that was created with
all entries writable.

A client attempts to store into a read-only or unallocated col-
ormap entry.

A client attempts to modify the access control list from other
than the local (or otherwise authorized) host.

A client attempts to select ament type that another client has
already selected.

243

Error Code

Description

BadAlloc

BadAtom
BadColor

BadCursor
BadDrawable

BadFont
BadGC

BadIDChoice

Badlmplementation

BadLength

BadMatch

BadName
BadPixmap
BadRequest

The server fails to allocate the requested resource. Note that the
explicit listing of BadAlloc errors in requests only eers alloca-

tion errors at a very coarseréband is not intended to (nor can it

in practice hope to) &er al cases of a server running out of
allocation space in the middle of service. The semantics when a
server runs out of allocation space are left unspecified, but a
server may generateBadAlloc error on ag request for this

reason, and clients should be prepared toveaach errors and
handle or discard them.

A value for an atom argument does not name a defined atom.

A value for a colormap argument does not name a defined col-
ormap.

A value for a cursor argument does not name a defined cursor.
A value for a dravable argument does not name a defined win-
dow or pixmap.

A value for a font argument does not name a defined fgrnin(or
some cases;Context).

A value for aGContext argument does not name a defined
GContext.

The value chosen for a resource identifier either is not included
in the range assigned to the client or is already in use. Under
normal circumstances, this cannot occur and should be consid-
ered a server or Xlib error.

The server does not implement some aspect of the request. A
server that generates this error for a core request is deficient. As
such, this error is not listed foryof the requests, but clients
should be prepared to reeeisich errors and handle or discard
them.

The length of a request is shorter or longer than that required to
contain the gyjuments. Thiss an internal Xlib or server error.

The length of a request exceeds the maximum length accepted by
the server.

In a graphics request, the root and depth of the graphics context
do not match those of the drable.

An InputOnly window is used as a dveable.

Some argument or pair of arguments has the correct type and
range, but it fails to match in some other way required by the
request.

An InputOnly window lacks this attribute.
A font or color of the specified name does not exist.
A value for a pixmap argument does not name a defined pixmap.

The major or minor opcode does not specify a valid request.
This usually is an Xlib or server error.

244

Error Code Description

BadValue Some numeric value falls outside of the range of values accepted
by the request. Unless a specific range is specified for an argu-
ment, the full range defined by the argumetype is accepted.

Any argument defined as a set of altermegitypically can gener-
ate this error (due to the encoding).

BadWindow A value for a windw argument does not name a defined win-
dow.

Note

The BadAtom, BadColor, BadCursor, BadDrawable, BadFont, BadGC, Bad-
Pixmap, and BadWindow errors are also used when the argument type is extended
by a set of fixed alternats.

To dbtain textual descriptions of the specified error code X@@etErrorText .

XGetErroriext(display, code buffer_return length)
Display *display,
int code
char *buffer_return;
int length;
display Specifies the connection to the X server.
code Specifies the error code for which you want to obtain a description.
buffer_return Returns the error description.

length Specifies the size of the buffer.

The XGetErrorText function copies a null-terminated string describing the specified error code
into the specified bufferThe returned text is in the encoding of the current locale. It is recom-
mended that you use this function to obtain an error description because extensions to Xlib may
define their own error codes and error strings.

To dbtain error messages from the error databaseXGstErrorDatabaseText.

245

XGetErrorDatabaseskt (display, name messge default_string buffer_return length)
Display *display;
char *name *messge;
char *default_string
char *buffer_return;

int length;
display Specifies the connection to the X server.
name Specifies the name of the application.
messge Specifies the type of the error message.

default_string Specifies the default error message if none is found in the database.
buffer_return Returns the error description.
length Specifies the size of the buffer.

The XGetErrorDatabaseText function returns a null-terminated message (or the default mes-
sage) from the error message database. Xlib uses this function internally to look up its error mes-
sages. Théeext in the default_string argument is assumed to be in the encoding of the current
locale, and the text stored in the buffer_return argument is in the encoding of the current locale.

The name argument should generally be the name of your application. The message argument
should indicate which type of error message yantw Ifthe name and message are not in the

Host Portable Character Encoding, the result is implementation-dependent. Xlib uses three pre-
defined “application namedo report errors. In these names, uppercase and lowercase matter.

XProtoError Theprotocol error number is used as a string for the message argument.
XlibMessage Thesare the message strings that are used internally by the library.

XRequest Br a core protocol request, the major request protocol number is used for the
message gument. Br an extension request, the extension name vas by
InitExtension) followed by a period (.) and the minor request protocol number is
used for the messagegament. Ifno string is found in the error database, the
default_string is returned to the buffer argument.

To report an error to the user when the requested display does not exiDissyName.

char *XDisplayNamegtring)
char *string;

string Specifies the character string.

The XDisplayName function returns the name of the display tk@penDisplay would attempt
to use. If a NULL string is specifie&kDisplayName looks in the environment for the display
and returns the display name tix@penDisplay would attempt to use. This makes it easier to

report to the user precisely which display the program attempted to open when the initial connec-
tion attempt failed.

To handle fatal I/O errors, us€SetlOErrorHandler .

246

int (*XSetlOErrorHandlerfiandler)) ()
int (* handlen(Display *);

handler Specifies the prograsmaupplied error handler.

The XSetlOErrorHandler sets the fatal I/O error handleXlib calls the prograns’ aupplied

error handler if apsort of system call error occurs (for example, the connection to the server was
lost). Thisis assumed to be a fatal condition, and the called routine should not return. If the I/O
error handler does return, the client process exits.

Note that the previous error handler is returned.

247

Chapter 12

Input Device Functions

You can use the Xlib input device functions to:

. Grab the pointer and individual buttons on the pointer
. Grab the leyboard and individualéys on he keyboard

. Resume eent processing

. Move te pointer

. Set the input focus

. Manipulate the &yboard and pointer settings

. Manipulate the &yboard encoding

12.1. Pinter Grabbing

Xlib provides functions that you can use to control input from the pointéch usually is a

mouse. Usuallyas @on as kyboard and mousesents occurthe X server deliers them to the
appropriate client, which is determined by the windnd input focus. The X server provides
sufficient control ger event delvery to allov window managers to support mouse ahead and vari-
ous other styles of user intacke. Maw of these user interfaces depend on synchronousegeli

of events. Thedelivery of pointer and &yboard &ents can be controlled independently.

When mouse buttons oeyboard leys ae grabbed,\ents will be sent to the grabbing client
rather than the normal client who would/baeceved the event. If the keyboard or pointer is in
asynchronous mode, further mouse aeybkard @ents will continue to be processed. If the
keyboard or pointer is in synchronous mode, no furtkents are processed until the grabbing
client allows them (seXAllowEvents). Thekeyboard or pointer is considered frozen during
this intenal. Theevent that triggered the grab can also be replayed.

Note that the logical state of a device (as seen by client applications) may lag the physical state if
device @ent processing is frozen.

There are tw kinds of grabs: acte and passie. An active gab occurs when a single client

grabs the &yboard and/or pointer explicitly (se€GrabPointer and XGrabKeyboard). A pas-

sive gab occurs when clients grab a particuleydoard key a pointer button in a winde, and

the grab will actrate when the &y a button is actually pressed®assive gabs are corenient for
implementing reliable pop-up menuBor example, you can guarantee that the pop-up is mapped
before the up pointer buttorent occurs by grabbing a button requesting synchronous behavior.
The down gent will trigger the grab and freeze further processing of poimatte until you

have the chance to map the pop-up windoYou can then allw further &ent processing. The up
event will then be correctly processed relatio the pop-up windw.

For mary operations, there are functions thatgakime agument. TheX server includes a

timestamp in variousvents. Onespecial time, calle€CurrentTime , represents the current

server time. The X server maintains the time when the input focus was last changed, when the
keyboard was last grabbed, when the pointer was last grabbed, or when a selection was last
changed. Wur application may be shoreacting to anvent. You often need some way to spec-

ify that your request should not occur if another application has in the meanwhile taken control of

248

the keyboard, pointeror election. Byproviding the timestamp from theeant in the request, you
can arrange that the operation noetdkect if someone else has performed an operation in the
meanwhile.

A timestamp is a time value, expressed in milliseconds. It typically is the time since the last
server resetTimestamp values wrap around (after about 49.7 days). The,ggvearits current
time is represented by timestampaivays interprets timestamps from clients by treating half of
the timestamp space as being later in time tha@rie timestamp value, namé&iirrentTime , is
never generated by the serverhis value is reserved for use in requests to represent the current
server time.

For mary functions in this section, you pass pointezné mask bits. The valid pointevent
mask bits areButtonPressMask, ButtonReleaseMask EnterWindowMask , LeaveWindow-
Mask, PaointerMotionMask , PointerMotionHintMask , Button1MotionMask , But-
ton2MotionMask , Button3MotionMask , Button4MotionMask , Button5MotionMask , But-
tonMotionMask , and KeyMapStateMask. For other functions in this section, you pass
keymask bits. The validéymask bits areShiftMask, LockMask, ControlMask , Mod1Mask,
Mod2Mask, Mod3Mask, Mod4Mask, and Mod5Mask.

To gab the pointeruse XGrabPointer .

int XGrabPointerdisplay, grab_window owner_eventsevent_maskpointer_mode
keyboard_modeconfine_tq cursor, time)
Display *display;,
Windowgrab_window
Bool owner_events
unsigned inevent_mask
int pointer_modekeyboard_mode
Windowconfine_to
Cursorcursor;
Timetime;

display Specifies the connection to the X server.

grab_window Specifies the grab windo

owner_events Specifies a Boolean value that indicates whether the poirgetseare to be
reported as usual or reported with respect to the grab wiiidelected by the
event mask.

ewent_mask Specifies which pointewvents are reported to the client. The mask is the bitwise
inclusive OR of the valid pointereent mask bits.

pointer_mode Specifies further processing of pointges. You can pas§&rabModeSync or
GrabModeAsync.

keyboard_mode
Specifies further processing adyboard eents. You can pasSrabModeSync
or GrabModeAsync.

confine_to Specifies the winde to confine the pointer in oNone.
cursor Specifies the cursor that is to be displayed during the grhlome.
time Specifies the timeYou can pass either a timestamp@urrentTime .

The XGrabPointer function actvely grabs control of the pointer and retu@sabSuccessf the

249

grab was successful. Further pointeerdgs are reported only to the grabbing clieKtGrab-
Pointer overides ay active pinter grab by this client. If ownervents isFalse, dl generated
pointer eents are reported with respect to grab_windnd are reported only if selected by
event_mask. lfowner_eents isTrue and if a generated pointereat would normally be
reported to this client, it is reported as usual. Otherwise véite i reported with respect to the
grab_windaev and is reported only if selected byeat_mask. Br either value of ownervents,
unreported eents are discarded.

If the pointer_mode iSSrabModeAsync, pointer ezent processing continues as usual. If the
pointer is currently frozen by this client, the processingrehts for the pointer is resumed. If
the pointer_mode iSrabModeSync, the state of the pointeais ®en by client applications,
appears to freeze, and the X server generates no further poantey @ntil the grabbing client
calls XAllowEvents or until the pointer grab is released. Actual pointer changes are not lost
while the pointer is frozen; there simply queued in the server for later processing.

If the keyboard_mode i€srabModeAsync, keyboard @ent processing is unaffected by acti-
vation of the grab If the keyboard_mode i$srabModeSync, the state of thedyboard, as seen
by client applications, appears to freeze, and the X server generates no &ythoerd eents

until the grabbing client callXAllowEvents or until the pointer grab is released. Actual
keyboard changes are not lost while the pointer is frozeg;ateesimply queued in the server for
later processing.

If a cursor is specified, it is displayedjeedless of what windwe the pointer is in. IfNoneis
specified, the normal cursor for that wimdis displayed when the pointer is in grab_wimdor
one of its subwindows; otherwise, the cursor for grab_windalsplayed.

If a confine_to windw is gpecified, the pointer is restricted to stay contained in that windbe
confine_to windw need hae o relationship to the grab_windo If the pointer is not initially in
the confine_to winda, it is warped automatically to the closest edge just before the grabiesti
and enter/leze erents are generated as usual. If the confine_to wiridaubsequently reconfig-
ured, the pointer is warped automaticadly recessanyto keep it contained in the windo

The time argument allows you teaid certain circumstances that come up if applications tak
long time to respond or if there are long network delays. Consider a situation wheregou ha
two gpplications, both of which normally grab the pointer when clicked on. If both applications
specify the timestamp from thgeat, the second application may veakp faster and successfully
grab the pointer before the first application. The first application then will get an indication that
the other application grabbed the pointer before its request was processed.

XGrabPointer generate€nterNotify andLeaveNotify events.

Either if grab_windw or confine_to windw is not viewable or if the confine_to windwlies
completely outside the boundaries of the root wmd¥GrabPointer fails and returnsGrab-
NotViewable. If the pointer is actely grabbed by some other client, it fails and returns
AlreadyGrabbed. If the pointer is frozen by an aatigab of another client, it fails and returns
GrabFrozen. If the specified time is earlier than the last-pointer-grab time or later than the cur-
rent X server time, it fails and retur@rabinvalidTime . Otherwise, the last-pointer-grab time

is set to the specified tim€QrrentTime is replaced by the current X server time).

XGrabPointer can generatBadCursor, BadValue, and BadWindow errors.

To ungrab the pointeuse XUngrabPointer .

250

XUngrabPointerdisplay, time)
Display *display;,
Timetime;

display Specifies the connection to the X server.
time Specifies the timeYou can pass either a timestamp@urrentTime .

The XUngrabPointer function releases the pointer ang/ aeued eents if this client has

actively grabbed the pointer frolGrabPointer , XGrabButton , or from a normal button press.
XUngrabPointer does not release the pointer if the specified time is earlier than the last-pointer-
grab time or is later than the current X server time. It also gendtatesNotify andLeaveNo-

tify events. TheX server performs atngrabPointer request automatically if thevent window

or confine_to windw for an actre pointer grab becomes not weble or if windaw reconfigura-

tion causes the confine_to winddo lie completely outside the boundaries of the root windo

To change an acté pointer grab, us&XChangeActivePointerGrab .

XChangeActWePointerGrabdisplay, event_maskcursor, time)
Display *display,
unsigned inevent_mask
Cursorcursor,
Timetime;

display Specifies the connection to the X server.

event_mask Specifies which pointewents are reported to the client. The mask is the bitwise
inclusive OR of the valid pointereent mask bits.

cursor Specifies the cursor that is to be displayedione.
time Specifies the timeYou can pass either a timestamp@urrentTime .

The XChangeActivePainterGrab function changes the specified dynamic parameters if the
pointer is actiely grabbed by the client and if the specified time is no earlier than the last-pointer-
grab time and no later than the current X server time. This function has no effect on tree passi
parameters of akGrabButton . The interpretation ofvent_mask and cursor is the same as
described inXGrabPointer .

XChangeActivePainterGrab can generat8adCursor and BadValue errors.

To grab a pointer button, us€GrabButton .

251

XGrabButton ¢lisplay, button, modifiers grab_window owner_eventsevent_mask
pointer_modekeyboard _modeconfine_tg cursor)
Display *display,
unsigned inbutton;
unsigned intmodifiers
Windowgrab_window
Bool owner_events
unsigned inevent_mask
int pointer_modekeyboard_mode
Windowconfine_to

Cursorcursor,
display Specifies the connection to the X server.
button Specifies the pointer button that is to be grabbefingButton .
modifiers Specifies the set oelgmasks orAnyModifier . The mask is the bitwise inclus

OR of the valid kymask bits.
grab_window Specifies the grab windo

owner_events Specifies a Boolean value that indicates whether the poirdetseare to be
reported as usual or reported with respect to the grab wiridelected by the
event mask.

event_mask Specifies which pointewents are reported to the client. The mask is the bitwise
inclusive OR of the valid pointereent mask bits.

pointer_mode Specifies further processing of pointger@s. You can pas§&rabModeSync or
GrabModeAsync.

keyboard_mode
Specifies further processing adyjboard @ents. You can pasS&rabModeSync
or GrabModeAsync.

confine_to Specifies the winde to confine the pointer in oNone.
cursor Specifies the cursor that is to be displayedlione.

The XGrabButton function establishes a pasgsigah In the future, the pointer is aedy

grabbed (as foKGrabPointer), the last-pointer-grab time is set to the time at which the button
was pressed (as transmitted in tBattonPress evant), and theButtonPressevent is reported if

all of the following conditions are true:

. The pointer is not grabbed, and the specified button is logically pressed when the specified
modifier keys ae logically down, and no other buttons or modifieykae logically down.

. The grab_windea contains the pointer.
. The confine_to windw (if any) is vievable.

. A passie gab on the same butto®ik combination does not exist onyaancestor of
grab_windaev.

The interpretation of the remaining arguments is aXfrabPointer. The actve gab is termi-
nated automatically when the logical state of the pointer has all buttons released (independent of
the state of the logical modifieeys).

Note that the logical state of a device (as seen by client applications) may lag the physical state if
device @ent processing is frozen.

252

This request werrides all previous grabs by the same client on the same bayomfbinations

on the same winda A modifiers ofAnyMaodifier is equvalent to issuing the grab request for

all possible madifier combinations (including the combination of no modifiers). It is not required
that all modifiers specified i@ aurrently assigned &Codes. Abutton of AnyButton is equiv-

alent to issuing the request for all possihiétdns. Otherwisat is not required that the specified
button currently be assigned to a physical button.

If some other client has already issuedX@rabButton with the same buttonéy mmbination
on the same windg a BadAccesserror results. When usingnyModifier or AnyButton , the
request fails completelgnd aBadAccesserror results (no grabs are established) if there is a
conflicting grab for aycombination. XGrabButton has no effect on an aeti gab.

XGrabButton can generatB8adCursor, BadValue, and BadWindow errors.
To ungrab a pointer button, uséJngrabButton .

XUngrabButton ¢lisplay, button, modifiers grab_window
Display *display,
unsigned inbutton;
unsigned intmodifiers
Windowgrab_window

display Specifies the connection to the X server.
button Specifies the pointer button that is to be releasekhgButton .
modifiers Specifies the set oelgmasks orAnyModifier . The mask is the bitwise inclus

OR of the valid kymask bits.
grab_window Specifies the grab windo

The XUngrabButton function releases the passitutton/key combination on the specified win-

dow if it was grabbed by this clienA modifiers of AnyModifier is equvalent to issuing the

ungrab request for all possible modifier combinations, including the combination of no modifiers.
A button of AnyButton is equvalent to issuing the request for all possible buttoXklngrab-

Button has no effect on an aeti gab.

XUngrabButton can generatBadValue and BadWindow errors.

12.2. Keyboard Grabbing
Xlib provides functions that you can use to grab or ungrabeyteolard as well as alloevents.

For mary functions in this section, you passyfask bits. The validéymask bits areShift-
Mask, LockMask, ControlMask , Mod1Mask, Mod2Mask, Mod3Mask, Mod4Mask, and
Mod5Mask.

To grab the leyboard, useXGrabKeyboard .

253

int XGrabKeyboard @isplay, grab_window owner_eventspointer_modekeyboard_modetime)
Display *display;
Windowgrab_window
Bool owner_events
int pointer_modekeyboard_mode
Timetime;

display Specifies the connection to the X server.
grab_window Specifies the grab windo

owner_events Specifies a Boolean value that indicates whetherdiigolard @ents are to be
reported as usual.

pointer_mode Specifies further processing of pointeers. You can pas§&SrabModeSync or
GrabModeAsync.

keyboard_mode
Specifies further processing adyboard @ents. You can pas&SrabModeSync
or GrabModeAsync.

time Specifies the timeYou can pass either a timestamp@urrentTime .

The XGrabKeyboard function actvely grabs control of thedyboard and generaté®cusin

and FocusOut events. Furthekey events are reported only to the grabbing clieKGrabKey-
board overrides an active keyboard grab by this client. If ownewents isFalse, dl generated
key events are reported with respect to grab_wimddf owner_eents isTr ue and if a generated
key event would normally be reported to this client, it is reported normally; otherwisey¢heis
reported with respect to the grab_windoBoth KeyPressand KeyReleaseevents are aliays
reported, independent ofyaavent selection made by the client.

If the keyboard_mode argument GrabModeAsync, keyboard @ent processing continues as
usual. Ifthe lkeyboard is currently frozen by this client, then processinggbdard @ents is
resumed. Ithe keyboard_mode gument isGrabModeSync, the state of thedgpoard (as seen
by client applications) appears to freeze, and the X server generates no eyioard @ents
until the grabbing client issues a releasi¥@jlowEvents call or until the lkeyboard grab is
released. Actudteyboard changes are not lost while tlgtloard is frozen; theare simply
gqueued in the server for later processing.

If pointer_mode isGrabModeAsync, pointer ezent processing is unaffected by aetion of the

grah If pointer_mode i<srabModeSync, the state of the pointer (as seen by client applications)
appears to freeze, and the X server generates no further poaner entil the grabbing client
issues a releasingAllowEvents call or until the keyboard grab is released. Actual pointer
changes are not lost while the pointer is frozeny the simply queued in the server for later pro-
cessing.

If the keyboard is actiely grabbed by some other clietGrabKeyboard fails and returns
AlreadyGrabbed. If grab_windav is not viewable, it fails and return&rabNotViewable. If

the keyboard is frozen by an aeé gab of another client, it fails and retur@sabFrozen. If the
specified time is earlier than the lagtykioard-grab time or later than the current X server time, it
fails and returnsGrabinvalidTime . Otherwise, the lastdyboard-grab time is set to the speci-
fied time CurrentTime is replaced by the current X server time).

XGrabKeyboard can generatBadValue and BadWindow errors.

To ungrab the kyboard, useXUngrabKeyboard .

254

XUngrabKeyboard @isplay, time)
Display *display;
Timetime;

display Specifies the connection to the X server.
time Specifies the timeYou can pass either a timestamp@urrentTime .

The XUngrabKeyboard function releases thesiboard and anqueued eents if this client has
it actively grabbed from eitheKGrabKeyboard or XGrabKey. XUngrabKeyboard does not
release thedyboard and anqueued eents if the specified time is earlier than the lasghoard-
grab time or is later than the current X server time. It also gendfatesin and FocusOut
events. TheX server automatically performs davngrabKeyboard request if the went window
for an actve keyboard grab becomes not wiable.

To passvely grab a single &y d the keyboard, useXGrabKey .

XGrabKey (display, keycode modifiers grab_window owner_eventspointer_mode

keyboard_modg

Display *display,

int keycode

unsigned intmodifiers

Windowgrab_window

Bool owner_events

int pointer_modekeyboard _mode

display Specifies the connection to the X server.
keycode Specifies the KyCode orAnyKey.
modifiers Specifies the set oelgmasks orAnyModifier . The mask is the bitwise inclusi

OR of the valid kymask bits.
grab_window Specifies the grab windo

owner_events Specifies a Boolean value that indicates whetherdiiedard @ents are to be
reported as usual.

pointer_mode Specifies further processing of pointges. You can pas§&rabModeSync or
GrabModeAsync.

keyboard_mode
Specifies further processing adyboard eents. You can pas§SrabModeSync
or GrabModeAsync.

The XGrabKey function establishes a paasigab on the &yboard. Inthe future, the &yboard
is actvely grabbed (as foKGrabKeyboard), the last-kyboard-grab time is set to the time at
which the ley was pressed (as transmitted in KeyPressevent), and thekeyPressevent is
reported if all of the following conditions are true:

. The keyboard is not grabbed and the specifieg gvhich can itself be a modifieel) is
logically pressed when the specified modifieykare logically down, and no other modi-
fier keys ae logically down.

. Either the grab_windw is an ancestor of (or is) the focus windpor the grab_windw is a
descendant of the focus wind@nd contains the pointer.

255

. A passie gab on the sameely cmbination does not exist onyaancestor of grab_win-
dow.

The interpretation of the remaining arguments is aXferabKeyboard. The actve gab is ter-
minated automatically when the logical state of tbgbkard has the specifiegkreleased (inde-
pendent of the logical state of the modifieyd).

Note that the logical state of a device (as seen by client applications) may lag the physical state if
device @ent processing is frozen.

A modifiers argument oAnyMaodifier is equivalent to issuing the request for all possible modi-
fier combinations (including the combination of no modifiers). It is not required that all modifiers
specified hee arrently assigned &Codes. Akeycode argument ofAnyKey is equvalent to

issuing the request for all possibleyCodes. Otherwisahe specified &ycode must be in the

range specified by minekcode and max dycode in the connection setup, oBadValue error
results.

If some other client has issueX&rabKey with the same é&y combination on the same win-

dow, aBadAccesserror results. When usingnyModifier or AnyKey, the request fails com-
pletely, and aBadAccesserror results (no grabs are established) if there is a conflicting grab for
ary combination.

XGrabKey can generat8adAccess BadValue, and BadWindow errors.
To ungrab a ky, use XUngrabKey .

XUngrabkey (display, keycode modifiers grab_window
Display *display;,
int keycode
unsigned intmodifiers
Windowgrab_window

display Specifies the connection to the X server.
keycode Specifies the ByCode orAnyKey .
modifiers Specifies the set oelgmasks orAnyModifier . The mask is the bitwise inclus

OR of the valid kymask bits.
grab_window Specifies the grab windo

The XUngrabKey function releases theelk mwmbination on the specified wingaf it w as

grabbed by this client. It has no effect on anvecrah A modifiers ofAnyModifier is equiv-

alent to issuing the request for all possible modifier combinations (including the combination of
no maodifiers).A keycode argument oAnyKey is equvaent to issuing the request for all possi-
ble key wdes.

XUngrabKey can generat8adValue and BadwWindow errors.

12.3. Resumingevent Processing

The previous sections discussed grab mechanisms with which processiagt®bg the server
can be temporarily suspended. This section describes the mechanism for resentipgoeess-
ing.

To dlow further &ents to be processed when the device has been frozekAlleeEvents.

256

XAllowEv ents @isplay, event_modetime)
Display *display;,
int event_mode
Timetime;

display Specifies the connection to the X server.

event_mode Specifies thevent mode. You can passAsyncPointer, SyncPointer, AsyncK-
eyboard, SyncKeyboard, ReplayPointer, ReplayKeyboard, AsyncBoth, or
SyncBoth.

time Specifies the timeYou can pass either a timestamp@urrentTime .

The XAllowEvents function releases some queueergs if the client has caused a device to

freeze. Ithas no effect if the specified time is earlier than the last-grab time of the most recent
active gab for the client or if the specified time is later than the current X server time. Depending
on the gent_mode argument, the following occurs:

AsyncPointer If the pointer is frozen by the client, pointeest processing continues
as usual. If the pointer is frozen twice by the client on behalf oktp-
arate grabsAsyncPointer thaws for both. AsyncPointer has no effect
if the pointer is not frozen by the client, but the pointer need not be
grabbed by the client.

SyncPointer If the pointer is frozen and aedly grabbed by the client, pointevent
processing continues as usual until the BaxtonPressor ButtonRe-
leaseevent is reported to the client. At this time, the pointer again
appears to freeze. Howaee, if the reported\ent causes the pointer grab
to be released, the pointer does not fre€ggncPointer has no effect if
the pointer is not frozen by the client or if the pointer is not grabbed by
the client.

ReplayPointer If the pointer is actiely grabbed by the client and is frozen as the result
of an event having been sent to the client (either from theva@in of an
XGrabButton or from a previous<AllowEvents with modeSync-
Painter but not from anXGrabPointer), the pointer grab is released
and that eent is completely reprocessed. This time, hesvethe func-
tion ignores ay passve gabs at or abee toward the root of) the
grab_windav of the grab just released. The request has no effect if the
pointer is not grabbed by the client or if the pointer is not frozen as the
result of an eent.

AsyncKeyboard If the keyboard is frozen by the cliente¥board @ent processing contin-
ues as usual. If theelgboard is frozen twice by the client on behalf of
two separate grabs\syncKeyboard thaws for both. AsyncKeyboard
has no effect if thedyboard is not frozen by the client, but tretoard
need not be grabbed by the client.

257

SyncKeyboard

ReplayKeyboard

SyncBoth

AsyncBoth

If the keyboard is frozen and aedy grabbed by the clientgyboard
event processing continues as usual until the KextPressor KeyRe-
leaseevent is reported to the client. At this time, theykoard again
appears to freeze. Howa, if the reported\ent causes thedyboard
grab to be released, theyboard does not freezeSyncKeyboard has
no effect if the kyboard is not frozen by the client or if theykoard is
not grabbed by the client.

If the keyboard is actiely grabbed by the client and is frozen as the
result of an eent having been sent to the client (either from the acti-
vation of anXGrabKey or from a previous<AllowEvents with mode
SyncKeyboard but not from anXGrabKeyboard), the leyboard grab

is released and thatemt is completely reprocessed. This time, hesve
the function ignores grpassve gabs at or abee toward the root of)

the grab_windwa of the grab just released. The request has no effect if
the leyboard is not grabbed by the client or if thetkoard is not frozen
as the result of arnvent.

If both pointer and &yboard are frozen by the clienyjeat processing
for both devices continues as usual until the mB2xtonPress, Button-
Release KeyPress or KeyReleaseevent is reported to the client for a
grabbed device (buttorvent for the pointerkey event for the leyboard),
at which time the devices again appear to freeze. Hawiéthe
reported gent causes the grab to be released, then the devices do not
freeze (but if the other device is still grabbed, then a subsequesnter
it will still cause both devices to freeze$yncBoth has no effect unless
both pointer anddyboard are frozen by the client. If the pointer or
keyboard is frozen twice by the client on behalf obtsgparate grabs,
SyncBoth thaws for both (but a subsequent freezeSgncBoth will

only freeze each device once).

If the pointer and thedyboard are frozen by the clienyjeat processing
for both devices continues as usual. If a device is frozen twice by the
client on behalf of tw separate grabgAsyncBoth thaws for both.
AsyncBoth has no effect unless both pointer aegidoard are frozen by
the client.

AsyncPointer, SyncPointer, and ReplayPointer have o efect on the processing oéyoard
events. AsyncKeyboard, SyncKeyboard, and ReplayKeyboard have ro efect on the process-
ing of pointer gents. Itis possible for both a pointer grab andegtioard grab (by the same or
different clients) to be aet smultaneously If a device is frozen on behalf of either grab, no
event processing is performed for thevde. Itis possible for a single device to be frozen

because of both grabs. In this case, the freeze must be released on behalf of both grabs before

events can again be processed. If a device is frozen twice by a single client, then Alsingle

Eventsreleases both.

XAllowEvents can generate BadValue error.

12.4. Moving the Pointer

Although maement of the pointer normally should be left to the control of the endsosee-
times it is necessary to m@the pointer to a e position under program control.

258

To move he pointer to an arbitrary point in a windause XWarpPointer .

XWarpPointerdisplay, src_w, dest_w src_x, src_y, src_width src_height dest_x
dest_y
Display *display,
Windowsrc_w, dest_w
int src_x src_y,
unsigned insrc_width src_height
int dest_x dest y

display Specifies the connection to the X server.

Src_w Specifies the source windmr None.

dest_w Specifies the destination winder None.

src_x

src_y

src_width

src_height Specify a rectangle in the source windo

dest x

dest y Specify the x and y coordinates within the destination windo

If dest_w isNone, XWarpPointer moves the pointer by the offsets (dest_x, dest_y) redait

the current position of the pointelf dest_w is a winda, XWarpPointer moves the pointer to

the offsets (dest_x, dest_y) relaio the origin of dest wHowevae, if src_w is a windw, the
maove aly takes place if the windosrc_w contains the pointer and if the specified rectangle of
src_w contains the pointer.

The src_x and src_y coordinates are redath the origin of src_w If src_height is zero, it is
replaced with the current height of src_w minus srdf grc_width is zero, it is replaced with the
current width of src_w minus src_x.

There is seldom grreason for calling this function. The pointer should normally be left to the
user If you do use this function, howa, it generateswents just as if the user had instanta-
neously meed the pointer from one position to anoth&fote that you cannot us@/\arp-

Painter to move the pointer outside the confine_to wimdof an ative minter grab An atempt

to do so will only mwee the pointer as far as the closest edge of the confine_towindo

XWarpPointer can generate BadWindow error.

12.5. Contolling Input Focus

Xlib provides functions that you can use to set and get the input focus. The input focus is a
shared resource, and cooperation among clients is required for correct interaction. i8ee the
Client Communication Conventions Mantiad input focus polig.

To =t the input focus, us¥SetinputFocus.

259

XSetlnputfecus @isplay, focus revert_to, time)

Display *display;
Windowfocus
int revert_to;
Timetime;,
display Specifies the connection to the X server.
focus Specifies the windg, PointerRoot, or None.
revert_to Specifies where the input focuseds to if the windav becomes not vigable.
You can pasRevertToParent, RevertToPointerRoot, or RevertToNone.
time Specifies the timeYou can pass either a timestamp@urrentTime .

The XSetInputFocus function changes the input focus and the last-focus-change time. It has no
effect if the specified time is earlier than the current last-focus-change time or is later than the
current X server time. Otherwise, the last-focus-change time is set to the specifieduime (
rentTime is replaced by the current X server tim&SetinputFocus causes the X server to
generatg-ocusin and FocusOut events.

Depending on the focus argument, the following occurs:

. If focus isNone, dl keyboard &ents are discarded until améocus winde is st, and the
revert_to argument is ignored.
. If focus is a windw, it becomes thedyboards focus windw. If a generated &yboard

event would normally be reported to this windor one of its inferiors, thewent is
reported as usual. Otherwise, tiverd is reported relate o the focus windw.

. If focus isPainterRoot, the focus windw is dynamically taken to be the root windmf
whatever screen the pointer is on at eaahyioard @ent. Inthis case, the vert_to argu-
ment is ignored.

The specified focus winelomust be vigvable at the timeXSetinputFocusis called, or éBad-
Match error results. If the focus windolater becomes not wi@ble, the X servena@luates the
revert_to argument to determine themntocus windav as bllows:

. If revet_to is RevertToParent, the focus reerts to the parent (or the closestwable
ancestor), and the waeveat_to value is taken to bRevertToNone.
. If revat_to is RevertToPointerRoot or RevertToNone, the focus reerts to PointerRoot

or None, respectiely. When the focus kerts, the X server generatéscusin and Focu-
sOut events, but the last-focus-change time is not affected.
XSetlnputFocus can generatBadMatch, BadValue, and BadWindow errors.

To dbtain the current input focus, u¥&etinputFocus.

260

XGetlnputfocus @isplay, focus_returnrevert_to_return
Display *display;,
Windaw *focus_return
int *revert_to_return

display Specifies the connection to the X server.

focus_return Returns the focus winelg PointerRoot, or None.

revert_to_return
Returns the current focus staieyertToParent, RevertToPointerRoot , or
RevertToNone).

The XGetlnputFocus function returns the focus windoand the current focus state.

12.6. Manipulatingthe Keyboard and Pointer Settings

Xlib provides functions that you can use to change #@ybdard control, obtain a list of the auto-
repeat kys, turn leyboard auto-repeat on or off, ring the bell, set or obtain the pointer button or
keyboard mapping, and obtain a bit vector for thgboard.

This section discusses the user-preference options of &gldiék, pointer behavigrand so on.
The default values for mgrof these options are server dependent. Not all implementations will
actually be able to control all of these parameters.

The XChangeKeyboardControl function changes control of &¥board and operates on a
XKeyboardControl structure:

261

/* Mask bits for Change&yboardControl */

#define KBKeyClickPercent (1L<<0)
#define KBBellPercent (1L<<1)
#define KBBellPitch (1L<<2)
#define KBBellDuration (1L<<3)
#define KBLed (1L<<4)
#define KBLedMode (1L<<b)
#define KBKey (1L<<6)
#define KBAutoRepeatMode (1L<<7)
[* Values */

typedef struct {

int key_click_percent;
int bell_percent;
int bell_pitch;
int bell_duration;
int led;
int led_mode; /* LedModeOn, LedModefC/
int key,
int auto_repeat_mode,; I* AutoRepeatModeOff, AutoRepeatModeOn,
AutoRepeatModeDefault */
} X KeyboardControl,

The key_click_percent member sets the volume fey Hicks between 0 (off) and 100 (loud)
inclusive, if possible. Asetting of —1 restores the deft. Othemegaive values generate Bad-
Value error.

The bell_percent sets the base volume for the bell between 0 (off) and 100 (loudyeniflusi
possible. Asetting of —1 restores the deft. Othemeagative values generate BadValue error.
The bell_pitch member sets the pitch (specified in Hz) of the bell, if posé#ilgetting of —1
restores the datilt. Othemegative values generate BadValue error. The bell_duration mem-
ber sets the duration of the bell specified in milliseconds, if possietting of —1 restores the
default. Othemegative values generate BadValue error.

If both the led_mode and led members are specified, the state of that LED is changed, if possible.
The led_mode member can be setéaModeOn or LedModeOff. If only led_mode is speci-

fied, the state of all LEDs are changed, if possible. At most 32 LEDs numbered from one are sup-
ported. Nostandard interpretation of LEDs is defined. If led is specified without led_mode, a
BadMatch error results.

If both the auto_repeat_mode areykmembers are specified, the auto_repeat_mode ofelyas k
changed (according tAutoRepeatModeOn AutoRepeatModeOff, or AutoRepeatModeDe-

fault), if possible. If only auto_repeat_mode is specified, the global auto_repeat_mode for the
entire leyboard is changed, if possible, and does not affect thegyexekings. Ifa key is peci-

fied without an auto_repeat_modeBadMatch error results. Eachdy has an individual mode

of whether or not it should auto-repeat and a default setting for the mode. In addition, there is a
global mode of whether auto-repeat should be enabled or not and a default setting for that mode.
When global mode isutoRepeatModeOn keys should obg their individual auto-repeat

modes. Wheglobal mode isAutoRepeatModeOff, no keys should auto-repeat. An auto-

repeating ky ¢enerates alternatingeyPressand KeyReleaseevents. Whera key is uised as a

262

modifier, it is desirable for the &y rot to auto-repeat, gerdless of its auto-repeat setting.

A bell generator connected with the console but not directly @yt@okrd is treated as if it were
part of the keyboard. Theorder in which controls are verified and altered is setependent. If
an error is generated, a subset of the controls magytiean altered.

XChangelkeyboardControldisplay, value_maskvalueg
Display *display,
unsigned longalue_mask
XKeyboardControl Yalues

display Specifies the connection to the X server.

value_mask Specifies which controls to change. This mask is the bitwise inel@t of the
valid control mask bits.

values Specifies one value for each bit set to 1 in the mask.

The XChangeKeyboardControl function controls thedyboard characteristics defined by the
XKeyboardControl structure. Theralue_mask argument specifies which values are to be
changed.

XChangeKeyboardControl can generat@adMatch and BadValue errors.
To dbtain the current control values for theykoard, useXGetKeyboardControl .

XGetKeyboardControldisplay, values_returi
Display *display,
XKeyboardState values_return

display Specifies the connection to the X server.
values_return Returns the currenteyboard controls in the specifie¢éKeyboardState struc-
ture.

The XGetKeyboardControl function returns the current control values for teghbloard to the
XKeyboardState structure.

typedef struct {
int key_click_percent;
int bell_percent;
unsigned int bell_pitch, bell_duration;
unsigned long led_mask;
int global_auto_repeat;
char auto_repeats[32];
} X KeyboardState;

For the LEDs, the least significant bit of led_mask corresponds to LED one, and each bit setto 1
in led_mask indicates an LED that is lit. The global_auto_repeat member can bAs®Re-
peatModeOn or AutoRepeatModeOff. The auto_repeats member is a bit veckach bit set

263

to 1 indicates that auto-repeat is enabled for the corresporelingtke vector is represented as
32 bytes. Byte N (from 0) contains the bits fey& 8N to 8N + 7 vith the least significant bit in
the byte representingeig 8\.

To turn on leyboard auto-repeat, uséAutoRepeatOn.

XAutoRepeatOndisplay)
Display *display;

display Specifies the connection to the X server.
The XAutoRepeatOn function turns on auto-repeat for theykoard on the specified display.

To turn of keyboard auto-repeat, uséAutoRepeatOff.

XAutoRepeatOf(display)
Display *display;

display Specifies the connection to the X server.
The XAutoRepeatOff function turns dfauto-repeat for thedyboard on the specified display.
To ring the bell, useXBell.

XBell(display, percen)

Display *display,
int percent
display Specifies the connection to the X server.
percent Specifies the volume for the bell, which can range from —100 to 100 welusi

The XBell function rings the bell on theeboard on the specified displafpossible. Thepeci-
fied volume is relatie o the base volume for theelboard. Ifthe value for the percent argument
is not in the range —100 to 100 inckesia BadValue error results. The volume at which the bell
rings when the percent argument is najaige is:

base - [(base * percent) / 100] + percent
The volume at which the bell rings when the percent argumengéveis:
base + [(base * percent) / 100]
To change the base volume of the bell, ¥&&hangeKeyboardControl.
XBell can generate BadValue error.

To dbtain a bit vector that describes the state of #ybdard, useXQueryKeymap.

264

XQueryKeymap display, keys_return
Display *display;,
charkeys_returi32];

display Specifies the connection to the X server.

keys_return Returns an array of bytes that identifies whiefskare pressed den. Eachbit
represents oneel d the keyboard.

The XQueryKeymap function returns a bit vector for the logical state of tegbkard, where
each bit set to 1 indicates that the correspondaygskaurrently pressed aen. Thevector is rep-
resented as 32 bytes. Byte N (from 0) contains the bitsef@r®N to 8N + 7 vith the least sig-
nificant bit in the byte representingyka\.

Note that the logical state of a device (as seen by client applications) may lag the physical state if
device @ent processing is frozen.

To st the mapping of the pointer buttons, &X&etPointerMapping.

int XSetPointerMappingdisplay, map nmap
Display *display,
unsigned chamag(];
int nmag

display Specifies the connection to the X server.
map Specifies the mapping list.
nmap Specifies the number of items in the mapping list.

The XSetPointerMapping function sets the mapping of the point#tit succeeds, the X server
generates MappingNotify event, andXSetPointerMapping returnsMappingSuccess Ele-

ment map[i] defines the logical button number for the physical button i+1. The length of the list
must be the same &&etPointerMapping would return, or 8BadValue error results.A zero

element disables a button, and elements are not restricted in value by the number of physical but-
tons. Havever, no two dements can he the same nonzero value, oBadValue error results.

If any of the buttons to be altered are logically in the down s¥&etPointerMapping returns
MappingBusy, and the mapping is not changed.

XSetPointerMapping can generate BadValue error.

To get the pointer mapping, uséGetPointerMapping .

265

int XGetPointerMappingdisplay, map_returnnmap
Display *display;,
unsigned chamap_returd];
int nmap

display Specifies the connection to the X server.
map_return Returns the mapping list.
nmap Specifies the number of items in the mapping list.

The XGetPointerMapping function returns the current mapping of the pointginter buttons

are numbered starting from on¥GetPointerMapping returns the number of physical buttons
actually on the pointerThe nominal mapping for a pointer is map[i]=i+1. The nmap argument
specifies the length of the array where the pointer mapping is returned, and only the first nmap
elements are returned in map_return.

To control the pointes interactve feel, useXChangePointerControl.

XChangePointerControtifsplay, do_acce] do_thresholgdaccel_numeratar
accel_denominatqrthreshold
Display *display,
Bool do_acce] do_threshold
int accel_numerataraccel _denominatqr

int threshold
display Specifies the connection to the X server.
do_accel Specifies a Boolean value that controls whether the values for the accel _numera-

tor or accel_denominator are used.

do_threshold Specifies a Boolean value that controls whether the value for the threshold is
used.

accel_numerator
Specifies the numerator for the acceleration multiplier.

accel_denominator
Specifies the denominator for the acceleration multiplier.

threshold Specifies the acceleration threshold.

The XChangePointerControl function defines hw the pointing device mas. Theaccelera-

tion, expressed as a fraction, is a multiplier fovemeent. r example, specifying 3/1 means the
pointer maes three times as fast as normal. The fraction may be rounded arbitrarily by the X
server Acceleration only takes effect if the pointerve® more than threshold pixels at once and
only applies to the amount beyond the value in the threshgidnant. Setting value to -1
restores the datilt. Thevalues of the do_accel and do_threshold arguments muBtuzefor

the pointer values to be set, or the parameters are unchanggivéelues (other than -1)
generate 8adValue error, as des a zero value for the accel_denominator argument.

XChangePointerControl can generate BadValue error.

To get the current pointer parameters, ¥&&etPointerControl .

266

XGetPointerControldisplay, accel_numerator_returraccel_denominator_retugn
threshold_returi
Display *display,
int *accel_numerator_returriraccel_denominator_retutn
int *threshold_return

display Specifies the connection to the X server.

accel_numerator_return
Returns the numerator for the acceleration multiplier.

accel_denominator_return
Returns the denominator for the acceleration multiplier.

threshold_return
Returns the acceleration threshold.

The XGetPointerControl function returns the pointeraurrent acceleration multiplier and accel-
eration threshold.

12.7. Manipulating the Keyboard Encoding

A KeyCode represents a physical (or logicay.kkeyCodes lie in the inclugé range [8,255]. A
KeyCode value carries no intrinsic information, although server implementors may attempt to
encode geometry (for example, matrix) information in some fashion so that it can be interpreted
in a server-dependerdghion. Thanapping betweendys and KeyCodes cannot be changed.

A KeySym is an encoding of a symbol on the cap ofya Khe set of defined &/Syms includes

the ISO Latin character sets (1-4), Katakana, Arabic, Cyrillic, Greek, Technical, Special, Publish-
ing, APL, Hebrgy, Thai, Korean and a miscelkaof keys found on keyboards (Return, Help, Tab,

and so on).To the extent possible, these sets arevadifrom international standards. In areas
where no standards exist, some of these sets avedirom Digital Equipment Corporation
standards. Thist of defined symbols can be found iIKKL/keysymdef.l». Unfortunately

some C preprocessorsviedimits on the number of defined symbols. If you must usgSgms

not in the Latin 1-4, Greek, and miscellaneous classes, you mayptdefine a symbol for those

sets. Mostpplications usually only includexd 1/keysym.t», which defines symbols for ISO

Latin 1-4, Greek, and miscellaneous.

A list of KeySyms is associated with eackyCode. Thdist is intended to corey the set of
symbols on the correspondingyk If the list (ignoring trailingNoSymbol entries) is a single
KeySym “K”, then the list is treated as if it were the ligt NoSymbolK NoSymbol'. If the list
(ignoring trailingNoSymbol entries) is a pair of &/Syms “K1 K2’ , then the list is treated as if
it were the list ‘K1 K2 K1 K2 . If the list (ignoring trailingNoSymbol entries) is a triple of
KeySyms “K1 K2 K3, then the list is treated as if it were the ligtl' K2 K3NoSymbol”.

When an explicit “void’ element is desired in the list, the valMeidSymbol can be used.

The first four elements of the list are split inttgroups of kySyms. Grouf contains the first

and second &ySyms; Group 2 contains the third and fourtsyByms. Wthin each group, if the

second element of the groupN®Symbol, then the group should be treated as if the second ele-
ment were the same as the first element, except when the first element is an alpbgbetic K

“ K” f or which both lowercase and uppercase forms are defined. In that case, the group should be
treated as if the first element were the lowercase forniKdgnd the second element were the
uppercase form ofK” .

The standard rules for obtaining aysym from aKeyPressevent male use of only the Group 1
and Group 2 KySyms; no interpretation of otheeSyms in the list is gien. Whichgroup to

267

use is determined by the modifier state. Switching between groups is controlled leySyenK
named MODE SWITCH, by attaching tha¢ySym to some KyCode and attaching that

KeyCode to ay one of the modifieréMod1 throughMod5. This modifier is called thgroup

modifier. For ary KeyCode, Group 1 is used when the group modifier is off, and Group 2 is used
when the group madifier is on.

The Lock modifier is interpreted as CapsLock when tley®ym named XK_Caps_Lock is
attached to somed{Code and that &Code is attached to theock modifier The Lock modi-
fier is interpreted as ShiftLock when theysym named XK_Shift_Lock is attached to some
KeyCode and that &/Code is attached to theock modifier If the Lock modifier could be
interpreted as both CapsLock and ShiftLock, the CapsLock interpretation is used.

The operation of &ypad leys is ontrolled by the KKySym named XK_Num_Lock, by attaching
that KeySym to some KyCode and attaching thaelCode to ap one of the modifierdiod1
throughMod5. This modifier is called theumlod modifier. The standard &Syms with the
prefix “XK_KP_"" in their name are callecepad KeySyms; these aredySyms with numeric
value in the hexadecimal range 0xFF80 to OxFFBD inetusin addition, vendor-specific
KeySyms in the hexadecimal range 0x11000000 to 0x1100FFFF aregtsu keySyms.

Within a group, the choice ofégSym is determined by applying the first rule that is satisfied
from the following list:

. The numlock modifier is on and the secored/8ym is a keypad KeySym. Inthis case, if
the Shift modifier is on, or if thd.ock modifier is on and is interpreted as ShiftLock, then
the first KeySym is used, otherwise the secorey/Bym is used.

. The Shift andLock modifiers are both &f In this case, the firstéySym is used.

. The Shift modifier is off, and thé.ock modifier is on and is interpreted as CapsLock. In
this case, the firstéySym is used, but if thatd¢Sym is lowercase alphabetic, then the cor-
responding uppercaseefSym is used instead.

. The Shift modifier is on, and theock modifier is on and is interpreted as CapsLock. In
this case, the secon&¥Sym is used, but if thatdySym is lowercase alphabetic, then the
corresponding uppercaseysym is used instead.

. The Shift modifier is on, or the.ock modifier is on and is interpreted as ShiftLock, or
both. Inthis case, the secon&¥Sym is used.

No spatial geometry of the symbols on tley ks defined by their order in thedgSym list,

although a geometry might be defined on a server-specific basis. The X server does not use the
mapping between & Codes and BySyms. Ratheiit merely stores it for reading and writing by
clients.

To dbtain the Igd KeyCodes for a displayse XDisplayKeycodes

268

XDisplayKeycodes {lisplay, min_leycodes_returnmax_leycodes_returi
Display *display;
int *min_leycodes_return* max_leycodes_return

display Specifies the connection to the X server.

min_leycodes_return
Returns the minimum number okiCodes.

max_leycodes_return
Returns the maximum number oéyCodes.

The XDisplayKeycodesfunction returns the mindycodes and maxeycodes supported by the
specified display The minimum number of &Codes returned is wer less than 8, and the maxi-
mum number of iKyCodes returned is aer greater than 255. Not allé¢Codes in this range are
required to hee rresponding &ys.

To dbtain the symbols for the specifie@yCodes, usXGetKeyboardMapping .

KeySym *XGetKeyboardMappingdisplay, first_keycode keycode_count
keysyms_per_dycode_return)
Display *display,
KeyCodefirst_keycode
int keycode_count
int *keysyms_ per_dycode_return
display Specifies the connection to the X server.
first_keycode Specifies the first &/Code that is to be returned.
keycode_countSpecifies the number ofd¢Codes that are to be returned.

keysyms_per dycode_return
Returns the number ofdgSyms per leyCode.

The XGetKeyboardMapping function returns the symbols for the specified number of
KeyCodes starting with first dycode. Thevalue specified in first_éycode must be greater than
or equal to min_&ycode as returned b¥DisplayKeycodes or aBadValue error results. In
addition, the following expression must be less than or equal to myode as returned by
XDisplayKeycodes

first_keycode + leycode count — 1
If this is not the case, BadValue error results. The number of elements in tleg3yms list is:
keycode_count * kysyms_per_&ycode_return

KeySym number N, counting from zero, foeyCode K has the following inaen the list, count-
ing from zero:

(K - first_code) * leysyms_per_code_return + N

The X server arbitrarily chooses theykyms_per_&ycode_return value to be large enough to
report all requested symbolé special keySym value ofNoSymbolis used to fill in unused ele-
ments for individual i€yCodes. © free the storage returned BysetKeyboardMapping, use

269

XFree.
XGetKeyboardMapping can generate BadValue error.

To change the &yboard mapping, us¥ChangeKeyboardMapping.

XChangeleyboardMappingdisplay; first_keycode keysyms_per éycode keysymsnum_codek

Display *display,

int first_keycode

int keysyms_per_dycode

KeySym *keysyms

int num_codes
display Specifies the connection to the X server.
first_keycode Specifies the first &Code that is to be changed.
keysyms_per_dycode

Specifies the number ofégSyms per keyCode.

keysyms Specifies an array ofd¢Syms.

num_codes Specifies the number ofd¢Codes that are to be changed.

The XChangeKeyboardMapping function defines the symbols for the specified number of
KeyCodes starting with first dycode. Thesymbols for KeyCodes outside this range remain
unchanged. Theumber of elements iresyms must be:

num_codes * &ysyms_per_&ycode

The specified first éycode must be greater than or equal to maéycéde returned b¥XDis-
playKeycodes or aBadValue error results. In addition, the following expression must be less
than or equal to maxelycode as returned byDisplayKeycodes or a BadValue error results:

first_keycode + num_codes - 1

KeySym number N, counting from zero, foeyCode K has the following inatén keysyms,
counting from zero:

(K - first_keycode) * leysyms_per_g&ycode + N

The specified &ysyms_per_&ycode can be chosen arbitrarily by the client to be large enough to
hold all desired symbolsA special KeySym value ofNoSymbol should be used to fill in unused
elements for individual ByCodes. lis legd for NoSymbolto appear in nontrailing positions of
the effectve list for a KeyCode. XChangeKeyboardMapping generates &appingNotify

evant.

There is no requirement that the X server interpret this mapping. It is merely stored for reading
and writing by clients.

XChangeKeyboardMapping can generat8adAlloc and BadValue errors.
The next six functions makuse of theXModifierKeymap data structure, which contains:

270

typedef struct {

int max_leypermod; [*This serves max number of &ys per modifier */
KeyCode *modifiermap; /* An 8 by max eipermod array of the modifiers */
} X ModifierKeymap;

To aeate anXModifierKeymap structure, us&XNewModifiermap .

XModifierKeymap *XNewModifiermapax_leys_per_modl
int max_leys_per_mod

max_leys_per_mod
Specifies the number ofégCode entries preallocated to the modifiers in the
map.

The XNewModifiermap function returns a pointer t§ModifierKeymap structure for later use.
To add a n&v entry to anXModifierKeymap structure, us&InsertModifiermapEntry .

XModifierKeymap *XInsertModifiermapEntryiodmapkeycode_entrymodifier)
XModifierKeymap *modmap
KeyCodekeycode_entry
int modifier,

modmap Specifies theXModifierKeymap structure.

keycode_entry Specifies the KyCode.

modifier Specifies the modifier.

The XlnsertModifiermapEntry function adds the specifiedefCode to the set that controls the
specified modifier and returns the resultXigodifierKkeymap structure (expanded as needed).

To celete an entry from aKModifierKeymap structure, usXDeleteModifiermapEntry .

XModifierKeymap *XDeleteModifiermapEntryfiodmapkeycode_entrymodifier)
XModifierKeymap *modmap
KeyCodekeycode_entry
int modifier,

modmap Specifies theXModifierKeymap structure.

keycode_entry Specifies the KyCode.

modifier Specifies the modifier.

The XDeleteModifiermapEntry function deletes the specifie®yCode from the set that con-
trols the specified modifier and returns a pointer to the restihgdifierKeymap structure.

To destroy an XModifierKeymap structure, us&XFreeModifiermap .

271

XFreeModifiermapodmayp)
XModifierKeymap *modmap

modmap Specifies theXModifierKeymap structure.
The XFreeModifiermap function frees the specifiedModifierKeymap structure.
To st the KeyCodes to be used as modifiers, ¥&etModifierMapping .

int XSetModifierMappingdisplay, modmayp)
Display *display,
XModifierKeymap *modmap

display Specifies the connection to the X server.
modmap Specifies theXModifierKeymap structure.

The XSetModifierMapping function specifies the é/Codes of the &ys (if any) that are to be

used as modifiers. If it succeeds, the X server generdfieppingNotify event, andXSetMod-
ifierMapping returnsMappingSuccess X permits at most 8 modifieelgs. If more than 8 are
specified in theXModifierKeymap structure, éBadLength error results.

The modifiermap member of théModifierKeymap structure contains 8 sets of maryjer-
mod KeyCodes, one for each modifier in the or&ift, Lock, Control, Mod1, Mod2, Mod3,
Mod4, and Mod5. Only nonzero KyCodes hee meaning in each set, and zereyKodes are
ignored. Inaddition, all of the nonzerod¢Codes must be in the range specified by négcéde
and max_kycode in theDisplay structure, or @8adValue error results.

An X server can impose restrictions omhmodifiers can be changed, for example, if certain

keys do not generate up transitions in hardware, if auto-repeat cannot be disabled onegsttain k
or if multiple modifier leys ae not supported. If some such restriction is violated, the status
reply is MappingFailed, and none of the modifiers are changed. If thw KeyCodes specified

for a modifier differ from those currently defined angl Gaurrent or new) &ys for that modifier

are in the logically down statXSetModifierMapping returnsMappingBusy, and none of the
modifiers is changed.

XSetModifierMapping can generat8adAlloc and BadValue errors.

To dbtain the KeyCodes used as modifiers, us&etModifierMapping .

XModifierKeymap *XGetModifierMappingdisplay)
Display *display,

display Specifies the connection to the X server.

The XGetModifierMapping function returns a pointer to a newly crea¥ddodifierKeymap
structure that contains theys being used as madifiers. The structure should be freed after use
by calling XFreeModifiermap. If only zero values appear in the set foy amodifier, that modi-

fier is disabled.

272

Chapter 13

Locales and Internationalized Text Functions

An internationalized application is one that is adaptable to the requirements of differant nati
languages, local customs, and character string encodings. The process of adapting the operation
to a particular nate language, local custom, or string encoding is cadledlization. A goal of
internationalization is to permit localization without program source modifications or recompila-
tion.

As one of the localization mechanisms, Xlib provides an X Input MetKdd () functional inter-
face for internationalized text input and an X Output Methd@K) functional interface for
internationalized text output.

Internationalization in X is based on the conceptlotale A locale defines the localized
behavior of a program at run time. Locales affect Xlib in its:

. Encoding and processing of input method text

. Encoding of resource files and values

. Encoding and imaging of text strings

. Encoding and decoding for inter-client text communication

Characters from various languages are represented in a computer using an encoding. Different
languages hee dfferent encodings, and there akee different encodings for the same charac-
ters in the same language.

This chapter defines support for localized text imaging and text input and describes the locale
mechanism that controls all locale-dependent Xlib functions. Sets of functions are provided for
multibyte (char *) text as well as wide character (wchar_t) text in the form supported by the host
C language erronment. Thenultibyte and wide character functions are egent except for

the form of the text argument.

The Xlib internationalization functions are not meant to provide support for multilingual applica-
tions (mixing multiple languages within a single piece of text), byt tieske it possible to imple-
ment applications that work in limited fashion with more than one language in independent con-
texts.

The remainder of this chapter discusses:
. X locale management

. Locale and modifier dependencies
. Variable argument lists

. Output methods

. Input methods

. String constants

13.1. XLocale Management

X supports one or more of the locales defined by the hegbament. Onimplementations that
conform to the ANSI C librarythe locale announcement methodgélocale This function con-
figures the locale operation of both the host C library and Aiie operation of Xlib is gerned

273

by the LC_CTYPE category; this is called therent locale An implementation is permitted to
provide implementation-dependent mechanisms for announcing the locale in addittioto
cale.

On implementations that do not conform to the ANSI C librtgy locale announcement method
is Xlib implementation-dependent.

The mechanism by which the semantic operation of Xlib is defined for a specific locale is imple-
mentation-dependent.

X'is not required to support all the locales supported by the Aostietermine if the current
locale is supported by X, us€SupportsLocale.

Bool XSupportsLocalg)

The XSupportsLocale function returnsTr ue if Xlib functions are capable of operating under the
current locale. If it returngalse, Xlib locale-dependent functions for which tkéocaleNot-
Supported return status is defined will retudfl_ocaleNotSupported. Other Xlib locale-depen-
dent routines will operate in the “Q'ocale.

The client is responsible for selecting its locale and X modifiers. Clients should provide a means
for the user towerride the clients’ locale selection at clientacation. Mostsingle-display X

clients operate in a single locale for both X and the host processingrenent. Thg will con-

figure the locale by calling three functions: the host locale configuration fungBupportsLo-

cale, and XSetLocaleModifiers.

The semantics of certain categories of X internationalization capabilities can be configured by
setting modifiers. Modifiers are named by implementation-dependent and locale-specific strings.
The only standard use for this capability at present is selecting oneefl styles of kyboard

input method.

To configure Xlib locale modifiers for the current locale, Xsetl ocaleModifiers.

char *XSetLocaleModifiergiodifier_lis)
char *modifier_list

modifier_list Specifies the modifiers.

The XSetLocaleModifiers function sets the X modifiers for the current locale setting. The modi-
fier_list argument is a null-terminated string of the form “¢@egory-value}”, that is, having

zero or more concatenated ‘@tegory=value’ entries, whereategoryis a category name and
valueis the (possibly empty) setting for that categofie values are encoded in the current
locale. Catgory names are restricted to the POSIX Portable Filename Character Set.

The local host X locale modifiers announcer (on POSIX-compliant systems, the XMODIFIERS
environment variable) is appended to the modifier_list to provide default values on the local host.
If a given category appears more than once in the list, the first setting in the list is usedvelf a gi
category is not included in the full modifier list, the category is set to an implementation-depen-
dent default for the current locale. An empty value for a category explicitly specifies the imple-
mentation-dependent default.

If the function is successful, it returns a pointer to a string. The contents of the string are such
that a subsequent call with that string (in the same locale) will restore the modifiers to the same

274

settings. Ifmodifier_list is a NULL pointerXSetLocaleModifiers also returns a pointer to such
a dring, and the current locale modifiers are not changed.

If invalid values are gien for one or more modifier categories supported by the locale, a NULL
pointer is returned, and none of the current modifiers are changed.

At program startup, the modifiers that are in effect are unspecified until the first successful call to
set them. Whener the locale is changed, the modifiers that are in effect become unspecified
until the next successful call to set them. Clients showdyal call XSetLocaleModifiers with

a ron-NULL modifier_list after setting the locale beforeytleall ary locale-dependent Xlib rou-

tine.

The only standard modifier category currently defined is “im”, which identifies the desired input
method. Thevalues for input method are not standardiz&dsingle locale may use multiple

input methods, switching input method under user control. The modifier may specify the initial
input method in effect or an ordered list of input methods. Multiple input methods may be speci-
fied in a single im value string in an implementation-dependent manner.

The returned modifiers string is owned by Xlib and should not be modified or freed by the client.
It may be freed by Xlib after the current locale or modifiers are changed. Until freed, it will not
be madified by Xlib.

The recommended procedure for clients initializing their locale and modifiers is to obtain locale
and modifier announcers separately from one of the following prioritized sources:

. A command line option
. A resource
. The empty string (")

The first of these that is defined should be used. Note that when a locale command line option or
locale resource is defined, the effect should be to set all categories to the specifiedviscale, o
ing ary category-specific settings in the local host environment.

13.2. Localeand Modifier Dependencies

The internationalized Xlib functions operate in the current locale configured by the host environ-
ment and X locale modifiers set ByBetLocaleMadifiers or in the locale and modifiers config-

ured at the time some object supplied to the function was creabedach locale-dependent
function, the following table describes the locale (and modifiers) dependency:

Locale from Affectsthe Function In

Locale Query/Configuration:

setlocale XSupportsLocale Locale queried
XSetLocaleModifiers Locale modified
Resources:

setlocale XrmGetFileDatabase Locale of XrmDatabase
XrmGetStringDatabase

XrmDatabase XrmPutFileDatabase Locale of XrmDatabase
XrmLocaleOfDatabase

Setting Standard Properties:

275

Locale from Affectsthe Function In
setlocale XmbSetWMProperties Encoding of supplied/returned
text (some WM __ property
text in environment locale)
setlocale XmbTextPropertyToTextList Encoding of supplied/returned
text
XwcTextPropertyToTextList
XmbTextListToTextProperty
XwcTextListToTextProperty
Text Input:
setlocale XOpeniM XIM input method selection
XRegisterIMInstantiateCallback XIM selection
XUnregisterIMInstantiateCallback XIM selection
XIM XCreatelC XIC input method configuration
XLocaleOfIM , and so on Queried locale
XIC XmbLookupString Keyboard layout
XwclLookupString Encoding of returned text
Text Drawing:
setlocale XOpenOM XOM output method selection
XCreateFontSet Charsets of fonts iXXFontSet
XOM XCreateOC XOC output method configura-
tion
XLocaleOfOM, and so on Queried locale
XFontSet XmbDrawText, Locale of supplied text
XwcDrawText, and so on Locale of supplied text
XExtentsOfFontSet, and so on Locale-dependent metrics
XmbTextExtents,
XwcTextExtents, and so on
Xlib Errors:
setlocale XGetErrorDatabaseText Locale of error message
XGetErrorText

Clients may assume that a locale-encoded text string returned by an X function can be passed to a

C library routine, or vice versa, if the locale is the same at thedlis.

All text strings processed by internationalized Xlib functions are assumed to begin in the initial
state of the encoding of the locale, if the encoding is state-dependent.

All Xlib functions behae & if they do not change the current locale or X modifier setting. (This
means that if thedo change locale or cakSetLocaleModifiers with a non-NULL argument,
they must sae and restore the current state on entry axitl)eAlso, Xlib functions on implemen-
tations that conform to the ANSI C library do not alter the global state associated with the ANSI
C functionsmblen, mbtowc, wctomb, and strtok .

276

13.3. \ariable Argument Lists

Various functions in this chapterv@aguments that conform to the ANSI C variable argument
list calling cowention. Eachfunction denoted with an argument of the form™*t akes a vari-
able-length list of name and value pairs, where each name is a string and each value is of type
XPointer. A name argument that is NULL identifies the end of the list.

A variable-length argument list may contain a nested list. If the név@NestedList is speci-

fied in place of an argument name, then the following value is interpretedxd&blestedList

value that specifies a list of values logically inserted into the original list at the point of declara-
tion. ANULL identifies the end of a nested list.

To dlocate a nested variable argument list dynamicasig X\VaCreateNestedList

typedef void * XVaNestedList;

XVaNestedList X\aCreateNestedListiimmy ...)
int dummy
dummy Specifies an unused argument (required by ANSI C).
Specifieghe variable length argument list.

The XVaCreateNestedListfunction allocates memory and copies its arguments into a single list
pointer which may be used as a value for arguments requiring aalis.v Ary entries are copied

as specified. Data passed by reference is not copied; the caller must ensure data remains valid for
the lifetime of the nested list. The list should be freed uXiRgee when it is no longer needed.

13.4. OutputMethods

This section provides discussions of the following X Output Method (XOM) topics:
. Output method werview

. Output method functions

. Output method values

. Output context functions

. Output context values

. Creating and freeing a font set

. Obtaining font set metrics

. Drawing text using font sets

13.4.1. OutputMethod Overview

Locale-dependent text may include one or more text components, each of which may require dif-
ferent fonts and character set encodings. In some languages, each componenvmigiffaa

ent drawing direction, and some components might contain context-dependent characters that
change shape based on relationships with neighboring characters.

When drawing such locale-dependent text, some locale-specific knowledge is required; for exam-
ple, what fonts are required to dréhe text, hav the text can be separated into components, and
which fonts are selected to dra@ach component. Furtharhen bidirectional text must be

drawn, the internal representation order of the text must be changed into the visual representation
order to be drawn.

277

An X Output Method provides a functional interface so that clients do metihaeal directly
with such locale-dependent details. Output methods provide the following capabilities:

. Creating a set of fonts required to wrbbcale-dependent text.

. Drawing locale-dependent text with a font set without the caller needing teabe @f
locale dependencies.

. Obtaining the escapement and extents in pixels of locale-dependent text.

. Determining if bidirectional or context-dependent drawing is required in a specific locale
with a specific font set.

Two different abstractions are used in the representation of the output method for clients.

The abstraction used to communicate with an output method is an opaque data structure repre-
sented by th&XOM data type. The abstraction for representing the state of a particular output
thread is called aautput context The Xlib representation of an output context iS<ddC,

which is compatible witiKFontSet in terms of its functional interface, but is a broadore
generalized abstraction.

13.4.2. OutputMethod Functions
To gpen an output method, us®penOM.

XOM XOpenOM(display, db, res_nameres_clas$
Display *display;,
XrmDatabaselb;
char *es_name
char *es_class

display Specifies the connection to the X server.

db Specifies a pointer to the resource database.
res_name Specifies the full resource name of the application.
res_class Specifies the full class name of the application.

The XOpenOM function opens an output method matching the current locale and modifiers
specification. Theurrent locale and modifiers are bound to the output method X®GeenOM
is called. The locale associated with an output method cannot be changed.

The specific output method to which this call will be routed is identified on the basis of the cur-
rent locale and modifiersXOpenOM will identify a default output method corresponding to the
current locale. That default can be modified usfi8ptLocaleModifiers to set the output

method modifier.

The db argument is the resource database to be used by the output method for looking up
resources that are pate to the output method. It is not intended that this database be used to
look up values that can be set as OC values in an outpuktolitdb is NULL, no database is
passed to the output method.

The res_name and res_class arguments specify the resource name and class of the application.
They are intended to be used as prefixes by the output method when looking up resources that are
common to all output contexts that may be created for this output method. The characters used

for resource names and classes must be in the X Portable Character Set. The resources looked up
are not fully specified if res_name or res_class is NULL.

278

The res_name and res_class arguments are not assumed to exist beyond tK©paih@M .
The specified resource database is assumed to exist for the lifetime of the output method.

XOpenOM returns NULL if no output method could be opened.
To dose an output method, u3e&loseOM.
Status XCloseOMdgm)

XOM om;

om Specifies the output method.
The XCloseOM function closes the specified output method.
To st output method attributes, uk&etOMValues.

char * XSetOM\alues pm, ...)
XOM om;
om Specifies the output method.
Specifieghe variable-length argument list to set XOM values.

The XSetOMValues function presents a variable argument list programming interface for setting
properties or features of the specified output method. This function returns NULL if it succeeds;
otherwise, it returns the name of the first argument that could not be obtained.

No standard arguments are currently defined by Xlib.
To query an output method, udé&etOMValues.

char * XGetOM\alues bm, ...)
XOM om;
om Specifies the output method.
Specifieshe variable-length argument list to get XOM values.

The XGetOMValues function presents a variable argument list programming interface for query-
ing properties or features of the specified output method. This function returns NULL if it suc-
ceeds; otherwise, it returns the name of the first argument that could not be obtained.

To dbtain the display associated with an output methodXiisplayOfOM .

Display * XDisplayOfOM (om)
XOM om;
om Specifies the output method.

The XDisplayOfOM function returns the display associated with the specified output method.

To get the locale associated with an output method Xliseale OfOM .

279

char * XLocaleOfOM pm)
XOM om;

om Specifies the output method.

The XLocaleOfOM returns the locale associated with the specified output method.

13.4.3. XOutput Method Values

The following table describes WoXOM values are interpreted by an output method. The first
column lists the XOM alues. Thesecond column indicatesWwe@ach of the XOM values are
treated by a particular output style.

The following ley gplies to this table.

Key Explanation

G This value may be read usixgsetOMValues.
XOM Value Key
XNRequiredCharSet

XNQueryOrientation

XNDirectionalDependentDrawing
XNContextualDrawing

OOOO

13.4.3.1. Requied Char Set

The XNRequiredCharSet argument returns the list of charsets that are required for loading the
fonts needed for the locale. The value of the argument is a pointer to a structureX®ilpe
CharSetList.

The XOMCharSetList structure is defined as follows:

typedef struct {
int charset_count;
char **charset_list;
} X OMCharSetList;

The charset_list member is a list of one or more null-terminated charset names, and the
charset_count member is the number of charset names.

The required charset list is owned by Xlib and should not be modified or freed by the client. It
will be freed by a call ta(CloseOM with the associatedOM . Until freed, its contents will not
be madified by Xlib.

280

13.4.3.2. QueryOrientation

The XNQueryOrientation argument returns the global orientation of text whemwdraOther

than XOMOirientation LTR_TTB , the set of orientations supported is locale-dependent. The
value of the argument is a pointer to a structure of ¥@MOrientation . Clients are responsi-
ble for freeing theXOMOrientation structure by usingKFree; this also frees the contents of the
structure.

typedef struct {

int num_orientation;

XOrientation *orientation; /* Input &xt description */
} X OMOirientation;

typedef enum {
XOMOrientation_LTR_TTB,
XOMOrientation_RTL_TTB,
XOMOrientation_TTB_LTR,
XOMOrientation_ TTB_RTL,
XOMOrientation_Context

} X Orientation;

The possible value for XOrientation may be:

. XOMOrientation_LTR_TTB left-to-right, top-to-bottom global orientation
. XOMOrientation_RTL_TTB right-to-left, top-to-bottom global orientation
. XOMOirientation_TTB_LTR top-to-bottom, left-to-right global orientation
. XOMOrientation_TTB_RTL top-to-bottom, right-to-left global orientation
. XOMOrientation_Context contextual global orientation

13.4.3.3. Diectional Dependent Drawing

The XNDirectionalDependentDrawing argument indicates whether the text rendering functions
implement implicit handling of directionalxe If this value isTr ue, the output method has
knowledge of directional dependencies and reorders text as necessary when rentetintpite
value is False, the output method does not implemeny dinectional text handling, and all char-
acter directions are assumed to be left-to-right.

Regardless of the rendering order of characters, the origins of all characters are on the primary
draw direction side of the drawing origin.

This OM value presents functionality identical to KirectionalDependentDrawing function.

13.4.3.4. ContexDependent Drawing

The XNContextualDrawing argument indicates whether the text rendering functions implement
implicit context-dependent dséng. If this value isTr ue, the output method has knowledge of
context dependencies and performs character shape editing, combining glyphs to present a single
character as necessaffhe actual shape editing is dependent on the locale implementation and

the font set used.

This OM value presents functionality identical to K€ontextualDrawing function.

281

13.4.4. OutputContext Functions

An output context is an abstraction that contains both the data required by an output method and
the information required to display that data. There can be multiple output contexts for one out-
put method. The programming interfaces for creating, reading, or modifying an output context
use a variable argument list. The name elements of the argument lists are referred to as XOC val-
ues. ltis intended that output methods be controlled by these XdD@s. Asewv XOC values

are created, tlyeshould be registered with the X Consortium. X®C can be used anywhere an
XFontSet can be used, and vice verg&EontSet is retained for compatibility with previous

releases. Theoncepts of output methods and output contexts include broaaier generalized
abstraction than font set, supporting comaied more intelligent text displagnd dealing not

only with multiple fonts but also with context dependencies. Hew&FontSet is widely used

in several interfaces, s&XOC is defined as an upward compatible typeXebntSet.

To aeate an output context, uX€reateOC.

XOC XCreateOC@m, ...)
XOM om;
om Specifies the output method.
Specifieghe variable-length argument list to set XOC values.

The XCreateOC function creates an output context within the specified output method.

The base font names argument is mandatory at creation time, and the output context will not be
created unless it is primled. All other output context values can be set later.

XCreateOC returns NULL if no output context could be created. NULL can be returned for any
of the following reasons:

. A required argument was not set.

. A read-only argument was set.

. An agument name is not recognized.

. The output method encountered an output method implementation-dependent error.
XCreateOC can generate BadAtom error.

To destrgy an autput context, us&XDestroyOC.

void XDestroyOC (oc)
XOC oc;

oc Specifies the output context.
The XDestroyOC function destroys the specified output context.

To get the output method associated with an output contexXQ$40fOC .

282

XOM XOMOfOC (oc)
XOC oc;

oc Specifies the output context.
The XOMOfOC function returns the output method associated with the specified output context.

Xlib provides tvo functions for setting and reading output context values, regggcXSetOC-
Values and XGetOCValues. Both functions hee a \ariable-length argument list. In that argu-
ment list, ag XOC values name must be denoted with a character string using the X Portable
Character Set.

To st XOC values, us¥SetOCValues

char * XSetOC¥lues fc, ...)
XOC oc;
oc Specifies the output context.
Specifieshe variable-length argument list to set XOC values.

The XSetOCValuesfunction returns NULL if no error occurred; otherwise, it returns the name
of the first argument that could not be set. An argument might not be sey fairtae following
reasons:

. The argument is read-only.
. The argument name is not recognized.
. An implementation-dependent error occurs.

Each value to be set must be an appropriate datum, matching the data type imposed by the seman-
tics of the argument.

XSetOCValuescan generate BadAtom error.
To dbtain XOC values, usEGetOCValues.

char * XGetOC\lues g, ...)
XOC oc;
oc Specifies the output context.
Specifieshe variable-length argument list to get XOC values.

The XGetOCValues function returns NULL if no error occurred; otherwise, it returns the name
of the first argument that could not be obtained. An argument might not be obtainegdbr an
the following reasons:

. The argument name is not recognized.
. An implementation-dependent error occurs.
Each argument value following a name must point to a location where the value is to be stored.

283

13.4.5. OutputContext Values

The following table describes WoXOC values are interpreted by an output method. The first
column lists the XOCalues. Thesecond column indicates the altermatinterfaces that function
identically and are provided for compatibility with previous releases. The third column indicates
how each of the XOC values is treated.

The following leys gply to this table.

Key Explanation
C This value must be set wikkCreateOC.
D This value may be set usil{CreateOC. Ifitis not set,

a default is provided.

G This value may be read usiXgsetOCValues.
S This value must be set usikgetOCValues
XOC Value Alternative Interface Key

BaseFontName XCreateFontSet C-G

MissingCharSet XCreateFontSet G
DefaultString XCreateFontSet G
Orientation - D-S-G
ResourceName - S-G
ResourceClass - S-G
Fontinfo XFontsOfFontSet G
OMAutomatic - G

13.4.5.1. Bas€&ont Name

The XNBaseFontNameargument is a list of base font names that Xlib uses to load the fonts
needed for the locale. The base font names are a comma-separated list. The string is null-termi-
nated and is assumed to be in the Host Portable Character Encoding; otherwise, the result is
implementation-dependent. Whipace immediately on either side of a separating comma is
ignored.

Use of XLFD font names permits Xlib to obtain the fonts needed for a variety of locales from a
single locale-independent base font name. The single base font name should name a family of
fonts whose members are encoded in the various charsets needed by the locales of interest.

An XLFD base font name can explicitly name a charset needed for the locale. This allows the
user to specify an exact font for use with a charset required by a locale, fully controlling the font
selection.

If a base font name is not an XLFD name, Xlib will attempt to obtain an XLFD name from the
font properties for the font. If Xlib is successful, ti&etOCValues function will return this
XLFD name instead of the client-supplied name.

This argument must be set at creation time and cannot be changed. If no fonts exysbfohen
required charsets, or if the locale definition in Xlib requires that a font exist for a particular
charset and a font is not found for that char&€eateOC returns NULL.

284

When querying for thiXNBaseFontNameXOC value, XGetOCValues returns a null-termi-

nated string identifying the base font names that Xlib used to load the fonts needed for the locale.
This string is owned by Xlib and should not be modified or freed by the client. The string will be
freed by a call toXDestroyOC with the associateXOC. Until freed, the string contents will

not be modified by Xlib.

13.4.5.2. MissingCharSet

The XNMissingCharSet argument returns the list of required charsets that are missing from the
font set. The value of the argument is a pointer to a structure oX@MCharSetList .

If fonts exist for all of the charsets required by the current locale, charset_list is set to NULL and
charset_count is set to zero. If no fonts exist for one or more of the required charsets, charset_list
is set to a list of one or more null-terminated charset names for which no fonts exist, and
charset_count is set to the number of missing charsets. The charsets are from the list of the
required charsets for the encoding of the locale and do not inclydhansets to which Xlib

may be able to remap a required charset.

The missing charset list is owned by Xlib and should not be modified or freed by the client. It
will be freed by a call t&DestroyOC with the associate¥OC. Until freed, its contents will
not be modified by Xlib.

13.4.5.3. DefauliString

When a drawing or measuring function is called withX&C that has missing charsets, some
characters in the locale will not be dable. TheXNDefaultString argument returns a pointer

to a string that represents the glyphs that are drawn wittK® when the charsets of thead-

able fonts do not include all glyphs required tordeacharacter The string does not necessarily
consist of valid characters in the current locale and is not necessarily drawn with the fonts loaded
for the font set, but the client can drar measure the default glyphs by including this string in a
string being drawn or measured with tKeC.

If the XNDefaultString argument returned the empty string (""), no glyphs are drawn and the
escapement is zero. The returned string is null-terminated. It is owned by Xlib and should not be
modified or freed by the client. It will be freed by a caldDestroyOC with the associated

XOC. Until freed, its contents will not be modified by Xlib.

(1)

13.4.5.4. Orientation

The XNOrientation argument specifies the current orientation of text whewrdra hevaue of
this argument is one of the values returned byXGetOMValues function with theXNQuery-
Orientation argument specified in théOrientation list. Thevalue of the argument is of type
XOrientation . When XNOrientation is queried, the value specifies the current orientation.
When XNOrientation is set, a value is used to set the current orientation.

When XOMOirientation_Context is set, the text orientation of the text is determined according

to an implementation-defined method (for example, ISO 6429 control sequences), and the initial
text orientation for locale-dependent Xlib functions is assumed XdOrienta-

tion LTR _TTB .

The XNOrientation value does not change the prime drawing direction for Xlib drawing func-
tions.

13.4.5.5. Resouwre Name and Class

The XNResourceNameand XNResourceClassarguments are strings that specify the full name
and class used by the client to obtain resources for the display of the output cohésevalues

285

should be used as prefixes for name and class when looking up resources that may vary according
to the output conte. If these values are not set, the resources will not be fully specified.

It is not intended that values that can be set as XOM values be set as resources.

When querying for th&XNResourceNameor XNResourceClassXOC value,XGetOCValues

returns a null-terminated string. This string is owned by Xlib and should not be modified or freed
by the client. The string will be freed by a callX®estroyOC with the associatedOC or

when the associated value is changedds&tOCValues Until freed, the string contents will

not be modified by Xlib.

13.4.5.6. Bnt Info

The XNFontinfo argument specifies a list of one or méti€ontStruct structures and font
names for the fonts used for drawing by theagioutput cont&t. Thevalue of the argument is a
pointer to a structure of typ¢OMFontinfo .

typedef struct {
int num_font;
XFontStruct **font_struct_list;
char **font_name_list;

} X OMFontinfo;

A list of pointers to theXFontStruct structures is returned to font_struct_ligtlist of pointers

to null-terminated, fully-specified font name strings in the locale of the output context is returned
to font_name_list. The font_name_list order corresponds to the font_struct_list Binéemum-

ber of XFontStruct structures and font names is returned to num_font.

Because it is not guaranteed that\agicharacter will be imaged using a single font glyph, there
is no provision for mapping a character or default string to the font properties, font ID, or direc-
tion hint for the font for the charactefhe client may access th@-ontStruct list to obtain these
values for all the fonts currently in use.

Xlib does not guarantee that fonts are loaded from the server at the creatiov@ETanXlib

may choose to cache font data, loading it only as neededwdeaktaor compute text dimensions.
Therefore, existence of the per_char metrics indRentStruct structures in theXFontStruct-
Setis undefined. Also, note that all properties in XteontStruct structures are in the STRING
encoding.

The client must not free the¢OMFontinfo struct itself; it will be freed when th€OC is closed.

13.4.5.7. OMAutomatic

The XNOMAutomatic argument returns whether the associated output context was created by
XCreateFontSetor not. Because th¥FreeFontSetfunction not only destroys the output con-
text but also closes the implicit output method associated wi¥frieeFontSetshould be used

with ary output context created byCreateFontSet Howevae, it is possible that a client does

not knav how the output context was created. Before a client destroys the output context, it can
guery whetheXNOMAutomatic is set to determine wheth&FreeFontSetor XDestroyOC

should be used to desyrthe output context.

286

13.4.6. Ceating and Freeing a Font Set

Xlib international text drawing is done using a set of one or more fonts, as needed for the locale
of the text. Fonts are loaded according to a list of base font names supplied by the client and the
charsets required by the locale. TKEontSet is an opaque type representing the state of a par-
ticular output thread and is egdient to the typeXxOC.

The XCreateFontSetfunction is a comenience function for creating an output context using
only default alues. TheeturnedXFontSet has an implicitly createOM . This XOM has an
OM value XNOMAutomatic automatically set tdr ue so that the output context self indicates
whether it was created B¥CreateOC or XCreateFontSet

XFontSet XCreatedntSet flisplay, base_font_name_lisinissing_charset_list_return
missing_charset_count_returdef_string_returi
Display *display,
char *base_font_name_list
char ***missing_charset_list_return
int *missing_charset_count_return
char **def_string_return

display Specifies the connection to the X server.

base_ font name_list
Specifies the base font names.

missing_charset_list_return
Returns the missing charsets.

missing_charset_count_return
Returns the number of missing charsets.

def_string_return
Returns the string drawn for missing charsets.

The XCreateFontSetfunction creates a font set for the specified displde font set is bound
to the current locale wheXCreateFontSetis called. The font set may be used in subsequent
calls to obtain font and character information and to image text in the locale of the font set.

The base_font_name_list argument is a list of base font names that Xlib uses to load the fonts
needed for the locale. The base font names are a comma-separated list. The string is null-termi-
nated and is assumed to be in the Host Portable Character Encoding; otherwise, the result is
implementation-dependent. Whipace immediately on either side of a separating comma is
ignored.

Use of XLFD font names permits Xlib to obtain the fonts needed for a variety of locales from a
single locale-independent base font name. The single base font name should name a family of
fonts whose members are encoded in the various charsets needed by the locales of interest.

An XLFD base font name can explicitly name a charset needed for the locale. This allows the
user to specify an exact font for use with a charset required by a locale, fully controlling the font
selection.

If a base font name is not an XLFD name, Xlib will attempt to obtain an XLFD name from the
font properties for the font. If this action is successful in obtaining an XLFD namBise-
FontNameListOfFontSet function will return this XLFD name instead of the client-supplied
name.

287

Xlib uses the following algorithm to select the fonts that will be used to display text with the
XFontSet.

For each font charset required by the locale, the base font hame list is searched for the first
appearance of one of the following cases that names a set of fonts that exist at the server:

. The first XLFD-conforming base font name that specifies the required charset or a superset
of the required charset in iBharSetRegistry and CharSetEncodingfields. Theimple-
mentation may use a base font name whose specified charset is a superset of the required
charset, for example, an 1ISO8859-1 font for an ASCII charset.

. The first set of one or more XLFD-conforming base font names that specify one or more
charsets that can be remapped to support the required charset. The Xlib implementation
may recognize various mappings from a required charset to one or more other charsets and
use the fonts for those charsefsr example, JIS Roman is ASCII with tilde and backslash
replaced by yen andrerbar; Xlib may load an 1ISO8859-1 font to support this character set
if a JIS Roman font is nowailable.

. The first XLFD-conforming font name or the first non-XLFD font name for which an
XLFD font name can be obtained, combined with the required charset (replacing the
CharSetRegistry and CharSetEncodingfields in the XLFD font name). As in case 1,
the implementation may use a charset that is a superset of the required charset.

. The first font name that can be mapped in some implementation-dependent manner to one
or more fonts that support imaging text in the charset.

For example, assume that a locale required the charsets:

1ISO8859-1
JISX0208.1983
JISX0201.1976
GB2312-1980.0

The user could supply a base _font_name_list that explicitly specifies the charsets, ensuring that
specific fonts are used if thexist. For example:

"-JIS-Fixed-Medium-R-Normal--26-180-100-100-C-240-J1SX0208.1983-0,\
-JIS-Fixed-Medium-R-Normal--26-180-100-100-C-120-J1SX0201.1976-0,\
-GB-Fixed-Medium-R-Normal--26-180-100-100-C-240-GB2312-1980.0,\
-Adobe-Courier-Bold-R-Normal--25-180-75-75-M-150-1SO8859-1"

Alternatively, the user could supply a base_font_name_list that omits the charsets, letting Xlib
select font charsets required for the locdter example:

"-JIS-Fixed-Medium-R-Normal--26-180-100-100-C-240,\
-JIS-Fixed-Medium-R-Normal--26-180-100-100-C-120,\
-GB-Fixed-Medium-R-Normal--26-180-100-100-C-240,\
-Adobe-Courier-Bold-R-Normal--25-180-100-100-M-150"

Alternatiely, the user could simply supply a single base font name that allows Xlib to select from
all available fonts that meet certain minimum XLFD property requiremefts example:

"_x_%%.R-Normal--*-180-100-100-*-*"

If XCreateFontSetis unable to create the font set, either because there is insufficient memory or
because the current locale is not supporktieateFontSetreturns NULL,

288

missing_charset_list_return is set to NULL, and missing_charset_count_return is set to zero. If
fonts exist for all of the charsets required by the current lo¥&lecateFontSetreturns a valid
XFontSet, missing_charset_list_return is set to NULL, and missing_charset_count_return is set
to zero.

If no font exists for one or more of the required charsé@eateFontSetsets miss-
ing_charset_list_return to a list of one or more null-terminated charset names for which no font
exists and sets missing_charset_count_return to the number of missing fonts. The charsets are
from the list of the required charsets for the encoding of the locale and do not include any
charsets to which Xlib may be able to remap a required charset.

If no font exists for ay of the required charsets or if the locale definition in Xlib requires that a
font exist for a particular charset and a font is not found for that chXiGetateFontSetreturns
NULL. Otherwise,XCreateFontSetreturns a validXFontSet to font_set.

When an Xmb/wc drawing or measuring function is called witlKBantSet that has missing
charsets, some characters in the locale will not heathta. If def_string_return is non-NULL,
XCreateFontSetreturns a pointer to a string that represents the glyphs that are drawn with this
XFontSet when the charsets of theadable fonts do not include all font glyphs required to draw

a adepoint. Thestring does not necessarily consist of valid characters in the current locale and is
not necessarily drawn with the fonts loaded for the font set, but the client gaandraneasure

the default glyphs by including this string in a string being drawn or measured with the

XFontSet.

If the string returned to def_string_return is the empty string (""), no glyphs are drawn, and the
escapement is zero. The returned string is null-terminated. It is owned by Xlib and should not be
modified or freed by the client. It will be freed by a calMBreeFontSetwith the associated
XFontSet. Until freed, its contents will not be modified by Xlib.

The client is responsible for constructing an error message from the missing charset and default
string information and may choose to continue operation in the case that some fonts did not exist.

The returnedXFontSet and missing charset list should be freed vifreeFontSetand
XFreeStringList, respectiely. The client-supplied base_font_name_list may be freed by the
client after callingXCreateFontSet

To dbtain a list ofXFontStruct structures and full font namesrgn an XFontSet, use
XFontsOfFontSet.

int XFontsOffontSet font_set font_struct_list_returnfont_name_list_return
XFontSetfont_set
XFontStruct ***font_struct_list_return
char ***font_name_list_return

font_set Specifies the font set.

font_struct_list_return
Returns the list of font structs.

font_name_list_return
Returns the list of font names.

The XFontsOfFontSet function returns a list of one or mord-ontStructs and font names for
the fonts used by the Xmb and Xwc layers for tivergfont set. A list of pointers to the
XFontStruct structures is returned to font_struct_list_retufnlist of pointers to null-

289

terminated, fully specified font name strings in the locale of the font set is returned to
font_name_list_return. THent_name_list order corresponds to the font_struct_list oftles
number ofXFontStruct structures and font names is returned as the value of the function.

Because it is not guaranteed that\sgicharacter will be imaged using a single font glyph, there
is no provision for mapping a character or default string to the font properties, font ID, or direc-
tion hint for the font for the charactefhe client may access th@-ontStruct list to obtain these
values for all the fonts currently in use.

Xlib does not guarantee that fonts are loaded from the server at the creatiodFaraSet.

Xlib may choose to cache font data, loading it only as neededwaehtzor compute text dimen-
sions. Thereforegxistence of the per_char metrics in tkEontStruct structures in the
XFontStructSet is undefined. Also, note that all properties in ¥feontStruct structures are in
the STRING encoding.

The XFontStruct and font name lists are owned by Xlib and should not be modified or freed by
the client. Thg will be freed by a call toKFreeFontSetwith the associatedFontSet. Until
freed, their contents will not be modified by Xlib.

To dbtain the base font name list and the selected font namevbatagi XFontSet, use XBase-
FontNameListOfFontSet.

char *XBaseFontNameListO@tSet font_sej
XFontSetfont_set

font_set Specifies the font set.

The XBaseFontNameListOfFontSetfunction returns the original base font name list supplied

by the client when th&XFontSet was aeated. Anull-terminated string containing a list of
comma-separated font names is returned as the value of the function. White space may appear
immediately on either side of separating commas.

If XCreateFontSetobtained an XLFD name from the font properties for the font specified by a
non-XLFD base name, théBaseFontNameListOfFontSetfunction will return the XLFD name
instead of the non-XLFD base name.

The base font name list is owned by Xlib and should not be modified or freed by the client. It
will be freed by a call t&XFreeFontSetwith the associatedFontSet. Until freed, its contents
will not be modified by Xlib.

To dbtain the locale namewgin an XFontSet, use XLocaleOfFontSet.
char *XLocaleOffentSet font_se}

XFontSetfont_set
font_set Specifies the font set.

The XLocaleOfFontSet function returns the name of the locale bound to the specified
XFontSet, as a mill-terminated string.

The returned locale name string is owned by Xlib and should not be maodified or freed by the
client. Itmay be freed by a call t§FreeFontSetwith the associatedFontSet. Until freed, it
will not be modified by Xlib.

290

The XFreeFontSetfunction is a covenience function for freeing an output conteXFree-
FontSet also frees its associateddM if the output context was created K reateFontSet

void XFreefontSet @isplay, font_se}
Display *display,
XFontSetfont_set

display Specifies the connection to the X server.
font_set Specifies the font set.

The XFreeFontSetfunction frees the specified font set. The associated base font name list, font
name list, XFontStruct list, and XFontSetExtents, if any, are freed.

13.4.7. ObtainingFont Set Metrics

Metrics for the internationalized text drawing functions are defined in terms of a primary draw
direction, which is the default direction in which the character origin advances for each succeed-
ing character in the string. The Xlib interface is currently defined to support only a left-to-right
primary drav direction. Thedrawing origin is the position passed to the drawing function when
the text is drvn. Thebaseline is a line drawn through the drawing origin parallel to the primary
draw direction. Charactenk is the pixels painted in the foreground color and does not include
interline or intercharacter spacing or image text background pixels.

The drawing functions are allowed to implement implicit text directionality contragiag the
order in which characters are rendered along the primanydiraction in response to locale-spe-
cific lexical analysis of the string.

Regardless of the character rendering ordee origins of all characters are on the primary draw
direction side of the drawing origin. The screen location of a particular character image may be
determined withKXmbTextPerCharExtents or XwcTextPerCharExtents.

The drawing functions are allowed to implement context-dependent rendering, where the glyphs
drawn for a string are not simply a concatenation of the glyphs that represent each individual
character A string of two characters drawn witkXmbDrawString may render differently than if

the two characters were drawn with separate callXiabDrawString . If the client appends or
inserts a character in a previously drawn string, the client may need to sedna adjacent char-
acters to obtain proper rendering.

To find out about direction-dependent rendering, XiB@ectionalDependentDrawing.

Bool XDirectionalDependentDvang (font_sej
XFontSetfont_set

font_set Specifies the font set.

The XDirectionalDependentDrawing function returnsTr ue if the drawing functions implement
implicit text directionality; otherwise, it returricalse.

To find out about context-dependent rendering,XSentextualDrawing .

201

Bool XContextualDraving (font_sej
XFontSetfont_set

font_set Specifies the font set.

The XContextualDrawing function returnsIr ue if text drawn with the font set might include
context-dependent drawing; otherwise, it returakse.

To find out about context-dependent or direction-dependent renderingCastextDependent-
Drawing.

Bool XContextDependentDwang (font_sej
XFontSetfont_set

font_set Specifies the font set.

The XContextDependentDrawing function returnsrr ue if the drawing functions implement
implicit text directionality or if text drawn with the font_set might include context-dependent
drawing; otherwise, it returnisalse.

The drawing functions do not interpret newline, tab, or other control characters. The behavior
when nonprinting characters other than space are drawn is implementation-dependent. It is the
client’s responsibility to interpret control characters in a text stream.

The maximum character extents for the fonts that are used by the text drawing layers can be
accessed by th¥FontSetExtents structure:

typedef struct {
XRectangle max_ink xgent; /* over all drawable characters */
XRectangle max_logicalxéent; /* over dl drawable characters */
} X FontSetExtents;

The XRectangle structures used to return font set metrics are the usual Xlib screen-oriented rect-
angles with x, y giving the upper left cornamnd width and height alays positve.

The max_ink_extent membengs the maximum extentver all drawable characters, of the rect-
angles that bound the character glyph image drawn in the foregroundgelalive to a mnstant
origin. SeeXmbTextExtents and XwcTextExtents for detailed semantics.

The max_logical_extent memberes the maximum extent,ver al drawable characters, of the
rectangles that specify minimum spacing to other graphical featuresjerddadi onstant origin.
Other graphical features drawn by the client, for example, a border surrounding the text, should
not intersect this rectangle. The max_logical_extent member should be used to compute mini-
mum interline spacing and the minimum area that must be allowed in a text field/t@ gvan
number of arbitrary characters.

Due to context-dependent rendering, appendingen gharacter to a string may change the
string’s extent by an amount other than that charastedividual extent.

The rectangles for agin character in a string can be obtained frimbPerCharExtents or
XwcPerCharExtents.

To dbtain the maximum extents structurgegi an XFontSet, use XExtentsOfFontSet.

292

XFontSetExtents *XExtentsOfntSet font_se)
XFontSetfont_set

font_set Specifies the font set.

The XExtentsOfFontSet function returns aixXFontSetExtents structure for the fonts used by
the Xmb and Xwc layers for thevgn font set.

The XFontSetExtents structure is owned by Xlib and should not be modified or freed by the
client. Itwill be freed by a call tXFreeFontSetwith the associatedFontSet. Until freed, its
contents will not be modified by Xlib.

To dbtain the escapement in pixels of the specified text as a valugmisEextEscapementor
XwcTextEscapement

int XmbTextEscapementont_set string, num_bytey
XFontSetfont_set
char *string;
int num_bytes

int XwcTextEscapemenfént_set string, num_wchar}
XFontSetfont_set
wchar_t *string;
int num_wchars

font_set Specifies the font set.

string Specifies the character string.

num_bytes Specifies the number of bytes in the string argument.
num_wechars Specifies the number of characters in the string argument.

The XmbTextEscapementand XwcTextEscapementfunctions return the escapement in pixels

of the specified string as a value, using the fonts loaded for the specified font set. The escapement
is the distance in pixels in the primarywrdirection from the drawing origin to the origin of the

next character to be drawn, assuming that the rendering of the next character is not dependent on
the supplied string.

Regardless of the character rendering ordee escapement isvedys positie.

To dbtain the oerall_ink_return and erall_logical_return arguments, theepall bounding box
of the strings image, and a logical bounding box, vgabTextExtents
or XwcTextExtents.

293

int XmbTextExtents font_set string, num_bytesoverall_ink_return overall_logical_return)
XFontSetfont_set
char *string;
int num_bytes
XRectangle dverall_ink_return
XRectangle dvverall_logical_returrn

int XwcTextExtents font_set string, num_wchars
owerall_ink_return overall_logical_return)
XFontSetfont_set
wchar_t *string;
int num_wechars
XRectangle dwerall_ink_return
XRectangle dverall_logical_return

font_set Specifies the font set.

string Specifies the character string.

num_bytes Specifies the number of bytes in the string argument.
num_wchars Specifies the number of characters in the string argument.

owerall_ink_return
Returns the werall ink dimensions.

overall_logical_return
Returns thewerall logical dimensions.

The XmbTextExtents and XwcTextExtents functions set the components of the specifiesi-o
all_ink_return andwerall_logical_return arguments to theepall bounding box of the string’s
image and a logical bounding box for spacing purposes, reseciThey return the value
returned byXmbTextEscapementor XwcTextEscapement These metrics are relati o the
drawing origin of the string, using the fonts loaded for the specified font set.

If the overall_ink_return argument is non-NULL, it is set to the bounding box of the strihgi-
acter ink. The werall_ink_return for a nondescending, horizontally drawn Latin character is con-
ventionally entirely abee the baseline; that isyerall_ink_return.height <= ~@er-

all_ink_return.y The overall_ink_return for a nonkerned character is entirely at, and to the right
of, the origin; that is, werall_ink_return.x >= 0.A character consisting of a single pixel at the
origin would set werall_ink_return fields y = 0, x = 0, width = 1, and height = 1.

If the overall_logical_return argument is non-NULL, it is set to the bounding box that provides
minimum spacing to other graphical features for the string. Other graphical features, for exam-
ple, a border surrounding the text, should not intersect this rectangle.

When theXFontSet has missing charsets, metrics for eachvafable character are taken from
the default string returned b¥CreateFontSetso that the metrics represent the text as it will
actually be dran. Thebehavior for an ivalid codepoint is undefined.

To determine the effeate drawing origin for a character in a drawn string, the client should call
XmbTextPerCharExtents on the entire string, then on the chargaed subtract the x values of

the returned rectangles for the characléris is useful to redwa portions of a line of text or to

justify words, but for context-dependent rendering, the client should not assume that it can redraw
the character by itself and get the same rendering.

To dbtain per-character information for a text string, XsebTextPerCharExtents or

294

XwcTextPerCharExtents.

Status Xmbé&xtPerCharExtentdént_sef string, num_bytesink_array_return
logical_array_return array_size num_chars_returnoverall_ink_return overall_logical_return)
XFontSetfont_set
char *string;
int num_bytes
XRectangle thk_array_return
XRectangle togical _array_return
int array_size
int *num_chars_return
XRectangle dverall_ink_return
XRectangle vverall_logical_returrn

Status Xwce&xtPerCharExtentd¢nt_set string, num_wcharsink_array_return
logical_array_return array_size num_chars_returnoverall_ink_return overall_ink_return)
XFontSetfont_set
wchar_t *string;
int num_wchars
XRectangle tnk_array_return
XRectangle togical_array_return
int array_size
int *num_chars_return
XRectangle vverall_ink_return
XRectangle dvwerall_logical_return

font_set Specifies the font set.

string Specifies the character string.

num_bytes Specifies the number of bytes in the string argument.
num_wechars Specifies the number of characters in the string argument.

ink_array_return
Returns the ink dimensions for each character.

logical_array_return
Returns the logical dimensions for each character.

array_size Specifies the size of ink_array_return and logical_array_return. The caller must
pass in arrays of this size.

num_chars_return
Returns the number of characters in the string argument.

overall_ink_return
Returns the werall ink extents of the entire string.

overall_logical_return
Returns the eerall logical extents of the entire string.

The XmbTextPerCharExtents and XwcTextPerCharExtents functions return the text dimen-

sions of each character of the specified text, using the fonts loaded for the specified font set. Each
successie dement of ink_array_return and logical_array_return is set to the swecdssiac-

ter's drawn metrics, relate © the drawing origin of the string and one rectangle for each charac-

ter in the supplied text string. The number of elements of ink_array_return and

295

logical_array_return that kia been set is returned to num_chars_return.

Each element of ink_array_return is set to the bounding box of the corresponding character’s
drawn foreground colorEach element of logical _array_return is set to the bounding box that
provides minimum spacing to other graphical features for the corresponding chabtoser
graphical features should not interseagt afithe logical_array_return rectangles.

Note that anXRectanglerepresents the effeet dawing dimensions of the charactegadless

of the number of font glyphs that are used tawditze character or the direction in which the char-
acter is drevn. If multiple characters map to a single character glyph, the dimensions of all the
XRectanglesof those characters are the same.

When theXFontSet has missing charsets, metrics for eachvaitable character are taken from
the default string returned b¥CreateFontSetso that the metrics represent the text as it will
actually be draen. Thebehavior for an ivalid codepoint is undefined.

If the array_size is too small for the number of characters in the supplied text, the functions return
zero and num_chars_return is set to the number of rectangles required. Otherwise, the functions
return a nonzero value.

If the overall_ink_return or @erall_logical_return argument is non-NULKXmbTextPer-
CharExtents and XwcTextPerCharExtents return the maximum extent of the striggietrics
to overall_ink_return or gerall_logical_return, as returned B§mbTextExtents or XwcTextEx-
tents.

13.4.8. DrawingText Using Font Sets

The functions defined in this sectionwriext at a pecified location in a dveeble. The are

similar to the functionXDrawText, XDrawString , and XDrawlmageString except that they

work with font sets instead of single fonts and interpret the text based on the locale of the font set
instead of treating the bytes of the string as direct fonkesdeSeesection 8.6 for details of the

use of Graphics Contexts (GCs) and possible protocol errordBdtigont error is generated,
characters prior to the offending character masyeti@en drawn.

The text is drawn using the fonts loaded for the specified font set; the font in the GC is ignored
and may be modified by the functions. No validation that all fonts conform to some width rule is
performed.

The text functionsKmbDrawText and XwcDrawText use the following structures:

296

typedef struct {
char *chars;

[* pointer to string */

int nchars; /* number of bytes */
int delta; [* pixel delta between strings */
XFontSet font_set; [* fonts, None means dahange */
} X mbTextitem;
typedef struct {
wchar_t *chars; [* pointer to wide char string */
int nchars; /* number of wide characters */
int delta; [* pixel delta between strings */
XFontSet font_set; [* fonts, None means dainange */
} X wcTextltem;

To draw text using multiple font sets in agn drawable, useXmbDrawText or XwcDrawText.

void XmbDrawText(display, d, gc, X, y, items nitemg
Display *display,
Drawable d;
GCggc;
intx,y;
XmbTextltem *items
int nitems

void XwcDrawText (display, d, gc, X, y, items nitemg
Display *display,
Drawabled;
GCggc;
intx,y;
XwcTextitem *items
int nitems

display Specifies the connection to the X server.
d Specifies the dreable.

gc Specifies the GC.

X
y Specify the x and y coordinates.

items Specifies an array of text items.
nitems Specifies the number of text items in the array.

The XmbDrawText and XwcDrawText functions allev complex spacing and font set shifts
between text strings. Each text item is processed in turn, with the origin of a text element
advanced in the primary dvadirection by the escapement of the previous text itArnbext item
delta specifies an additional escapement of the text item drawing origin in the prinvadirdca
tion. Afont_set member other théfone in an item causes the font set to be used for this and
subsequent text items in the text_items list. Leading text items with a font_set member set to

297

None will not be drawn.

XmbDrawText and XwcDrawText do not perform ancontext-dependent rendering between
text sgments. Clientsnay compute the drawing metrics by passing each text segmeémitto
TextExtents and XwcTextExtents or XmbTextPerCharExtents and XwcTextPerCharEx-
tents. When theXFontSet has missing charsets, eachvailable character is drawn with the
default string returned b} CreateFontSet The behavior for an wralid codepoint is undefined.

To draw text using a single font set in avgn drawable, useXmbDrawString or XwcDraw-
String .

void XmbDrawString (display, d, font_set gc, X, y, string, num_byte¥
Display *display,
Drawabled;
XFontSetfont_set
GCggc;
intx,y;
char *string;
int num_bytes

void XwcDrawString display, d, font_set gc, X, y, string, num_wchar}
Display *display;
Drawabled;
XFontSetfont_set
GCggc;
intx,y;
wchar_t *string;
int num_wechars

display Specifies the connection to the X server.
d Specifies the dreable.

font_set Specifies the font set.

gc Specifies the GC.

X

y Specify the x and y coordinates.

string Specifies the character string.

num_bytes Specifies the number of bytes in the string argument.
num_wchars Specifies the number of characters in the string argument.

The XmbDrawString and XwcDrawString functions drav the specified text with the fore-
ground piel. Whenthe XFontSet has missing charsets, eachvailable character is drawn
with the default string returned ¥CreateFontSet The behavior for an waid codepoint is
undefined.

To draw image text using a single font set in @egidrawable, useXmbDrawlmageString or
XwcDrawlmageString.

298

void XmbDrawvlmageStringdisplay, d, font_set gc, x, y, string, num_bytey
Display *display;
Drawabled;
XFontSetfont_set
GCggc;
intx,y;
char *string;
int num_bytes

void XwcDrawlmageStringdisplay, d, font_set gc, X, y, string, num_wchar¥
Display *display;
Drawabled;
XFontSetfont_set
GCgc;
intx,y;
wchar_t *string;
int num_wchars

display Specifies the connection to the X server.
d Specifies the dreable.

font_set Specifies the font set.

gc Specifies the GC.

X

y Specify the x and y coordinates.

string Specifies the character string.

num_bytes Specifies the number of bytes in the string argument.
num_wchars Specifies the number of characters in the string argument.

The XmbDrawlmageString and XwcDrawlmageString functions fill a destination rectangle
with the background pixel defined in the GC and then paint the text with the foreground pixel.
The filled rectangle is the rectangle returnedvaal_logical_return byXmbTextExtents or
XwcTextExtents for the same text andFontSet.

When theXFontSet has missing charsets, each vailable character is drawn with the default
string returned byXCreateFontSet The behavior for an iralid codepoint is undefined.

13.5. Input Methods
This section provides discussions of the following X Input Method (XIM) topics:

. Input method werview

. Input method management

. Input method functions

. Input method values

. Input context functions

. Input context values

. Input method callback semantics

299

. Event filtering
. Getting keyboard input
. Input method corentions

13.5.1. InputMethod Overview

This section provides definitions for terms and concepts used for internationalized text input and a
brief overview of the intended use of the mechanisms provided by Xlib.

A large number of languages in the world use alphabets consisting of a small set of symbols (let-
ters) to form wvords. D enter text into a computer in an alphabetic language, a user usually has a
keyboard on which there exise¥k symbols corresponding to the alphabet. Sometimes, a few
characters of an alphabetic language are missing oreyhedd. May computer users who

speak a Latin-alphabet-based language onhg lamEnglish-based éyboard. Thg need to hit a
combination of kystrokes to enter a character that does not exist directly oeyhedtd. A

number of algorithms va been deeloped for entering such characters. These are known as
European input methods, compose input methods, or dgeidgut methods.

Japanese is an example of a language with a phonetic symbol set, where each symbol represents a
specific sound. There aredvphonetic symbol sets in Japanese: Katakana andatieagingen-

eral, Katakana is used for words that are of foreign origin, and Hiragana is used for writiag nati
Japanese ords. Collectiely, the two systems are called Kana. Each set consists of 48 charac-

ters.

Korean also has a phonetic symbol set, called Hangul. Each of the 24 basic phonetic symbols (14
consonants and 1@wels) represents a specific soudsyllable is composed of twvor three

parts: the initial consonants, thewels, and the optional last consonantéth Hangul, syllables

can be treated as the basic units on which text processing isEorexample, a delete opera-

tion may work on a phonetic symbol or a syllabk@rean code sets includevesal thousands of

these syllablesA user types the phonetic symbols that mak he syllables of the words to be
entered. Thelisplay may change as each phonetic symbol is ent&@dxample, when the

second phonetic symbol of a syllable is entered, the first phonetic symbol may change its shape
and size. Lilkewise, when the third phonetic symbol is entered, the fisptwnetic symbols

may change their shape and size.

Not all languages rely solely on alphabetic or phonetic systems. Some languages, including
Japanese and Korean, emypém ideographic writing system. In an ideographic system, rather
than taking a small set of symbols and combining them in different ways to create words, each
word consists of one unique symbol,(occasionallysevaal symbols). The number of symbols
can be very large: approximately 50,000dnkeen identified in Hanzi, the Chinese ideographic
system.

Two major aspects of ideographic systems impact their use with computers. First, the standard
computer character sets in Japan, China, and Korea include roughly 8,000 characters, while sets

in Taiwan hae ketween 15,000 and 30,000 characters. This makes it necessary to use more than
one byte to represent a charactéecond, it obviously is impractical tovea leyboard that

includes all of a gien languages ideographic symbols. Therefore, a mechanism is required for
entering characters so thateioard with a reasonable number e can be used. Those input
methods are usually based on phonetics, but there also exist methods based on the graphical prop-
erties of characters.

In Japan, both Kana and the ideographic system Kaniji are used. In Korea, Hangul and sometimes
the ideographic system Hanja are usedwNonsider entering ideographs in Japan, Korea,
China, and Taiwan.

300

In Japan, either Kana or English characters are typed and then a region is selected (sometimes
automatically) for coversion to Kanji. Seeral Kanji characters may ta the same phonetic rep-
resentation. Ifhat is the case with the string entered, a menu of characters is presented and the
user must choose the appropriate one. If no choice is necessary or a preference has been estab-
lished, the input method does the substitution diretfpen Latin characters are a@rted to

Kana or Kaniji, it is called a romaji cesrsion.

In Korea, it is usually acceptable to keep Korean text in Hangul form, but some people may
choose to write Hanja-originated words in Hanja rather than in Hafiguthange Hangul to
Hanja, the user selects a region forvasion and then follows the same basic method as that
described for Japanese.

Probably because there are well-accepted phonetic writing systems for Japanese and Korean,
computer input methods in these countries for entering ideographs are fairly stateigroard

keys hare toth English characters and phonetic symbols eredran hem, and the user can

switch between the vsets.

The situation is different for Chinese. While there is a phonetic system called Pinyin promoted
by authorities, there is no consensus for entering ChineiseSemevendors use a phonetic
decomposition (Pinyin or another), others use ideographic decomposition of Chinese words, with
various implementations anayboard layouts. There are about 16 known methods, none of

which is a clear standard.

Also, there are actually tvideographic sets used: Traditional Chinese (the original written Chi-
nese) and Simplified Chinese. @&l years ago, the PeomdRepublic of China launched a cam-
paign to simplify some ideographic characters and eliminate redundancies altogetierthe
plan, characters would be streamlingerg five years. Charactetsve been revised seral

times naov, resulting in the smallesmpler set that makes up Simplified Chinese.

13.5.1.1. InputMethod Architecture

As shown in the previous section, there areywtififerent input methods in use todaach vary-

ing with language, culture, and histo common feature of mgrninput methods is that the user
may type multiple &ystrokes to compose a single character (or set of characters). The process of
composing characters froneystrokes is calleg@reediting It may require compbealgorithms

and large dictionariesolving substantial computer resources.

Input methods may require one or more areas in which e steofeedback of the actual
keystrokes, to propose disambiguation to the,usdist dictionaries, and so on. The input
method areas of concern are as follows:

. Thestatusarea is a logical extension of the LEDs that exist on the physidabard. Itis
awindow that is intended to present the internal state of the input method that is critical to
the user The status area may consist of text data and bitmaps or some combination.

. Thepreeditarea displays the intermediate text for those languages that are composing prior
to the client handling the data.

. Theauxiliary area is used for pop-up menus and customizing dialogs that may be required
for an input method. There may be multiple auxiliary areas for an input method. Auxiliary
areas are managed by the input method independent of the client. Auxiliary areas are
assumed to be separate dialogs, which are maintained by the input method.

There are various user interaction styles used for preediting. The ones supported by Xlib are as
follows:

. For on-the-spotnput methods, preediting data will be displayed directly in the application
window. Application data is meed to dlow preedit data to appear at the point of insertion.

301

. Over-the-spopreediting means that the data is displayed in a preedit witidud is placed
over the point of insertion.

. Off-the-spopreediting means that the preedit winds inside the application wineobut
not at the point of insertion. Often, this type of winds placed at the bottom of the
application winduv.

. Root-windowpreediting refers to input methods that use a preedit wirklat is the child
of RootWindow.

It would require a lot of computing resources if portable applications had to include input meth-
ods for all the languages in th@rd. To avoid this, a goal of the Xlib design is to all@n

application to communicate with an input method placed in a separate process. Such a process is
called aninput server The server to which the application should connect is dependent on the
environment when the application is started up, that is, the user language and the actual encoding
to be used for it. The input method connection is said todade-dependentlt is dso user-

dependent. & a gien language, the user can choose, to some extent, the user interface style of
input method (if choice is possible amongesal).

Using an input server implies communicatiomead, but applications can be migrated without
relinking. Inputmethods can be implemented either as a stub communicating to an input server
or as a local library.

An input method may be based ofrant-endor aback-endarchitecture. Ira front-end architec-
ture, there are tavseparate connections to the X servaydtrokes go directly from the X server
to the input method on one connection and othemte to the regular client connection. The
input method is then acting as a filter and sends composed strings to theAcfiemit-end archi-
tecture requires synchronization between theedwnections toaid lost key events or locking
issues.

In a back-end architecture, a single X server connection is ésdigpatching mechanism must
decide on this channel to dgiee appropriate éystrokes to the input methodror instance, it

may retain a Helpéystroke for its own purpose. In the case where the input method is a separate
process (that is, a server), there must be a special communication protocol between the back-end
client and the input server.

A front-end architecture introduces synchronization issues and a filtering mechanism for nonchar-
acter leystrokes (Functiondys, Help, and so on)A back-end architecture sometimes implies

more communicationv@head and more process switching. If all three processes (X server,

input serverclient) are running on a single workstation, there aepgcess switches for each
keystroke in a kack-end architecture, but there is only one in a front-end architecture.

The abstraction used by a client to communicate with an input method is an opaque data structure
represented by th&IM data type. This data structure is returned byXpenIM function,

which opens an input method on aegi display. Subsequent operations on this data structure
encapsulate all communication between client and input method. There is no need for an X client
to use ap networking library or natural language package to use an input method.

A single input server may be used for one or more languages, supporting one or more encoding
schemes. Buhe strings returned from an input method wiltals be encoded in the (single)
locale associated with thelM object.

13.5.1.2. InputContexts

Xlib provides the ability to manage a multi-threaded state for text impatient may be using
multiple windows, each windowith multiple text entry areas, and the user possibly switching
among them at gtime. Theabstraction for representing the state of a particular input thread is

302

called aninput context The Xlib representation of an input context isXg .

An input context is the abstraction retaining the state, properties, and semantics of communica-
tion between a client and an input method. An input context is a combination of an input method,
a locale specifying the encoding of the character strings to be returned, a clienvyvintemal

state information, and various layout or appearance characteristics. The input context concept
somewhat matches for input the graphics context abstraction defined for graphics output.

One input context belongs to exactly one input method. Different input contexts may be associ-
ated with the same input method, possibly with the same clientwindin XIC is created with

the XCreatelC function, providing arXIM argument and affiliating the input context to the

input method for its lifetime. When an input method is closed XithoselM, dl of its affili-

ated input contexts should not be usegimore (and should preferably be destroyed before clos-
ing the input method).

Considering the example of a client wimdaith multiple text entry areas, the application pro-
grammer could, for example, choose to implement as follows:

. As mary input contexts are created as text entry areas, and the client will get the input
accumulated on each context each time it looks up in that context.

. A single context is created for a topdewindow in the application. If such a window
contains seeral text entry areas, each time the useveao another text entry area, the
client has to indicate changes in the context.

A range of choices can be made by application designers to use either a single or multiple input
contexts, according to the needs of their application.

13.5.1.3. Gettingkeyboard Input

To dbtain characters from an input method, a client must call the funétidri_ookupString or
XwcLookupString with an input context created from that input method. Both a locale and dis-
play are bound to an input method when it is opened, and an input context inherits this locale and
display Any drings returned byKmbLookupString or XwcLookupString will be encoded in

that locale.

13.5.1.4. IBcus Management

For each text entry area in which thémbLookupString or XwcLookupString functions are
used, there will be an associated input context.

When the application focus mes to a ext entry area, the application must set the input context
focus to the input context associated with that area. The input context focus is set by calling
XSetICFocuswith the appropriate input context.

Also, when the application focus n&s cut of a text entry area, the application should unset the
focus for the associated input context by callignsetlICFocus. As an @timization, if XSet-
ICFocus is called successly on two different input contexts, setting the focus on the second
will automatically unset the focus on the first.

To st and unset the input context focus corredtig necessary to track applicationAgfocus
changes. Suctocus changes do not necessarily correspond to X server focus changes.

If a single input context is being used to do input for multiple text entry areas, it will also be nec-
essary to set the focus windof the input context whewer the focus windw changes (see sec-
tion 13.5.6.3).

303

13.5.1.5. GeometryManagement

In most input method architectures (on-the-spot being the notable exception), the input method
will perform the display of its own datd&.o provide better visual localityt is often desirable to

have the input method areas embedded within a cli@otdo this, the client may need to allocate
space for an input method. Xlib provides support that allows the size and position of input
method areas to be provided by a client. The input method areas that are supported for geometry
management are the status area and the preedit area.

The fundamental concept on which geometry management for input method windows is based is
the proper division of responsibilities between the client (or toolkit) and the input method. The
division of responsibilities is as follows:

. The client is responsible for the geometry of the input method windo
. The input method is responsible for the contents of the input methodwvindo

An input method is able to suggest a size to the client, but it cannot suggest a placement. Also the
input method can only suggest a size. It does not determine the size, and it must accept the size it
is given.

Before a client provides geometry management for an input method, it must determine if geome-
try management is needed. The input method indicates the need for geometry management by
settingXIMPreeditArea or XIMStatusArea in its XIMStyles vaue returned byXGetIMVal-

ues. When a client has decided that it will provide geometry management for an input method, it
indicates that decision by setting tkdlInputStyle value in theXIC .

After a client has established with the input method that it will do geometry management, the
client must negotiate the geometry with the input method. The geometry is negotiated by the fol-
lowing steps:
. The client suggests an area to the input method by setti¥\tAeeaNeededvalue for
that area. If the client has no constraints for the input method, it either will not suggest an
area or will set the width and height to zero. Otherwise, it will set one of the values.

. The client will get the XIC valuXNAreaNeeded The input method will return its sug-
gested size in thisslue. Thanput method should pay attention toyaonstraints sug-
gested by the client.

. The client sets the XIC valuéNArea to inform the input method of the geometry of its
window. The client should try to honor the geometry requested by the input method. The
input method must accept this geometry.

Clients doing geometry management mustwara that setting other XIC values may affect the
geometry desired by an input methdebr example, XNFontSet and XNLineSpacing may
change the geometry desired by the input method.

The table of XIC values (see section 13.5.6) indicates the values that can cause the desired geom-
etry to change when there set. It is the responsibility of the client to renegotiate the geometry
of the input method windewhen it is needed.

In addition, a geometry management callback is provided by which an input method can initiate a
geometry change.

13.5.1.6. Eent Filtering

A filtering mechanism is provided to allenput methods to capture Xents transparently to
clients. lItis expected that toolkits (or clients) usikghbLookupString or XwcLookupString
will call this filter at some point in thevent processing mechanism to neakire that gents
needed by an input method can be filtered by that input method.

304

If there were no filtera dient could receie and discard eents that are necessary for the proper
functioning of an input method. The following provides & &xamples of suchvents:

. Expose gents on preedit winde in local mode.

. Events may be used by an input method to communicate with an input s8ueérinput
server protocol-relatedrents hae o be ntercepted if one does not want to disturb client
code.

. Key erents can be sent to a filter beforeyttaee bound to translations such as those the X
Toolkit Intrinsics library provides.

Clients are expected to get the XIC vaKidFilterEvents and augment thevent mask for the
client windav with that eyent mask. This mask may be zero.

13.5.1.7. Callbacks

When an on-the-spot input method is implemented, only the client can insert or delete preedit
data in place and possibly scroll existingtteThismeans that the echo of theyktrokes has to
be achiged by the client itself, tightly coupled with the input method logic.

When the user enters aystroke, the client callXmbLookupString or XwcLookupString . At

this point, in the on-the-spot case, the echo of dystkoke in the preedit has not yet been done.
Before returning to the client logic that handles the input characters, the look-up function must
call the echoing logic to insert them&eystroke. If the keystrokes entered so far nealap a bar-

acter the lkeystrokes entered need to be deleted, and the composed character will be returned.
Hence, what happens is that, while being called by client code, the input method logic has to call
back to the client before it returns. The client code, that is, a callback procedure, is called from
the input method logic.

There are a number of cases where the input method logic has to call back the client. Each of
those cases is associated with a well-defined callback action. It is possible for the client to spec-
ify, for each input context, what callback is to be called for each action.

There are also callbacks provided for feedback of status information and a callback to initiate a
geometry request for an input method.

13.5.1.8. \Kkible Position Feedback Masks

In the on-the-spot input style, there is a problem when attemptingvigpdeadit strings that are
longer than theailable space. Once the display area is exceeded, it is not cledoekoto dis-
play the preedit string. The visible position feedback maskdMfText help resole this prob-
lem by allowing the input method to specify hints that indicate the essential portions of the
preedit string.For example, such hints can helpvépers implement scrolling of a long preedit
string within a short preedit display area.

13.5.1.9. Peedit String Management

As highlighted before, the input method architecture provides preediting, which supports a type
of preprocessor input composition. In this case, composition consists of interpreting a sequence
of key events and returning a committed string WanbLookupString or XwcLookupString .

This provides the basics for input methods.

In addition to preediting based oaykesents, a general fram@rk is provided to gie a dient that
desires it more advanced preediting based on the text within the client. Thiwérknecalled
string conversiorand is provided using XICalues. Thdundamental concept of string aan-
sion is to allev the input method to manipulate the clisrigxt independent of grnuser preedit-
ing operation.

305

The need for string cesrsion is based on language needs and input method capabilities. The
following are some examples of string eersion:

. Transliteration coversion provides language-specific garsions within the input method.
In the case of Korean input, users wish tovedra Hangul string into a Hanja string while
in preediting, after preediting, or in other situations (for example, on a selected string). The
corversion is triggered when the user presses a Hangul-to-Hapjgeguence (which may
be input method specific). Sometimes the user may wantdkearhe cowersion after fin-
ishing preediting or on a user-selected string. Thus, the string to bertedns in an
application buffernot in the preedit area of the input method. The string@sion ser-
vices allav the client to request this transliteration eansion from the input method.
There are manother transliteration carersions defined for various languages, for exam-
ple, Kana-to-Kanji coversion in Japanese.

The key b remember is that transliteration eersions are triggered at the request of the
user and returned to the client immediately without affecting the preedit area of the input
method.

. Recorversion of a previously committed string or a selected string is supported by many
input methods as a cesnience to the useFor example, a user tends to mistype the com-
mit key while preediting. In that case, some input methods provide a spegigduence
to request a “recorert”’ operation on the committed string, similiar to the undo facility
provided by most text editors. Another example is where the user is proofreading a docu-
ment that has some misa@nsions from preediting and wants to correct the miseded
text. Suchrecorversion is again triggered by the userdking some special action, but
recorversions should not affect the state of the preedit area.

. Context-sensitie mrversion is required for some languages and input methods that need to
retrieve xt that surrounds the current spot location (cursor position) of the slierfier.
Such text is needed when the preediting operation depends on some surrounding characters
(usually preceding the spot locatiorfor example, in Thai language input, certain charac-
ter sequences may bevdtid and the input method may want to check whether characters
constitute a valid wrd. Inputmethods that do such context-dependent checking need to
retrieve the characters surrounding the current cursor position to obtain complete words.

Unlike ather cowersions, this coversion is not explicitly requested by the usbkrput

methods that provide such context-sewsitbrversion continuously need to request con-
text from the client, and srthange in the context of the spot location may affect such con-
versions. Thelient's context would be needed if the uservemthe cursor and starts edit-
ing again.

For this reason, an input method supporting this type ofaesion should taé notice of
when the client callXmbResetIC or XwcResetIC, which is usually an indication of a
context change.

Context-sensitie conversions just need a cgpf the clients text, while other cowersions replace
the clients text with new text to achieve the recomersion or transliteration.Yet in al cases the
result of a cowversion, either immediately or via preediting, is returned byXheLookup-

String and XwcLookupString functions.

String cowersion support is dependent on thaikbility of the XNStringConversion or
XNStringConversionCallback XIC values. Becaustae input method may not support string
corversions, clients hae o query the gailability of string cormversion operations by checking the
supported XIC values list by callingGetIMValues with the XNQuerylCValuesList IM value.

306

The difference between theseotwalues is whether the cearsion is irvoked by the client or the

input method. TheXNStringConversion XIC value is used by clients to request a stringzesn

sion from the input method. The client is responsible for determining whéthseare used to

trigger the string corersion and whether the string to be wemed should be copied or deleted.

The type of cowersion is determined by the input method; the client can only pass the string to be
corverted. Theclient is guaranteed that MNStringConversionCallback will be issued when

this value is set; thus, the client need only set one of these values.

The XNStringConversionCallback XIC value is used by the client to notify the input method
that it will accept requests from the input method for stringyesion. Ifthis value is set, it is

the input method responsibility to determine whiclvents are used to trigger the string ¢em

sion. Whersuch @ents occuythe input method issues a call to the client-supplied procedure to
retrieve the string to be camerted. Theclient's allback procedure is notified whether to gap
delete the string and is provided with hints as to the amount of text neededIM&&ingCon-
versionCallbackStruct specifies which text should be passed back to the input method.

Finally, the input method may call the clien¥dNStringConversionCallback procedure multi-

ple times if the string returned from the callback is not sufficient to perform a successés con
sion. Thearguments to the cliestprocedure allar the input method to define a position (in
character units) relat o the clients aursor position and the size of the text needed. By varying
the position and size of the desired text in subsequent callbacks, the input method gan retrie
additional text.

13.5.2. InputMethod Management

The interface to input methods might appear to be simply creating an input mé@pen(M)
and freeing an input methoXCloselM). However, input methods may require conmpleom-
munication with input method servers (IM servers), for example:

. If the X serverlM server and X clients are started asynchronoustyne clients may
attempt to connect to the IM server before it is fully operational, @hdThereforesome
mechanism is needed to all@lients to detect when an IM server has started.

It is up to clients to decide what should be done when an IM server igailabke (for example,
wait, or use some other IM server).

. Some input methods may allathe underlying IM server to be switched. Such customiza-
tion may be desired without restarting the entire client.

To support management of input methods in these cases, the following functions are provided:

XRegisterIMInstantiateCallback This function allows clients to register a callback pro-
cedure to be called when Xlib detects that an IM
server is up andvailable.

XOpenIM A client calls this function as a result of the callback
procedure being called.

307

XSetIMValue, XSetICValue These functions use the XIM and XIC valug$yDe-
stroyCallback, to dlow a dient to register a callback
procedure to be called when Xlib detects that an IM
server that was associated with an opened input
method is no longewailable.

In addition, this function can be used to switch IM
servers for those input methods that support such
functionality The IM value for switching IM servers
is implementation-dependent; see the description
below about switching IM servers.

XUnregisterIMInstantiateCallback This function remwees a @llback procedure regis-
tered by the client.

Input methods that support switching of IM servers may exhibit some side-effects:

. The input method will ensure thatyamew IM server supports arnof the input styles being
used by input contexts already associated with the input method.vetpthe list of sup-
ported input styles may be different.

. Geometry management requests on previously created input contexts may be initiated by
the nev IM server.

13.5.2.1. HotKeys

Some clients need to guarantee whiefskcan be used to escape from the input methagrde
less of the input method state; for example, the client-specific ldglp ikhe keys to nove he
input focus. The HotKy mechanism allows clients to specify a set @fkfor this purpose.
However, the input method might not alloclients to specify hotéys. Thereforeglients hae o
guery support of hotdys by diecking the supported XIC values list by calldGetIMValues
with the XNQuerylCValuesList IM value. Wherthe hot leys gecified conflict with the dy
bindings of the input method, hotys take precedencear the lkey kindings of the input method.

13.5.2.2. Peedit State Operation

An input method may ha veaal internal states, depending on its implementation and the
locale. Havever, one state that is independent of locale and implementation is whether the input
method is currently performing a preediting operation. Xlib provides the ability for an applica-
tion to manage the preedit state programmaticdllyo methods are provided for retrieving the
preedit state of an input corte Onemethod is to query the state by calliiGetlCValues with

the XNPreeditState XIC value. Anothemethod is to recee rotification wheneer the preedit

state is changedlo receve sich notification, an application needs to register a callback by call-
ing XSetlCValues with the XNPreeditStateNotifyCallback XIC value. Inorder to change the
preedit state programmaticalbn gplication needs to caKSetlCValues with XNPreedit-

State.

Availability of the preedit state is input method dependent. The input method may not provide
the ability to set the state or to retreethe state programmaticallfrherefore, clients he ©

guery &ailability of preedit state operations by checking the supported XIC values list by calling
XGetlMValues with the XNQuerylCValuesList IM value.

13.5.3. InputMethod Functions
To open a connection, us€OpeniM .

308

XIM XOpenIM (display, db, res_nameres_clas$
Display *display;,
XrmDatabaselb;
char *es_name
char *es_class

display Specifies the connection to the X server.

db Specifies a pointer to the resource database.
res_name Specifies the full resource name of the application.
res_class Specifies the full class name of the application.

The XOpenlIM function opens an input method, matching the current locale and modifiers speci-
fication. Currentocale and modifiers are bound to the input method at opening time. The locale
associated with an input method cannot be changed dynamichllyimplies that the strings
returned byXmbLookupString or XwcLookupString, for ary input context affiliated with a
given input method, will be encoded in the locale current at the time the input method is opened.

The specific input method to which this call will be routed is identified on the basis of the current
locale. XOpenIM will identify a default input method corresponding to the current locale. That
default can be modified usin¢SetLocaleModifiers for the input method modifier.

The db argument is the resource database to be used by the input method for looking up resources
that are priate to the input method. It is not intended that this database be used to look up values
that can be set as IC values in an input cdntd db is NULL, no database is passed to the input
method.

The res_name and res_class arguments specify the resource hame and class of the application.
They are intended to be used as prefixes by the input method when looking up resources that are
common to all input contexts that may be created for this input method. The characters used for
resource names and classes must be in the X Portable Character Set. The resources looked up are
not fully specified if res_name or res_class is NULL.

The res_name and res_class arguments are not assumed to exist beyond tK©paihtiv! .
The specified resource database is assumed to exist for the lifetime of the input method.
XOpenIM returns NULL if no input method could be opened.

To dose a connection, us€CloselM .

Status XCloselMifn)
XIM im;

im Specifies the input method.
The XCloselM function closes the specified input method.

To st input method attributes, u¥&etiIMValues.

309

char * XSetiIM\alues(m, ...)
XIM im;

im Specifies the input method.
Specifieghe variable-length argument list to set XIM values.

The XSetIMValues function presents a variable argument list programming interface for setting
attributes of the specified input method. It returns NULL if it succeeds; otherwise, it returns the
name of the first argument that could not be set. Xlib does not attempt to set arguments from the
supplied list that follev the failed argument; all arguments in the list preceding the failed argu-
ment hae keen set correctly.

To query an input method, useGetIMValues.

char * XGetIMValues(m, ...)
XIM im;

im Specifies the input method.
Specifieshe variable length argument list to get XIM values.

The XGetlMValues function presents a variable argument list programming interface for query-
ing properties or features of the specified input method. This function returns NULL if it suc-
ceeds; otherwise, it returns the name of the first argument that could not be obtained.

Each XIM value argument (following a name) must point to a location where the XIM value is to
be stored. That is, if the XIM value is of typetiie argument must be of type T*. If T itself is a
pointer type, therxXGetIMValues allocates memory to store the actual data, and the client is
responsible for freeing this data by callikgree with the returned pointer.

To dbtain the display associated with an input method XiBisplayOflM .

Display * XDisplayOfIM (im)
XIM im;

im Specifies the input method.
The XDisplayOfIM function returns the display associated with the specified input method.
To get the locale associated with an input method Xlsecale OfIM .

char * XLocaleOfIM (m)
XIM im;

im Specifies the input method.
The XLocaleOfIM function returns the locale associated with the specified input method.

To regster an input method instantiate callback, ¥&egisterIMInstantiateCallback .

310

Bool XRaisterIMInstantiateCallbacki{splay, db, res_nameres_class callback, client_datg
Display *display;,
XrmDatabaselb;
char *es_name
char *es_class
XIMProc callback
XPointer *client_datg

display Specifies the connection to the X server.

db Specifies a pointer to the resource database.

res_name Specifies the full resource name of the application.
res_class Specifies the full class name of the application.

callback Specifies a pointer to the input method instantiate callback.

client_data Specifies the additional client data.

The XRegisterIMInstantiateCallback function registers a callback to bedked wheneer a
new input method becomesailable for the specified display that matches the current locale and
modifiers.

The function return3r ue
if it succeeds; otherwise, it returfalse.

The generic prototype is as follows:

void IMInstantiateCallbackdisplay, client_datg call_data)
Display *display;
XPointerclient_datag
XPointercall _data;
display Specifies the connection to the X server.
client_data Specifies the additional client data.

call_data Not used for this callback andaadys passed as NULL.

To unregister an input method instantiation callback, XisaregisterIMInstantiateCallback .

311

Bool XUnregisterIMInstantiateCallbackl{splay, db, res_nameres_class callback, client_datg
Display *display;
XrmDatabaselb;
char *es_name
char *es_class
XIMProc callback
XPointer *client_datg

display Specifies the connection to the X server.

db Specifies a pointer to the resource database.

res_name Specifies the full resource name of the application.
res_class Specifies the full class name of the application.

callback Specifies a pointer to the input method instantiate callback.

client_data Specifies the additional client data.

The XUnregisterIMInstantiateCallback function rem@es an nput method instantiation call-
back previously rgistered. Théunction returnsTr ue if it succeeds; otherwise, it returfslse.

13.5.4. InputMethod Values

The following table describes WoXIM values are interpreted by an input method. The first col-
umn lists the XIM alues. Theecond column indicates\Wwa@ach of the XIM values are treated
by that input style.

The following leys gply to this table.

Key Explanation

D This value may be set usiéSetIMValues. If it is not set,
a default is provided.

S This value may be set usidpetiMValues.

G This value may be read usiXgsetIMValues.

XIM V alue Key

XNQuerylnputStyle G

XNResourceName D-S-G

XNResourceClass D-S-G

XNDestroyCallback D-S-G

XNQuerylMValuesList G

XNQuerylCValuesList G

XNVisiblePosition G

XNR6PreeditCallbackBehavior D-S-G

XNRG6PreeditCallbackBehavior is obsolete and its use is not recommended (see section
13.5.4.6).

312

13.5.4.1. Queryinput Style

A client should alays query the input method to determine which input styles are supported.
The client should then find an input style it is capable of supporting.

If the client cannot find an input style that it can support, it should negotiate with the user the con-
tinuation of the program (exit, choose another input method, and so on).

The argument value must be a pointer to a location where the returned value will be stored. The
returned value is a pointer to a structure of & Styles. Clients are responsible for freeing
the XIMStyles structure. © do o, useXFree.

The XIMStyles structure is defined as follows:

typedef unsigned long XIMStyle;

#define XIMPreeditArea 0x0001L
#define XIMPreeditCallbacks 0x0002L
#define XIMPreeditPosition 0x0004L
#define XIMPreeditNothing 0x0008L
#define XIMPreeditNone 0x0010L
#define XIMStatusArea 0x0100L
#define XIMStatusCallbacks 0x0200L
#define XIMStatusNothing 0x0400L
#define XIMStatusNone 0x0800L
typedef struct {

unsigned short count_styles;
XIMStyle * supported_styles;
} X IMStyles;

An XIMStyles structure contains the number of input styles supported in its count_styles field.
This is also the size of the supported_styles array.

The supported styles is a list of bitmask combinations, which indicate the combination of styles
for each of the areas supported. These areas are describe&dateelement in the list should
select one of the bitmask values for each area. The list describes the complete set of combina-
tions supported. Only these combinations are supported by the input method.

The preedit category defines what type of support is provided by the input method for preedit
information.

XIMPreeditArea If chosen, the input method would require the client to provide some
area values for it to do its preediting. Refer to XIC valdirea
and XNAreaNeeded

XIMPreeditPosition If chosen, the input method would require the client to provide posi-
tional values. Refeto XIC valuesXNSpotLocation and XNFo-
cusWindow.

313

XIMPreeditCallbacks If chosen, the input method would require the client to define the set
of preedit callbacks. Refer to XIC valugdPreeditStartCallback,
XNPreeditDoneCallback, XNPreeditDrawCallback, and
XNPreeditCaretCallback.
XIMPreeditNothing If chosen, the input method can function without preedit values.
XIMPreeditNone The input method does not provideyameedit feedback. Any
preedit value is ignored. This style is mutually exslesiith the
other preedit styles.

The status category defines what type of support is provided by the input method for status infor-
mation.

XIMStatusArea The input method requires the client to provide some area values for
it to do its status feedback. SE&lArea and XNAreaNeeded
XIMStatusCallbacks The input method requires the client to define the set of status call-

backs,XNStatusStartCallback, XNStatusDoneCallback and
XNStatusDrawCallback.
XIMStatusNothing The input method can function withoutyastatus values.
XIMStatusNone The input method does not provideyatatus feedback. If chosen,
ary status value is ignored. This style is mutually exaslasiith the
other status styles.

13.5.4.2. Resowre Name and Class

The XNResourceNameand XNResourceClassarguments are strings that specify the full name

and class used by the input method. These values should be used as prefixes for the name and
class when looking up resources that may vary according to the input method. If these values are
not set, the resources will not be fully specified.

It is not intended that values that can be set as XIM values be set as resources.

13.5.4.3. Desty Callback

The XNDestroyCallback argument is a pointer to a structure of tyfi#Callback . XNDe-
stroyCallback is triggered when an input method stops its service fpreason. Aftethe call-

back is ivoked, the input method is closed and the associated input context(s) are destroyed by
Xlib. Therefore, the client should not cXlCloselM or XDestroyIC.

The generic prototype of this callback function is as follows:

void DestrgyCallback {m, client_data call_data)
XIM im;
XPointerclient_datag
XPointercall_data;
im Specifies the input method.
client data Specifies the additional client data.
call_data Not used for this callback andnays passed as NULL.

A DestroyCallback is alays called with a NULL call_data argument.

314

13.5.4.4. QuenM/IC Values List

XNQuerylMValuesList and XNQuerylCValuesList are used to query about XIM and XIC val-
ues supported by the input method.

The argument value must be a pointer to a location where the returned value will be stored. The
returned value is a pointer to a structure of tyheValuesList . Clients are responsible for
freeing theXIMValuesList structure. © do ©, useXFree.

The XIMValuesList structure is defined as follows:

typedef struct {
unsigned short count_values;
char **supported_values;

} X IMValuesList;

13.5.4.5. \Kkible Position

The XNVisiblePosition argument indicates whether the visible position maské lifFeed-
back in XIMText are aailable.

The argument value must be a pointer to a location where the returned value will be stored. The
returned value is of typBool. If the returned value i$r ue, the input method uses the visible
position masks oKIMFeedback in XIMText ; otherwise, the input method does not use the
masks.

Because this XIM value is optional, a client should Z&HetIMValues with argument
XNQuerylMValues before using this gument. Ifthe XNVisiblePosition does not exist in the
IM values list returned frorXNQuerylMValues , the visible position masks ofIMFeedback

in XIMText are not used to indicate the visible position.

13.5.4.6. Peedit Callback Behavior

The XNR6PreeditCallbackBehavior argument originally included in the X11R6 specification
has been deprecated.t

The XNR6PreeditCallbackBehavior argument indicates whether the behavior of preedit call-
backs rgarding XIMPreeditDrawCallbackStruct values follows Release 5 or Release 6 seman-
tics.

The value is of typ&ool. When querying foilXNR6PreeditCallbackBehavior, if the returned
value is Tr ue, the input method uses the Release 6 behavior; otherwise, it uses the Release 5
behavior The default value iFalse. In order to use Release 6 semantics, the value of
XNR6PreeditCallbackBehavior must be set tdr ue.

Because this XIM value is optional, a client should g&HletiIMValues with argument
XNQuerylMValues before using this gument. Ifthe XNR6PreeditCallbackBehavior does

not exist in the IM values list returned fradNQuerylMValues , the PreeditCallback behavior is
Release 5 semantics.

T During formulation of the X11R6 specification, the behavior of the R6 PreeditDrawCallbacks
was going to differ significantly from that of the R5 callbacks. Late changes to the specification
corverged the R5 and R6 behaviors, eliminating the nee&XiR6PreeditCallbackBehavior.
Unfortunately this argument was not rewenl from the R6 specification before it was published.

315

13.5.5. InputContext Functions

An input context is an abstraction that is used to contain both the data required (if any) by an
input method and the information required to display that data. There may be multiple input con-
texts for one input method. The programming interfaces for creating, reading, or modifying an
input context use a variable argument list. The name elements of the argument lists are referred
to as XIC alues. ltis intended that input methods be controlled by these Xl@eg. Asew

XIC values are created, thehould be registered with the X Consortium.

To aeate an input context, udCreatelC.

XIC XCreatelC{m, ...)
XIM im;
im Specifies the input method.
Specifieshe variable length argument list to set XIC values.

The XCreatelC function creates a context within the specified input method.

Some of the arguments are mandatory at creation time, and the input context will not be created if
those arguments are not pided. Themandatory arguments are the input style and the set of text
callbacks (if the input style selected requires callbacks). All other input context values can be set
later.

XCreatelC returns a NULL value if no input context could be creatédiULL value could be
returned for ay of the following reasons:

. A required argument was not set.

. A read-only argument was set (for exam@lFilterEvents).

. The argument name is not recognized.

. The input method encountered an input method implementation-dependent error.
XCreatelC can generat®adAtom, BadColor, BadPixmap, and BadWindow errors.

To destrgy an input context, usXDestroylC.

void XDestrg/IC (ic)
XIC ic;

ic Specifies the input context.
XDestroyIC destroys the specified input context.

To communicate to and synchronize with input method fgrcmanges in &board focus from
the client side, us&SetlCFocusand XUnsetICFocus.

316

void XSetICFocus{c)
XIC ic;

ic Specifies the input context.

The XSetlCFocusfunction allows a client to notify an input method that the focus window
attached to the specified input context has vedéieyboard focus. The input method should

take action to provide appropriate feedback. Complete feedback specification is a matter of user
interface polig.

Calling XSetlCFocusdoes not affect the focus wingwalue.

void XUnsetICFocus {c)
XIC ic;

ic Specifies the input context.

The XUnsetICFocusfunction allows a client to notify an input method that the specified input
context has lost theekboard focus and that no more input is expected on the focus window
attached to that input comte Theinput method should takection to provide appropriate feed-
back. Completéeedback specification is a matter of user interfaceypolic

Calling XUnsetICFocusdoes not affect the focus windwalue; the client may still reces
events from the input method that are directed to the focus windo

To reset the state of an input context to its initial state XimbResetIC or XwcResetIC.

char * XmbResetICit)
XIC ic;

wchar_t * XwcResetICi¢)
XIC ic;

ic Specifies the input context.

When XNResetStateis set toXIMInitialState , XmbResetlC and XwcResetIC reset an input
context to its initial state; wheXNResetStateis set toXIMPreserveState, the current input
context state is presexd. Inboth cases, grinput pending on that context is deleted. The input
method is required to clear the preedit area,\if amd update the status accordingGalling
XmbResetlC or XwcResetIC does not change the focus.

The return value oKmbResetIC is its current preedit string as a multibyte string. If there is any
preedit text drawn or visible to the usiaen these procedures must return a non-NULL string. If
there is no visible preedit text, then it is input method implementation-dependent whether these
procedures return a non-NULL string or NULL.

The client should free the returned string by call€igee.

To get the input method associated with an input contextXigfIC .

317

XIM XIMOFIC(ic)
XIC ic;

ic Specifies the input context.
The XIMOfIC function returns the input method associated with the specified input context.

Xlib provides tvo functions for setting and reading XIC values, respegti XSetlCValues and
XGetlCValues. Both functions hee a \ariable-length argument list. In that argument list, any
XIC value's nrame must be denoted with a character string using the X Portable Character Set.

To st XIC values, us&SetICValues.

char * XSetIC\alues(c, ...)
XIC ic;
ic Specifies the input context.
Specifieshe variable length argument list to set XIC values.

The XSetICValues function returns NULL if no error occurred; otherwise, it returns the name of
the first argument that could not be set. An argument might not be sey fofrtae following
reasons:

. The argument is read-only (for exampi\FilterEvents).
. The argument name is not recognized.
. An implementation-dependent error occurs.

Each value to be set must be an appropriate datum, matching the data type imposed by the seman-
tics of the argument.

XSetlCValues can generatBadAtom, BadColor, BadCursor, BadPixmap, and BadWin-
dow errors.

To dbtain XIC values, usXGetlCValues.

char * XGetlC\lues(c, ...)
XIC ic;
ic Specifies the input context.
Specifieshe variable length argument list to get XIC values.

The XGetlCValues function returns NULL if no error occurred; otherwise, it returns the name of
the first argument that could not be obtained. An argument could not be obtainegddbtien
following reasons:

. The argument name is not recognized.
. The input method encountered an implementation-dependent error.

Each IC attribute value argument (following a name) must point to a location where the IC value
is to be stored. That is, if the IC value is of typeh€ argument must be of type T*. If T itself is
a pointer type, therXGetlCValues allocates memory to store the actual data, and the client is

318

responsible for freeing this data by callik§ree with the returned pointerThe exception to this
rule is for an IC value of typ&VaNestedList (for preedit and status atttites). Inthis case, the
argument must also be of typ@&/aNestedList. Then, the rule of changing type T to T* and free-
ing the allocated data applies to each element of the nested list.

13.5.6. InputContext Values

The following tables describe WoXIC values are interpreted by an input method depending on
the input style chosen by the user.

The first column lists the XICalues. Thesecond column indicates which values awelied in

affecting, negotiating, and setting the geometry of the input method wsndbhesubentries
under the third column indicate the different input styles that are supported. Each of these
columns indicates loeach of the XIC values are treated by that input style.

The following leys gply to these tables.

Key Explanation
C This value must be set wikCreatelC.
D This value may be set usingCreatelC. Ifitis not set, a default is pro-

vided.
G This value may be read usiXgsetICValues.
GN This value may cause geometry negotiation when its value is set by means of

XCreatelC or XSetICValues.
GR This value will be the response of the input method wheiGahvalue is

changed.
GS This value will cause the geometry of the input method windde ®t.
@] This value must be set once and only once. It need not be set at create time.
S This value may be set wikkSetIlCValues.
Ignored This value is ignored by the input method for thenginput style.

Input Style
XIC Value Geometry Preedit Preedit Preedit Preedit Preedit
Management Callback Paosition Area Nothing None

Input Style C-G C-G C-G C-G C-G
Client Windav oG O-G 0-G O-G Ignored
Focus Windaev GN D-S-G D-S-G D-S-G D-S-G Ignored
Resource Name Ignored D-S-G D-S-G D-S-G Ignored
Resource Class Ignored D-S-G D-S-G D-S-G Ignored
Geometry Callback Ignored Ignored D-S-G Ignored Ignored
Filter Events G G G G Ignored
Destrgy Callback D-S-G D-S-G D-S-G D-S-G D-S-G
String Cowersion Callback S-G S-G S-G S-G S-G
String Comwersion D-S-G D-S-G D-S-G D-S-G D-S-G
Reset State D-S-G D-S-G D-S-G D-S-G Ignored
HotKey SG S-G S-G S-G Ignored
HotKeyState D-S-G D-S-G D-S-G D-S-G Ignored
Preedit

319

Input Style

XIC Value Geometry Preedit Preedit Preedit Preedit Predit
Management Callback Pasition Area Nothing None
Area GS Ignored D-S-G D-S-G Ignored Ignored
Area Needed GN-GR Ignored Ignored S-G Ignored Ignored
Spot Location Ignored D-S-G Ignored Ignored Ignored
Colormap Ignored D-S-G D-S-G D-S-G Ignored
Foreground Ignored D-S-G D-S-G D-S-G Ignored
Background Ignored D-S-G D-S-G D-S-G Ignored
Background Pixmap Ignored D-S-G D-S-G D-S-G Ignored
Font Set GN Ignored D-S-G D-S-G D-S-G Ignored
Line Spacing GN Ignored D-S-G D-S-G D-S-G Ignored
Cursor Ignored D-S-G D-S-G D-S-G Ignored
Preedit State D-S-G D-S-G D-S-G D-S-G Ignored
Preedit State Notify Callback S-G S-G S-G S-G Ignored
Preedit Callbacks C-S-G Ignored Ignored Ignored Ignored
Input Style

XIC Value Geometry Status Status Status Status

Management Callback Area Nothing None
Input Style C-G C-G C-G C-G
Client Windav oG 0-G 0-G Ignored
Focus Windav GN D-S-G D-S-G D-S-G Ignored
Resource Name Ignored D-S-G D-S-G Ignored
Resource Class Ignored D-S-G D-S-G Ignored
Geometry Callback Ignored D-S-G Ignored Ignored
Filter Events G G G G
Status
Area GS Ignored D-S-G Ignored Ignored
Area Needed GN-GR Ignored S-G Ignored Ignored
Colormap Ignored D-S-G D-S-G Ignored
Foreground Ignored D-S-G D-S-G Ignored
Background Ignored D-S-G D-S-G Ignored
Background Pixmap Ignored D-S-G D-S-G Ignored
Font Set GN Ignored D-S-G D-S-G Ignored
Line Spacing GN Ignored D-S-G D-S-G Ignored
Cursor Ignored D-S-G D-S-G Ignored
Status Callbacks C-S-G Ignored Ignored Ignored

13.5.6.1. InputStyle

The XNInputStyle argument specifies the input style to be used. The value of this argument
must be one of the values returned by X@&etIMValues function with theXNQuerylnput-
Style argument specified in the supported_styles list.

320

Note that this argument must be set at creation time and cannot be changed.

13.5.6.2. ClientWindow

The XNClientWindow argument specifies to the input method the client windowvhich the
input method can display data or create subwirsdoGeometrywalues for input method areas are
given with respect to the client windo Dynamic change of client wingois not supported.

This argument may be set only once and should be set befomrgpaihis done using this input
contt. If it is not set, the input method may not operate correctly.

If an attempt is made to set this value a second timeX8ttICValues, the stringXNClien-
tWindow will be returned byXSetlCValues, and the client windw will not be changed.

If the client windav is not a valid windav ID on the display attached to the input metho®aal-
Window error can be generated when this value is used by the input method.

13.5.6.3. Bcus Window

The XNFocusWindow argument specifies the focus wimdoThe primary purpose of the
XNFocusWindow is to identify the winda that will receve the key event when input is com-
posed. Irmaddition, the input method may possibly affect the focus wira®bllows:

. Select @ents on it

. Send @ents to it

. Modify its properties

. Grab the leyboard within that window

The associated value must be of tyfgendow. If the focus windw is not a valid windev ID on
the display attached to the input metho@&aa\Window error can be generated when this value is
used by the input method.

When this XIC value is left unspecified, the input method will use the client windde
default focus winde.

13.5.6.4. Resowe Name and Class

The XNResourceNameand XNResourceClassarguments are strings that specify the full name
and class used by the client to obtain resources for the clientwinidwese values should be

used as prefixes for name and class when looking up resources that may vary according to the
input contet. If these values are not set, the resources will not be fully specified.

It is not intended that values that can be set as XIC values be set as resources.

13.5.6.5. GeometryCallback

The XNGeometryCallback argument is a structure of typ@MCallback (see section
13.5.6.13.12).

The XNGeometryCallback argument specifies the geometry callback that a client can set. This
callback is not required for correct operation of either an input method or a client. It can be set
for a client whose user interface pgligermits an input method to request the dynamic change of
that input method' window. An input method that does dynamic change will need to filter any
events that it uses to initiate the change.

13.5.6.6. FilterEvents

The XNFilterEvents argument returns thesent mask that an input method needs teeha
selected far The client is expected to augment its owarge mask for the client windowith this

321

one.
This argument is read-onlig set by the input method at create time, and i&@nehanged.
The type of this argument imsigned long Setting this value will cause an error.

13.5.6.7. Deswy Callback

The XNDestroyCallback argument is a pointer to a structure of tyfiMCallback (see section
13.5.6.13.12). Thisallback is triggered when the input method stops its service yaoeason;

for example, when a connection to an IM server is émokAfterthe destrg callback is called,

the input context is destroyed and the input method is closed. Therefore, the client should not call
XDestroylC and XCloselM.

13.5.6.8. StringConversion Callback

The XNStringConversionCallback argument is a structure of typ@MCallback (see section
13.5.6.13.12).

The XNStringConversionCallback argument specifies a string ersion callback. This call-

back is not required for correct operation of either the input method or the client. It can be set by
a dient to support string carrsions that may be requested by the input method. An input

method that does string cansions will filter ary events that it uses to initiate the a@nsion.

Because this XIC value is optional, a client should X&@ktIMValues with argument
XNQuerylCValuesList before using this argument.

13.5.6.9. StringConversion
The XNStringConversion argument is a structure of typdMStringCon versionText.

The XNStringConversion argument specifies the string to beated by an input method.
This argument is not required for correct operation of either the input method or the client.

String cowersion facilitates the manipulation of text independent of preediting. It is essential for
some input methods and clients to manipulate text by performing contextveeamsttiersion,
recorversion, or transliteration cemrsion on it.

Because this XIC value is optional, a client should X&ketIMValues with argument
XNQuerylCValuesList before using this argument.

The XIMStringCon versionText structure is defined as follows:

322

typedef struct _XIMStringCarersionText {
unsigned short length;
XIMStringCorversionFeedback *feedback;
Bool encoding_is_wchar;

union {
char *mbs;
wchar_t *wcs;
} string;

} X IMStringCorversionTex;

typedef unsigned long XIMStringCeersionFeedback;

The feedback member is reserved for future use. The text to berteohis defined by the string
and length members. The length is indicated in charactergrevent the library from freeing
memory pointed to by an uninitialized pointére client should set the feedback element to
NULL.

13.5.6.10. Reséebtate

The XNResetStateargument specifies the state the input context will return to after calling
XmbResetIC or XwcResetIC.

The XIC state may be set to its initial state, as specified bY\lireeditState value when
XCreatelC was alled, or it may be set to preserte current state.

The valid masks foKIMResetState are as follows:

typedef unsigned long XIMResetState;

#define XIMInitialState (1L)
#define XIMPreserveState (1L<<1)

If XIMInitialState is set, therlXmbResetlC and XwcResetIC will return to the initial
XNPreeditState state of the XIC.

If XIMPreserveState is set, therXmbResetIC and XwcResetIC will presene the current state
of the XIC.

If XNResetStateis left unspecified, the default ¥MinitialState .
XIMResetState values other than those specified abaill default to XIMInitialState .

Because this XIC value is optional, a client should X@ketIMValues with argument
XNQuerylCValuesList before using this argument.

13.5.6.11. HoKeys

The XNHotKey argument specifies the hatyklist to the XIC. The hotdy list is a pointer to the
structure of typeXIMHotKeyTriggers , which specifies thedy events that must be reced
without ary interruption of the input method:or the hot ley list set with this argument to be uti-
lized, the client must also sEktNHotKeyState to XIMHotKeyStateON .

323

Because this XIC value is optional, a client should X&@ktIMValues with argument
XNQuerylCValuesList before using this functionality.

The value of the argument is a pointer to a structure of XybHotKeyTriggers .

If an event for a ley in the hot ley list is found, then the process will regeihe ezent and it will
be processed inside the client.

typedef struct {
KeySym leysym;
unsigned int modifier;
unsigned int modifier_mask;
} X IMHotK eyTrigger;

typedef struct {
int num_hot_ky;,
XIMHotK eyTrigger *key;,
} X IMHotK eyTriggers;

The combination of modifier and modifier_mask are used to represent one of three states for each
modifier: either the modifier must be on, or the modifier must be off, or the modifier is a “don’t
care’ — it may be on or df Whena nodifier_mask bit is set to 0, the state of the associated

modifier is ignored whernvaluating whether thedy is hot or not.

Modifier Bit Mask Bit Meaning

0 1 The modifier must be off.

1 1 The modifier must be on.

n/a 0 Do not care if the modifier is on or off.

13.5.6.12. HoKey State

The XNHotKeyState argument specifies the hatykgate of the input method. This is usually
used to switch the input method between leyt ¢gperation and normal input processing.

The value of the argument is a pointer to a structure of type XIMéjSitéte .

typedef unsigned long XIMHot#/State;

#define XIMHotKeyStateON (Ox0001L)
#define XIMHotKeyStateOFF (Ox0002L)

If not specified, the default XIMHotKeyStateOFF .
13.5.6.13. Peedit and Status Attributes

The XNPreeditAttributes and XNStatusAttributes arguments specify to an input method the
attributes to be used for the preedit and status areay, ifThonse attributes are passed to

324

XSetICValues or XGetlCValues as a nested variable-length list. The names to be used in these
lists are described in the following sections.

13.5.6.13.1. Aea

The value of theXNArea argument must be a pointer to a structure of iyRectangle.The
interpretation of theXNArea argument is dependent on the input method style that has been set.

If the input method style iXIMPreeditPosition , XNArea specifies the clipping region within
which preediting will tak gace. Ifthe focus winde has been set, the coordinates are assumed
to be relatre © the focus windw. Otherwise, the coordinates are assumed to bevelatihe

client windawv. If neither has been set, the results are undefined.

If XNArea is not specified, is set to NULL, or isvaiid, the input method will default the clip-
ping region to the geometry of tdddNFocusWindow. If the area specified is NULL onidid,
the results are undefined.

If the input style isXIMPreeditArea or XIMStatusArea, XNArea specifies the geometry pro-

vided by the client to the input method. The input method may use this area to display its data,
either preedit or status depending on the area designated. The input method may create a window
as a child of the client wingowith dimensions that fit thX¥NArea. The coordinates are rebhagi

to the client windw. If the client windav has not been set yet, the input method showld sa

these values and apply them when the client windaet. If XNArea is not specified, is set to

NULL, or is invalid, the results are undefined.

13.5.6.13.2. Aea Needed

When set, theXNAreaNeededargument specifies the geometry suggested by the client for this

area (preedit or status). The value associated with the argument must be a pointer to a structure of
type XRectangle. Note that the x, y values are not used and that nonzero values for width or

height are the constraints that the client wishes the input method to respect.

When read, th&XNAreaNeededargument specifies the preferred geometry desired by the input
method for the area.

This argument is only valid if the input styleX$MPreeditArea or XIMStatusArea. Itis used
for geometry negotiation between the client and the input method and has no other effect on the
input method (see section 13.5.1.5).

13.5.6.13.3. Spotocation

The XNSpotLocation argument specifies to the input method the coordinates of the spot to be
used by an input methoaeeuting with XNInputStyle set toXIMPreeditPosition. When spec-
ified to ary input method other thaXiMPreeditPosition , this XIC value is ignored.

The x coordinate specifies the position where the next character would be inserted. The y coordi-
nate is the position of the baseline used by the current text line in the focusvwifttmx and y
coordinates are relag o the focus windw, if it has been set; otherwise, ytare relatve the

client windaw. If neither the focus winde nor the client winder has been set, the results are
undefined.

The value of the argument is a pointer to a structure of Xygmnt.

13.5.6.13.4. Colormap

Two different arguments can be used to indicate what colormap the input method should use to
allocate colors, a colormap ID, or a standard colormap name.

325

The XNColormap argument is used to specify a colormap ID. The argument value is of type
Colormap. An invdid argument may generateBadColor error when it is used by the input
method.

The XNStdColormap argument is used to indicate the name of the standard colormap in which
the input method should allocate colors. The argument valueAsoan that should be a valid

atom for callingXGetRGBColormaps. An invdid argument may generateBadAtom error

when it is used by the input method.

If the colormap is left unspecified, the client wimdcolormap becomes the default.

13.5.6.13.5. Breground and Background

The XNForeground and XNBackground arguments specify the foreground and background
pixel, respectiely. The argument value is of typmsigned long It must be a valid pixel in the
input method colormap.

If these values are left unspecified, the default is determined by the input method.

13.5.6.13.6. Backgrund Pixmap

The XNBackgroundPixmap argument specifies a background pixmap to be used as the back-
ground of the winda. The value must be of tydeixmap. An invdid argument may generate a
BadPixmap error when it is used by the input method.

If this value is left unspecified, the default is determined by the input method.

13.5.6.13.7. Bnt Set

The XNFontSet argument specifies to the input method what font set is to be used. The argu-
ment value is of typXFontSet.

If this value is left unspecified, the default is determined by the input method.

13.5.6.13.8. LineSpacing

The XNLineSpace argument specifies to the input method what line spacing is to be used in the
preedit windev if more than one line is to be used. This argument is of itytpe

If this value is left unspecified, the default is determined by the input method.

13.5.6.13.9. Cursor

The XNCursor argument specifies to the input method what cursor is to be used in the specified
window. This argument is of typ€ursor.

An invalid argument may generateBadCursor error when it is used by the input method. If
this value is left unspecified, the default is determined by the input method.

13.5.6.13.10. Rzedit State

The XNPreeditState argument specifies the state of input preediting for the input method. Input
preediting can be on or off.

The valid mask names fofNPreeditState are as follows:

326

typedef unsigned long XIMPreeditState;

#define XIMPreeditUnknown oL
#define XIMPreeditEnable 1L
#define XIMPreeditDisable (1L<<1)

If a value ofXIMPreeditEnable is set, then input preediting is turned on by the input method.
If a value ofXIMPreeditDisable is set, then input preediting is turned lof the input method.
If XNPreeditState is left unspecified, then the state will be implementation-dependent.

When XNResetStateis set toXIMInitialState , the XNPreeditState value specified at the cre-
ation time will be reflected as the initial state ¥imbReset|C and XwcResetIC.

Because this XIC value is optional, a client should X&@ktIMValues with argument
XNQuerylCValuesList before using this argument.

13.5.6.13.11. Reedit State Notify Callback

The preedit state notify callback is triggered by the input method when the preediting state has
changed. Theaue of theXNPreeditStateNotifyCallback argument is a pointer to a structure
of type XIMCallback . The generic prototype is as follows:

void PreeditStateNotifyCallback{, client_datg call_data)
XIC ic;
XPointerclient_datg
XIMPreeditStateNotifyCallbackStructall_data;

ic Specifies the input context.
client_data Specifies the additional client data.
call_data Specifies the current preedit state.

The XIMPreeditStateNotifyCallbackStruct structure is defined as follows:

typedef struct _XIMPreeditStateNotifyCallbackStruct {
XIMPreeditState state;
} X IMPreeditStateNotifyCallbackStruct;

Because this XIC value is optional, a client should X&@ktIMValues with argument
XNQuerylCValuesList before using this argument.

13.5.6.13.12. Reedit and Status Callbacks

A client that wants to support the input stidéMPreeditCallbacks must provide a set of preedit
callbacks to the input method. The set of preedit callbacks is as follows:

XNPreeditStartCallback This is called when the input method starts preedit.
XNPreeditDoneCallback This is called when the input method stops preedit.

327

XNPreeditDrawCallback This is called when a number of preediitrokes should be
echoed.

XNPreeditCaretCallback This is called to mee the text insertion point within the preedit
string.

A client that wants to support the input stdéMStatusCallbacks must provide a set of status
callbacks to the input method. The set of status callbacks is as follows:

XNStatusStartCallback This is called when the input method initializes the status area.

XNStatusDoneCallback This is called when the input method no longer needs the status
area.

XNStatusDrawCallback This is called when updating of the status area is required.

The value of apstatus or preedit argument is a pointer to a structure ofXyikCallback .

typedef void (*XIMProc)();

typedef struct {
XPointer client_data;
XIMProc callback;

} X IMCallback;

Each callback has some particular semantics and will carry the data that expresses the environ-
ment necessary to the client into a specific data structure. This paragraph only describes the argu-
ments to be used to set the callback.

Setting ag of these values while doing preedit may cause unexpected results.

13.5.7. InputMethod Callback Semantics

XIM callbacks are procedures defined by clients or text drawing packages that are to be called
from the input method when selectea@s occur Most clients will use a text editing package or
a toolkit and, hence, will not need to define such callbacks. This section defines the callback
semantics, when tlgare triggered, and what their arguments are. This information is mostly
useful for X toolkit implementors.

Callbacks are mostly provided so that clients (or text editing packages) can implement on-the-
spot preediting in their own windo In that case, the input method needs to communicate and
synchronize with the client. The input method needs to communicate changes in the preedit win-
dow when it is under control of the client. Those callbacksaatlee client to initialize the

preedit area, display awereedit string, mee the text insertion point during preedit, terminate
preedit, or update the status area.

All callback procedures folle the generic prototype:

328

void CallbackPrototypée¢, client_data call_data)
XIC ic;
XPointerclient_datg
SomeTypeall_data;

ic Specifies the input context.
client_data Specifies the additional client data.
call_data Specifies data specific to the callback.

The call_data argument is a structure that expresses the arguments neededadacteenan-

tics; that is, it is a specific data structure appropriate to the callback. In cases where no data is
needed in the callback, this call_data argument is NULL. The client_data argument is a closure
that has been initially specified by the client when specifying the callback and passed back. It
may serve, for example, to inherit application context in the callback.

The following paragraphs describe the programming semantics and specific data structure associ-
ated with the different reasons.

13.5.7.1. GeometnyCallback

The geometry callback is triggered by the input method to indicate that it wants the client to
negotiate geometryThe generic prototype is as follows:

void GeometryCallback¢, client_data call_data)
XIC ic;
XPointerclient_datg
XPointercall_data;
ic Specifies the input context.
client_data Specifies the additional client data.
call_data Not used for this callback andaadys passed as NULL.

The callback is called with a NULL call_data argument.

13.5.7.2. Desioy Callback

The destry callback is triggered by the input method when it stops service yareason. After
the callback is imoked, the input context will be freed by Xlirhe generic prototype is as fol-
lows:

void Destrg/Callback {c, client_data call_data)
XIC ic;
XPointerclient_datg
XPointercall_data;
ic Specifies the input context.
client data Specifies the additional client data.

call_data Not used for this callback andnalys passed as NULL.

The callback is called with a NULL call_data argument.

329

13.5.7.3. StringConversion Callback

The string cowersion callback is triggered by the input method to request the client to return the
string to be coverted. Thereturned string may be either a multibyte or wide character string,
with an encoding matching the locale bound to the input gbnféhecallback prototype is as
follows:

void StringCowersionCallbackic, client_datg call_data)
XIC ic;
XPointerclient_datag
XIMStringCorwversionCallbackStructcall_data;

ic Specifies the input method.
client_data Specifies the additional client data.
call_data Specifies the amount of the string to beveoted.

The callback is passed aiMStringCon versionCallbackStruct structure in the call_data argu-
ment. Thaext member is axXIMStringCon versionText structure (see section 13.5.6.9) to be

filled in by the client and describes the text to be sent to the input method. The data pointed to by
the string and feedback elements of XiMStringCon versionText structure will be freed using

XFree by the input method after the callback returns. So the client should not point to internal
buffers that are critical to the client. Similgrbecause the feedback element is currently reserved
for future use, the client should set feedback to NULL teqotethe library from freeing memory

at some random location due to an uninitialized pointer.

The XIMStringCon versionCallbackStruct structure is defined as follows:

typedef struct _XIMStringCarersionCallbackStruct {
XIMStringCorwversionPosition position;
XIMCaretDirection direction;
short factor;
XIMStringCorversionOperation operation;
XIMStringCorversionText *text;

} X IMStringCorversionCallbackStruct;

typedef short XIMStringCarersionPosition;

typedef unsigned short XIMStringCesrsionOperation;

#define XIMStringCon versionSubstitution (0x0001)
#define XIMStringCon versionRetrieval (0x0002)

XIMStringCon versionPosition specifies the starting position of the string to be returned in the
XIMStringCon versionText structure. Thevalue identifies a position, in units of characters, rel-
ative 1o the clients aursor position in the clierg’tuffer.

The ending position of the text buffer is determined by the direction and factor members. Specifi-
cally, it is the character position reledi o the starting point as defined by the

330

XIMCaretDirection . The factor member oKIMStringCon versionCallbackStruct specifies

the number oXIMCaretDirection positions to be applied-or example, if the direction speci-

fies XIMLineEnd and factor is 1, then all characters from the starting position to the end of the
current display line are returned. If the direction specXiddForwardChar or XIMBack-
wardChar , then the factor specifies a rel@iposition, indicated in characters, from the starting
position.

XIMStringCon versionOperation specifies whether the string to be wented should be deleted
(substitution) or copied (retial) from the clients kuffer. When theXIMStringCon versionOp-
eration is XIMStringCon versionSubstitution, the client must delete the string to bewted
from its own buffer When theXIMStringCon versionOperation is XIMStringCon versionRe-
trieval, the client must not delete the string to beveoied from its buffer The substitute opera-
tion is typically used for recerrsion and transliteration ceersion, while the retrieal operation
is typically used for context-sensii wrversion.

13.5.7.4. Peedit State Callbacks

When the input method turns preediting on or ofPraeditStartCallback or PreeditDoneCall-
back callback is triggered to let the toolkit do the setup or the cleanup for the preedit region.

int PreeditStartCallbackg, client_data call_data)
XIC ic;
XPointerclient_datg
XPointercall_data;

ic Specifies the input context.

client data Specifies the additional client data.
call_data Not used for this callback andnalys passed as NULL.

When preedit starts on the specified input context, the callback is called with a NULL call_data
argument. PreeditStartCallback will return the maximum size of the preedit strirypositive
number indicates the maximum number of bytes allowed in the preedit string, and a value of -1
indicates there is no limit.

void PreeditDoneCallbaclg, client_data call _data)
XIC ic;
XPointerclient_datag
XPointercall _data;
ic Specifies the input context.
client_data Specifies the additional client data.
call_data Not used for this callback andaalys passed as NULL.

When preedit stops on the specified input context, the callback is called with a NULL call_data
argument. Thelient can release the data allocatedPogeditStartCallback.

PreeditStartCallback should initialize appropriate data needed for displaying preedit informa-
tion and for handling furthePreeditDrawCallback calls. OncePreeditStartCallback is
called, it will not be called again befoRreeditDoneCallback has been called.

331

13.5.7.5. Peedit Draw Callback

This callback is triggered to dveand insert, delete or replace, preedit text in the preedit region.

The preedit text may include una@ned input text such as Japanese Kanayated text such

as Japanese Kaniji characters, or characters of both kinds. That string is either a multibyte or wide
character string, whose encoding matches the locale bound to the input.c®hicallback

prototype is as follows:

void PreeditDravCallback {c, client_datg call_data)
XIC ic;
XPointerclient_datag
XIMPreeditDrawCallbackStructcall_data;
ic Specifies the input context.
client_ data Specifies the additional client data.
call_data Specifies the preedit drawing information.

The callback is passed aiMPreeditDrawCallbackStruct structure in the call_data argument.
The text member of this structure contains the text to bendréfterthe string has been drawn,
the caret should be med to the specified location.

The XIMPreeditDrawCallbackStruct structure is defined as follows:

typedef struct _XIMPreeditDrawCallbackStruct {

int caret; /* Cursor offset within preedit string */
int chg_first; [* Starting change position */
int chg_length; /* Length of the change in character count */

XIMT ext *text;
} X IMPreeditDrawCallbackStruct;

The client must keep updating a buffer of the preedit text and the callback arguments referring to
indexes in that buffer The call_data fields ka ecific meanings according to the operation, as
follows:

. To indicate text deletion, the call_data member specifies a NULL text field. The text to be
deleted is then the current text in the buffer from position chg_first (starting at zero) on a
character length of chg_length.

. When text is non-NULL, it indicates insertion or replacement of text in the buffer.

The chg_length member identifies the number of characters in the current preedit buffer
that are affected by this calR positive chg_length indicates that chg_length number of
characters, starting at chg_first, must be deleted or must be replaced by text, whose length
is specified in theXIMText structure.

A chg_length value of zero indicates that text must be inserted right at the position speci-
fied by chg_first.A value of zero for chg_first specifies the first character in the buffer.

chg_length and chg_first combine to identify the modification required to the preedit
buffer; beginning at chg_first, replace chg_length number of characters with the text in the
suppliedXIMText structure. For example, suppose the preedit buffer contains the string
"ABCDE".

332

Text: A B CDE

A A A A A A

CharPos: 0 12345

The CharPos in the diagram shows the location of the character positiorereltite
character.

If the value of chg_first is 1 and the value of chg_length is 3, this says to replace 3 charac-
ters beginning at character position 1 with the string iniText structure. Hence,
BCD would be replaced by the value in the structure.

Though chg_length and chg_first are both signed integersvilenever havea negdive
value.

The caret member identifies the character position before which the cursor should be placed
— after modification to the preedit buffer has been complekad example, if caret is zero,

the cursor is at the beginning of the buffdrthe caret is one, the cursor is between the first
and second character.

typedef struct _XIM&xt {
unsigned short length;
XIMFeedback * feedback;
Bool encoding_is_wchar;
union {
char * multi_byte;
wchar_t * wide_char;
} string;
} X IMTex;

The text string passed is actually a structure specifying as follows:

The length member is the text length in characters.

The encoding_is_wchar member is a value that indicates if the text string is encoded in
wide character or multibyte format. The text string may be passed either as multibyte or as
wide character; the input method controls in which form data is passed. Theschént’

back routine must be able to handle data passed in either form.

The string member is the text string.

The feedback member indicates rendering type for each character in the string.mémber
string is NULL (indicating that only highlighting of the existing preedit buffer should be
updated), feedback points to length highlight elements that should be applied to the existing
preedit bufferbegnning at chg_first.

The feedback member expresses the types of rendering feedback the callback should apply when
drawing text. Renderingf the text to be drawn is specified either in generic ways (for example,
primary, secondary) or in specific ways yese, underline). When generic indications akeyi

the client is free to choose the rendering style. It is nece$mavgve, that primary and sec-

ondary be mapped to twdistinct rendering styles.

If an input method wants to control display of the preedit string, an input method can indicate the
visibility hints using feedbacks in a specific waihe XIMVisibleToForward , XIMVisibleTo-
Backward, and XIMVisibleCenter masks are exclugdly used for these visibility hints. The
XIMVisibleToForward mask indicates that the preedit text is preferably displayed in the

333

primary drav direction from the caret position in the preedit area &dv TheXIMVisibleTo-
Backward mask indicates that the preedit text is preferably displayed from the caret position in
the preedit area backward, relatio the primary drev direction. TheXIMVisibleCenter mask
indicates that the preedit text is preferably displayed with the caret position in the preedit area
centered.

The insertion point of the preedit string could exist outside of the visible area when visibility hints
are used. Only one of the masks is valid for the entire preedit string, and only one character can
hold one of these feedbacks for @apgiinput context at one time. This feedback may be OR’ed
together with another highlight (such dBViRe verse). Onlythe most recently set feedback is

valid, and ay previous feedback is automatically canceled. This is a hint to the client, and the
client is free to choose hato display the preedit string.

The feedback member also specifies nendering of the text argument should be performed. If
the feedback is NULL, the callback should apply the same feedback as is used for the surround-
ing characters in the preedit buffer; if chg_first is at a highlight bounith@rglient can choose

which of the tve highlights to use. If feedback is not NULL, feedback specifies an array defining
the rendering for each character of the string, and the length of the array is thus length.

If an input method wants to indicate that it is only updating the feedback of the preedit text with-
out changing the content of it, tbddMText structure will contain a NULL value for the string

field, the number of characters affected (reéatd chg_first) will be in the length field, and the
feedback field will point to an array 0fiMFeedback.

Each element in the feedback array is a bitmask represented by a valueXiMyeedback.
The valid mask names are as follows:

typedef unsigned long XIMFeedback;

#define XIMReverse 1L
#define XIMUnderline (1L<<1)
#define XIMHighlight (1L<<2)
#define XIMPrimary (1L<<B5)t
#define XIMSecondary (1L<<6)t
#define XIMTertiary (AL<<)t
#define XIMVisibleToForward (1L<<8)
#define XIMVisibleToBackward (1L<<9)
#define XIMVisibleCenter (1L<<10)

Characters drawn with théIMRe verse highlight should be drawn by swapping the foreground
and background colors used towraormal, unhighlighted characters. Characters drawn with the
XIMUnderline highlight should be underlined. Characters drawn withxtdHighlight |
XIMPrimary , XIMSecondary, and XIMTertiary highlights should be drawn in some unique
manner that must be different frodiMRe verse and XIMUnderline .

T The values foXIMPrimary , XIMSecondary, and XIMTertiary were incorrectly defined in
the R5 specification. The X Consortits’X11R5 implementation correctly implemented the val-
ues for these highlights. The value of these highlights has been corrected in this specification to
agree with the values in the Consortisr{11R5 and X11R6 implementations.

334

13.5.7.6. Peedit Caret Callback

An input method may ha& its own navigation &ys to dlow the user to mee the text insertion
point in the preedit area (for example, towadackward or fonard). Consequentlynput

method needs to indicate to the client that it shouldentee text insertion point. It then calls the
PreeditCaretCallback.

void PreeditCaretCallbackd, client_data call _data)
XIC ic;
XPointerclient_datag
XIMPreeditCaretCallbackStructall_data;

ic Specifies the input context.

client_data Specifies the additional client data.
call_data Specifies the preedit caret information.

The input method will trigger PreeditCaretCallback tosethe text insertion point during
preedit. Thecall data argument contains a pointer todMPreeditCaretCallbackStruct
structure, which indicates where the caret should besthoThecallback must mee the inser-
tion point to its nev location and return, in field position, theaneff set value from the initial
position.

The XIMPreeditCaretCallbackStruct structure is defined as follows:

typedef struct _XIMPreeditCaretCallbackStruct {

int position; [* Caret offset within preedit string */
XIMCaretDirection direction; /* Caret nvas drection */
XIMCaretStyle style; [* Feedback of the caret */

} X IMPreeditCaretCallbackStruct;

The XIMCaretStyle structure is defined as follows:

typedef enum {

XIMlsInvisible, /* Disable caret feedback */
XIMIsPrimary, /* Ul defined caret feedback */
XIMIsSecondary /* Ul defined caret feedback */

} X IMCaretStyle;

The XIMCaretDirection structure is defined as follows:

335

-

typedef enum {
XIMForwardChar XIMBackwardChar,
XIMForwardWord, XIMBackwardWord,
XIMCaretUp, XIMCaretDown,
XIMNextLine, XIMPreviousLine,
XIMLineStart, XIMLineEnd,
XIMAbsolutePosition,
XIMDontChange,

} X IMCaretDirection;

These values are defined as follows:

XIMForwardChar Move the caret forward one character position.

XIMBackwardChar Move the caret backward one character position.

XIMForwardWord Move the caret forward one word.

XIMBackwardWord Move the caret backward one word.

XIMCaretUp Move the caret up one line keeping the current horizontal offset.

XIMCaretDown Move the caret down one line keeping the current horizontal offset.

XIMPr eviousLine Move the caret to the beginning of the previous line.

XIMNextLine Move the caret to the beginning of the next line.

XIMLineStart Move the caret to the beginning of the current display line that con-
tains the caret.

XIMLineEnd Move the caret to the end of the current display line that contains the
caret.

XIMAbsolutePosition The callback must me to the location specified by the position field
of the callback data, indicated in characters, starting from the begin-
ning of the preedit t&¢. Hencea value of zero means me back to
the beginning of the preedit text.

XIMDontChange The caret position does not change.

13.5.7.7. Statuallbacks

An input method may communicate changes in the status of an input context (for example, cre-
ated, destroyed, or focus changes) with three status callbacks: StatusStartCallback, Status-
DonecCallback, and StatusDrawCallback.

When the input context is created or gains focus, the input method calls the StatusStartCallback
callback.

void StatusStartCallbackd, client_data call_data)
XIC ic;
XPointerclient_datag
XPointercall _data;
ic Specifies the input context.
client_data Specifies the additional client data.

call_data Not used for this callback andaadys passed as NULL.

The callback should initialize appropriate data for displaying status and for responding to

336

StatusDrawCallback calls. Once StatusStartCallback is called, it will not be called again before
StatusDoneCallback has been called.

When an input context is destroyed or when it loses focus, the input method calls Status-
DonecCallback.

void StatusDoneCallbacid, client_data call_data)
XIC ic;
XPointerclient_datag
XPointercall _data;
ic Specifies the input context.
client_data Specifies the additional client data.
call_data Not used for this callback andaadys passed as NULL.

The callback may releaseyatiata allocated ofStatusStart.
When an input context status has to be updated, the input method calls StatusDrawCallback.

void StatusDrevCallback {c, client_data call_data)
XIC ic;
XPointerclient_datg
XIMStatusDrawCallbackStructcall _data;

ic Specifies the input context.
client_data Specifies the additional client data.
call_data Specifies the status drawing information.

The callback should update the status area by either drawing a string or imaging a bitmap in the
status area.

The XIMStatusDataType and XIMStatusDrawCallbackStruct structures are defined as fol-
lows:

337

-

typedef enum {
XIMT extType,
XIMBitmapType,
} X IMStatusDataType;

typedef struct _XIMStatusDrawCallbackStruct {
XIMStatusDataType type;
union {
XIMT ext *text;
Pixmap bitmap;
} data;
} X IMStatusDrawCallbackStruct;

The feedback styleXIMVisibleToForward , XIMVisibleToBackward , and XIMVisibleTo-
Center are not releant and will not appear in th&IMFeedback element of theXIMText struc-
ture.

13.5.8. Ewent Filtering

Xlib provides the ability for an input method to register a filter internal to. Xittis filter is

called by a client (or toolkit) by callingFilterEvent after callingXNextEvent. Any dient that
uses theXIM interface should calKFilterEvent to allow input methods to process thewests
without knowledge of the cliest’dspatching mechanismA client’s user interface policmay
determine the priority ofvent filters with respect to othevent-handling mechanisms (for exam-
ple, modal grabs).

Clients may not kn@ how mary filters there are, if anand what thg do. They may only know
if an event has been filtered on return XFilterEvent . Clients should discard filteredrents.

To filter an @ent, useXFilterEvent .

Bool XFilterEvent (event, w)
XEvent *event;
Windoww;

event Specifies thewent to filter.
w Specifies the winde for which the filter is to be applied.

If the windov argument isNone, XFilterEvent applies the filter to the windospecified in the
XEvent structure. Thevindow argument is provided so that layers &bXlib that do @ent redi-
rection can indicate to which windcan ezent has been redirected.

If XFilterEvent returnsTr ue, then some input method has filtered theng and the client
should discard thevent. If XFilterEvent returnsFalse, then the client should continue process-
ing the &ent.

If a grab has occurred in the client akHBilterEvent returnsTr ue, the client should ungrab the
keyboard.

338

13.5.9. Gettingkeyboard Input
To get composed input from an input method, ¥sebLookupString or XwcLookupString .

int XmbLookupStringic, event, buffer_return, bytes_bufferkeysym_returnstatus_returi
XIC ic;
XKeyPressedEventeient
char *buffer_return;
int bytes_buffer
KeySym *keysym_return
Status status_return

int XwcLookupString{c, ewvent, buffer_return, bytes_bufferkeysym_returnstatus_return
XIC ic;
XKeyPressedEventetent;
wchar_t buffer_return;
int wchars_buffer
KeySym *keysym_return
Status status_return

ic Specifies the input context.

ewent Specifies the éy event to be used.

buffer_return Returns a multibyte string or wide character string (if any) from the input
method.

bytes_buffer
wchars_buffer Specifies spacevailable in the return buffer.

keysym_return Returns the KySym computed from thesent if this argument is not NULL.
status_return Returns a value indicating what kind of data is returned.

The XmbLookupString and XwcLookupString functions return the string from the input
method specified in the buffer_returigament. Ifno string is returned, the buffer_return argu-
ment is unchanged.

The KeySym into which the KyCode from thewent was mapped is returned in the
keysym_return argument if it is non-NULL and the status_return argument indicates that a
KeySym was returned. If both a string andey8ym are returned, thegfSym value does not
necessarily correspond to the string returned.

XmbLookupString returns the length of the string in bytes, afwicLookupString returns the
length of the string in characters. BaimbLookupString and XwclLookupString return text
in the encoding of the locale bound to the input method of the specified input context.

Each string returned b¥mbLookupString and XwcLookupString begins in the initial state of
the encoding of the locale (if the encoding of the locale is state-dependent).
Note

To insure proper input processing, it is essential that the client paskeyiyess
events to XmbLookupString and XwcLookupString. Their behavior when a
client passes KeyReleaseevent is undefined.

Clients should check the status_return argument before using the other retdwesd These
two functions both return a value to status_return that indicates what has been returned in the

339

other aguments. Th@ossible values returned are:

XBufferOverflow The input string to be returned is too large for the supplied
buffer_return. Theequired size XmbLookupString in bytes;
XwcLookupString in characters) is returned as the value of the func-
tion, and the contents of buffer_return amegdym_return are not
modified. Theclient should recall the function with the samverg
and a buffer of adequate size to obtain the string.

XLookupNone No consistent input has been composed soTae contents of
buffer_return anddysym_return are not modified, and the function
returns zero.

XLookupChars Some input charactersyeabeen composed. Theare placed in the
buffer_return argument, and the string length is returned as the value
of the function. The string is encoded in the locale bound to the input
contt. Thecontent of the &ysym_return argument is not modified.

XLookupKeySym A KeySym has been returned instead of a string and is returned in
keysym_return. Theontent of the buffer_return argument is not
modified, and the function returns zero.

XLookupBoth Both a keySym and a string are returnedi.ookupChars and
XLookupKeySym occur simultaneously.

It does not mad any dfference if the input context passed as an argumexitbLookupString

and XwcLookupsString is the one currently in possession of the focus or not. Input may ha

been composed within an input context before it lost the focus, and that input may be returned on
subsequent calls tdmbLookupString or XwcLookupString even though it does not va any

more leyboard focus.

13.5.10. InputMethod Corwventions

The input method architecture is transparent to the client. Howdients should respect a num-
ber of cowentions in order to work propetlyClients must also benare of possible effects of
synchronization between input method and library in the case of a remote input server.

13.5.10.1. ClientConventions

A well-behaed dient (or toolkit) should first query the input method style. If the client cannot
satisfy the requirements of the supported styles (in terms of geometry management or callbacks),
it should negotiate with the user continuation of the program or raise an exception or error of
some sort.

13.5.10.2. Synclonization Corventions

A KeyPressevent with a KeyCode of zero is used excludly as a signal that an input method
has composed input that can be returneXimpLookupString or XwcLookupString. No
other use is made oftéeyPressevent with KeyCode of zero.

Such angent may be generated by either a front-end or a back-end input method in an imple-
mentation-dependent manné&ome possible ways to generate thisng include:

. A synthetic gent sent by an input method server
. An atificial event created by a input method filter and pushed onto a cliestit queue
. A KeyPressevent whose KyCode value is modified by an input method filter

When callback support is specified by the client, input methods will nr@gtéikn unless they
explicitly called back the client and obtained no response (the callback is not specified or returned

340

invalid data).

13.6. StringConstants

The following symbols for string constants are defineddt X Xlib.h>. Althoughthey are

shown here with particular macro definitions ythaay be implemented as macros, as global
symbols, or as a mixture of thedw Thestring pointer value itself is not significant; clients must
not assume that inequality ofdawalues implies inequality of the actual string data.

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

XNVaNestedList
XNSeparatorofNestedList
XNQuerylnputStyle
XNClientWindow
XNInputStyle
XNFocusWindow
XNResourceName
XNResourceClass
XNGeometryCallback
XNDestroyCallback
XNFilterEvents
XNPreeditStartCallback
XNPreeditDoneCallback
XNPreeditDrawCallback
XNPreeditCaretCallback
XNPreeditStateNotifyCallback
XNPreeditAttributes
XNStatusStartCallback
XNStatusDoneCallback
XNStatusDrawCallback
XNStatusAttributes
XNArea

XNAreaNeeded
XNSpotLocation
XNColormap
XNStdColormap
XNForeground
XNBackground
XNBackgroundPixmap
XNFontSet
XNLineSpace

XNCursor
XNQuerylMValuesList
XNQuerylCValuesList
XNStringConversionCallback
XNStringConversion
XNResetState
XNHotKey
XNHotKeyState
XNPreeditState
XNVisiblePosition
XNR6PreeditCallbackBehavior

341

"XNVaNestedList"
"separatorofNestedList"
"querylnputStyle"”
"clientWindow"
"inputStyle"
"focusWindow"
"resourceName"
"resourceClass"
"geometryCallback"
"destroyCallback"
"filterEvents"
"preeditStartCallback"
"preeditDoneCallback”
"preeditDrawCallback”
"preeditCaretCallback"
"preeditStateNotifyCallback"
"preeditAttributes”
"statusStartCallback"
"statusDoneCallback"
"statusDrawCallback"
"statusAttributes”
"area"

"areaNeeded"
"spotLocation”
"colorMap”
"stdColorMap"
"foreground”
"background"”
"backgroundPixmap"
"fontSet"

"lineSpace”

"cursor"
"querylMValuesList"
"querylCValuesList"
"stringCorversionCallback
"stringCorversion"
"resetState"

"hotkey"
"hotkeyState"
"preeditState”
"visiblePosition"
"réPreeditCallback"

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

XNRequiredCharSet
XNQueryOrientation
XNDirectionalDependentDrawing
XNContextualDrawing
XNBaseFontName
XNMissingCharSet
XNDefaultString

XNOrientation

XNFontinfo

XNOMAutomatic

342

"requiredCharSet"
"gqueryOrientation”
"directionalDependentDrawing"
"contextualDrawing"
"baseFontName"
"missingCharSet"
"defaultString"

"orientation”

"fontinfo"

"omAutomatic"

Chapter 14

Inter-Client Communication Functions

Thelnter-Client Communication Conventions Manu@reafter referred to as the ICCCM,

details the X Consortium app@d conventions that geern inter-client communications. These
corventions ensure peer-to-peer client cooperation in the use of selections, cut buffers, and shared
resources as well as client cooperation with wimdnd session managersor further informa-

tion, see thénter-Client Communication Conventions Manual

Xlib provides a number of standard properties and programming interfaces that are ICCCM com-
pliant. Thepredefined atoms for some of these properties are defined iXiiéatom.h>

header file, where tovaid name conflicts with user symbols th&itefine name has an XA_ pre-

fix. For further information about atoms and properties, see section 4.3.

Xlib's ¢lection and cut buffer mechanisms provide the primary programming interfaces by which

peer client applications communicate with each other (see sections 4.5 and 16.6). The functions

discussed in this chapter provide the primary programming interfaces by which client applications
communicate with their windo and session managers as well as share standard colormaps.

The standard properties that are of special interest for communicating withwandsession
managers are:

Name Type Format Description

WM_CLASS STRING 8 Set by application programs to allow
window and session managers to
obtain the applicatios’resources
from the resource database.

WM_CLIENT_MACHINE TEXT The string name of the machine on
which the client application is run-
ning.

WM_COLORMAP_WINDOWS WINDOW 32 The list of windw IDs that may

need a different colormap from that
of their top-level window.

WM_COMMAND TEXT The command and arguments, null-
separated, used toviske the appli-
cation.

WM_HINTS WM_HINTS 32 Additional hints set by the client for

use by the winde manager The C
type of this property iXWMHints .

WM_ICON_NAME TEXT The name to be used in an icon.

343

Name Type Format

Description

WM_ICON_SIZE WM_ICON_SIZE 32
WM_NAME TEXT

WM_NORMAL_HINTS WM_SIZE_HINTS 32
WM_PROTOCOLS ATOM 32
WM_STATE WM_STATE 32
WM_TRANSIENT_FOR WINDOW 32

The windev manager may set this
property on the root windoto
specify the icon sizes it supports.
The C type of this property is
XlconSize.

The name of the application.

Size hints for a windwin its
normal state. The C type of this
property isXSizeHints.

List of atoms that identify the com-
munications protocols between the
client and windav manager in
which the client is willing to partici-
pate.

Intended for communication
between winde and session man-
agers only.

Set by application programs to indi-
cate to the winde manager that a
transient top-teel window, such as a
dialog box.

The remainder of this chapter discusses:

Client to windav manager communication
Client to session manager communication
Standard colormaps

14.1. Clientto Window Manager Communication
This section discusseswido:

Manipulate top-leel windows

Corvert string lists

Set and read text properties

Set and read the WM_NAME property

Set and read the WM_ICON_NAME property

Set and read the WM_HINTS property

Set and read the WM_NORMAL_HINTS property
Set and read the WM_CLASS property

Set and read the WM_TRANSIENT_FOR property
Set and read the WM_RIR OCOLS property

Set and read the WM_COLORMAP_WINDOWS property

344

. Set and read the WM_ICON_SIZE property
. Use windav manager covenience functions

14.1.1. Manipulating Top-Level Windows

Xlib provides functions that you can use to change the visibility or size oftelpAlandows (that
is, those that were created as children of the root wihdbdlotethat the subwindows that you
create are ignored by windananagers. Thereforgpu should use the basic wirdéunctions
described in chapter 3 to manipulate your applicatiawindows.

To request that a topatel window be iconified, useXlconifyWindow .

Status XlconifyWindw (display, w, screen_numbér
Display *display,
Windoww;
int screen_number

display Specifies the connection to the X server.
w Specifies the winde.

screen_number
Specifies the appropriate screen number on the host server.

The XlconifyWindow function sends a WM_CHANGE_8&TE ClientMessageevent with a

format of 32 and a first data elementiodnicState (as described in section 4.1.4 of theer-

Client Communication Conventions Manuaid a windev of w to the root winda of the speci-

fied screen with anvent mask set t&GubstructureNotifyMask | SubstructureRedirectMask.

Windov managers may elect to reeeithis message and if the windlds in its normal state, may

treat it as a request to change the windateite from normal to iconic. If the

WM_CHANGE_SRATE property cannot be internedJconifyWindow does not send a message

and returns a zero status. It returns a nonzero status if the client message is sent successfully; oth-
erwise, it returns a zero status.

To request that a topatel window be withdrawn, useXWithdrawWindow .

Status XWithdrawWindw (display, w, screen_numbér
Display *display,
Windoww;
int screen_number

display Specifies the connection to the X server.
w Specifies the winde.

screen_number
Specifies the appropriate screen number on the host server.

The XWithdrawWindow function unmaps the specified wivdand sends a synthetldnmap-
Notify event to the root winde of the specified scree'Windov managers may elect to recei
this message and may treat it as a request to change the veigddevto withdravn. Whena
window is in the withdrawn state, neither its normal nor its iconic representations is visible. It
returns a nonzero status if thenmapNotify event is successfully sent; otherwise, it returns a
zero status.

345

XWithdrawWindow can generate BadWindow error.
To request that a topatel window be reconfigured, usXReconfigureWMWindow .

Status XReconfigureWMWindo(display, w, screen_numberalue_maskvalueg
Display *display;,
Windoww;
int screen_number
unsigned invalue_mask

XWindowChanges values
display Specifies the connection to the X server.
w Specifies the winde.

screen_number
Specifies the appropriate screen number on the host server.

value_mask Specifies which values are to be set using information in the values structure.
This mask is the bitwise inclug OR of the valid configure winde values bits.

values Specifies thexXWindowChanges structure.

The XReconfigureWMWindow function issues &onfigureWindow request on the specified
top-level window. If the stacking mode is changed and the request fails vididMatch error,
the error is trapped by Xlib and a synthefionfigureRequestEventcontaining the same config-
uration parameters is sent to the root of the specified winsidindow managers may elect to
receve this event and treat it as a request to reconfigure the indicated winidoeturns a
nonzero status if the request wed is successfully sent; otherwise, it returns a zero status.

XReconfigureWMWindow can generat®adValue and BadwWindow errors.

14.1.2. Conwerting String Lists

Many of the text properties alwa variety of types and formats. Because the data stored in these
properties are not simple null-terminated stringsX@axtProperty structure is used to describe
the encoding, type, and length of the text as well asitey TheXTextProperty structure con-
tains:

typedef struct {

unsigned char *alue; [*property data */

Atom encoding; [* type of property */

int format; /*8, 16, or 32 */

unsigned long nitems; /* number of items in value */
} X TextProperty;

Xlib provides functions to caert localized text to or from encodings that support the inter-client
communication corentions for tet. Inaddition, functions are provided for a@nting between
lists of pointers to character strings and text properties in the STRING encoding.

The functions for localized text return a signed integer error status that eiSianessas zero,
specific error conditions asgetive rumbers, and partial ceersion as a count of unceertible
characters.

346

#define XNoMemory -1
#define XLocaleNotSupported -2
#define XConverterNotFound -3

typedef enum {

XStringStyle, I*STRING */

XCompound&xtStyle, /* COMPOUND_TEXT */

XTextStyle, [*text in owners encoding (current locale) */
XStdICCTextStyle [* STRING, else COMPOUND_TEXT */

} X ICCEncodingStyle;

To corvert a list of text strings to aKTextProperty structure, us&XmbTextListToTextProp-
erty or XwcTextListToTextProperty .

int XmbTextListToTextProperty fisplay, list, count, style, text_prop_returi
Display *display,
char **list;
int count,
XICCEnNcodingStylestyle;
XTextProperty text_prop_return

int XwcTextListToTextProperty ¢lisplay, list, count, style, text_prop_returi
Display *display,
wchar_t *ist;
int count
XICCEncodingStylestyle;
XTextProperty text_prop_return

display Specifies the connection to the X server.

list Specifies a list of null-terminated character strings.
count Specifies the number of strings specified.

style Specifies the manner in which the property is encoded.

text_prop_return
Returns theXTextProperty structure.

The XmbTextListToTextProperty and XwcTextListToTextProperty functions set the specified
XTextProperty value to a set of null-separated elements representing the concatenation of the
specified list of null-terminated text stringA.final terminating null is stored at the end of the

value field of text_prop_return but is not included in the nitems member.

The functions set the encoding field of text_prop_return tAtam for the specified display
naming the encoding determined by the specified style amerttime specified text list to this
encoding for storage in the text_prop_return value field. If the Xi$teingStyle or XCom-

poundTextStyle is specified, this encoding is “STRIN@r ‘‘COMPOUND_TEXT", respec-

tively. If the styleXTextStyle is specified, this encoding is the encoding of the current locale. If

the styleXStdICCTextStyle is specified, this encoding is “STRINGI t he text is fully comert-
ible to STRING, else “COMPOUND_TEXT".

347

If insufficient memory isailable for the nev value string, the functions retuXNoMemory . If
the current locale is not supported, the functions reflumcaleNotSupported. In both of these
error cases, the functions do not set text_prop_return.

To determine if the functions are guaranteed not to reirocaleNotSupported, use XSup-
portsLocale.

If the supplied text is not fully cemrtible to the specified encoding, the functions return the num-
ber of uncowertible characters. Each unaantible character is coerted to an implementation-
defined and encoding-specific default string. Otherwise, the functions Booess Note that

full convertibility to all styles excepXStringStyle is guaranteed.

To free the storage for the value field, xgeree.

To dbtain a list of text strings from axiTextProperty structure, us&XmbTextPropertyTo-
TextList or XwcTextPropertyToTextList .

int XmbTextPropertyToExtList (display, text_prop list_return, count_return
Display *display,
XTextProperty text_prop
char ***list_return;
int *count_return

int XwcTextPropertyToExtList (display, text_prop list_return, count_returr)
Display *display,
XTextProperty text_prop
wchar_t ***list_return;
int *count_return

display Specifies the connection to the X server.
text_prop Specifies theXTextProperty structure to be used.
list_return Returns a list of null-terminated character strings.

count_return Returns the number of strings.

The XmbTextPropertyToTextList and XwcTextPropertyToTextList functions return a list of
text strings in the current locale representing the null-separated elements of the specified
XTextProperty structure. Thelata in text_prop must be format 8.

Multiple elements of the property (for example, the strings in a disjoint text selection) are sepa-
rated by a null byte. The contents of the property are not required to be null-termingatied: an
minating null should not be included in text_prop.nitems.

If insufficient memory is aailable for the list and its element&mbTextPropertyToTextList

and XwcTextPropertyToTextList return XNoMemory . If the current locale is not supported,
the functions returiXLocaleNotSupported. Otherwise, if the encoding field of text_prop is not
corvertible to the encoding of the current locale, the functions reX@anverterNotFound .

For supported locales, existence of awenter from COMPOUND_TEXTSTRING or the
encoding of the current locale is guaranteedSupportsLocale returnsTr ue for the current
locale (but the actual text may contain unatible characters). Camrsion of other encodings
is implementation-dependent. In all of these error cases, the functions do ngtre¢tiamval-
ues.

Otherwise XmbTextPropertyToTextList and XwcTextPropertyToTextList return the list of
null-terminated text strings to list_return and the number of text strings to count_return.

348

If the value field of text_prop is not fully ceertible to the encoding of the current locale, the
functions return the number of uneertible characters. Each unaantible character is con-
verted to a string in the current locale that is specific to the current |obalgbtain the value of
this string, useXDefaultString . Otherwise,XmbTextPropertyToTextList and XwcTextProp-
ertyToTextList returnSuccess

To free the storage for the list and its contents returneinilyTextPropertyToTextList , use
XFreeStringList. To free the storage for the list and its contents returnesvmyTextProperty-
ToTextList , use XwcFreeStringList.

To free the in-memory data associated with the specified wide character string list, use
XwcFreeStringList.

void XwcFreeStringListlist)
wchar_t *Hist;

list Specifies the list of strings to be freed.
The XwcFreeStringList function frees memory allocated bBywcTextPropertyToTextList .
To dbtain the default string for text cesrsion in the current locale, ug@®efaultString .

char *XDefaultString ()

The XDefaultString function returns the default string used by Xlib for textveosion (for
example, inXmbTextPropertyToTextList). Thedefault string is the string in the current locale
that is output when an unogamtible character is found during text eersion. Ifthe string
returned byXDefaultString is the empty string (""), no character is output in thevedad text.
XDefaultString does not return NULL.

The string returned b}DefaultString is independent of the default string for text drawing; see
XCreateFontSetto obtain the default string for atFontSet.

The behavior when anvdid codepoint is supplied to grXlib function is undefined.

The returned string is null-terminated. It is owned by Xlib and should not be modified or freed by
the client. It may be freed after the current locale is changed. Until freed, it will not be modified
by Xilib.

To st the specified list of strings in the STRING encoding XJextProperty structure, use
XStringListToTextProperty .

349

Status XStringListTo@xtProperty (ist, count text_prop_returi
char **list;
int count,
XTextProperty text_prop_return

list Specifies a list of null-terminated character strings.
count Specifies the number of strings.

text_prop_return
Returns theXTextProperty structure.

The XStringListToTextProperty function sets the specifieXiTextProperty to be of type

STRING (format 8) with a value representing the concatenation of the specified list of null-sepa-
rated character strings. An extra null byte (which is not included in the nitems member) is stored
at the end of the value field okteprop_return. Thetrings are assumed (without verification) to

be in the STRING encoding. If insufficient memoryvsikable for the ne value string,
XStringListToTextProperty does not set arfields in theXTextProperty structure and returns

a zero status. Otherwise, it returns a honzero stafadree the storage for the value field, use
XFree.

To dbtain a list of strings from a specifiedextProperty structure in the STRING encoding,
use XTextPropertyToStringList .

Status XExtProperty bStringList gext_prop list_return count_returr)
XTextProperty text_prop
char ***list_return;
int *count_return

text_prop Specifies theXTextProperty structure to be used.

list_return Returns a list of null-terminated character strings.
count_return Returns the number of strings.

The XTextPropertyToStringList function returns a list of strings representing the null-separated
elements of the specifiedTextProperty structure. Thelata in text_prop must be of type

STRING and format 8. Multiple elements of the property (for example, the strings in a disjoint
text selection) are separated by NULL (encoding 0). The contents of the property are not null-ter-
minated. Ifinsufficient memory is\ailable for the list and its element&TextProperty-

ToStringList sets no return values and returns a zero status. Otherwise, it returns a nonzero sta-
tus. To free the storage for the list and its contents XBeeStringList .

To free the in-memory data associated with the specified string lisKRreeStringList .

void XFreeStringList(ist)
char **list;

list Specifies the list of strings to be freed.

The XFreeStringList function releases memory allocatedXmbTextPropertyToTextList and
XTextPropertyToStringList and the missing charset list allocatedX@reateFontSet

350

14.1.3. Settingand Reading Text Properties

Xlib provides two functions that you can use to set and read the text properties ¥enavii-

dow. You can use these functions to set and read those properties of type TEXT (WM_NAME,
WM_ICON_NAME, WM_COMMAND, and WM_CLIENT_MACHINE). Inaddition, Xlib pro-
vides separate ceenience functions that you can use to set each of these prop€&didsirther
information about these ceenience functions, see sections 14.1.4, 14.1.5, 14.2.1, and 14.2.2,
respectiely.

To =t one of a windovg text properties, useXSetTextProperty.

void XSetTextProperty isplay, w, text_prop property)
Display *display,
Windoww;
XTextProperty text_prop
Atom property,
display Specifies the connection to the X server.
w Specifies the winde.
text_prop Specifies theXTextProperty structure to be used.

property Specifies the property name.

The XSetTextProperty function replaces the existing specified property for the named window
with the data, type, format, and number of items determined by the value field, the encoding field,
the format field, and the nitems field, respestyi, of the specifiedXTextProperty structure. If

the property does not already exi¥GetTextProperty sets it for the specified windo

XSetTextProperty can generatBadAlloc, BadAtom, BadValue, and BadWindow errors.

To read one of a window'text properties, us&XGetTextProperty .

Status XGet@&xtProperty fisplay, w, text_prop_returnproperty)

Display *display,

Windoww;

XTextProperty text_prop_return

Atom property,
display Specifies the connection to the X server.
w Specifies the winde.

text_prop_return
Returns theXTextProperty structure.

property Specifies the property name.

The XGetTextProperty function reads the specified property from the wima@nd stores the

data in the returnedTextProperty structure. listores the data in the value field, the type of the
data in the encoding field, the format of the data in the format field, and the number of items of
data in the nitems field. An extra byte containing null (which is not included in the nitems mem-
ber) is stored at the end of the value field ®f terop_return. Thearticular interpretation of the
propertys encoding and data as text is left to the calling application. If the specified property

351

does not exist on the windp XGetTextProperty sets the value field to NULL, the encoding
field to None, the format field to zero, and the nitems field to zero.

If it was able to read and store the data inXfiextProperty structure XGetTextProperty
returns a nonzero status; otherwise, it returns a zero status.

XGetTextProperty can generat@adAtom and BadwWindow errors.

14.1.4. Settingand Reading the WM_NAME Property

Xlib provides comrenience functions that you can use to set and read the WM_NAME property
for a given window.

To st a windows WM_NAME property with the supplied cegenience function, usXSetWM-
Name.

void XSetWMName @isplay, w, text_prop

Display *display,

Windoww;

XTextProperty text_prop
display Specifies the connection to the X server.
w Specifies the winde.

text_prop Specifies thexXTextProperty structure to be used.

The XSetWMName cornvenience function callXSetTextProperty to set the WM_NAME prop-
erty.

To read a windove WM_NAME property with the supplied ceenience function, use
XGetWMName.

Status XGetWMNamadisplay, w, text_prop_return
Display *display;
Windoww;
XTextProperty text_prop_return
display Specifies the connection to the X server.
w Specifies the winde.

text_prop_return
Returns theXTextProperty structure.

The XGetWMName corvenience function callXGetTextProperty to obtain the WM_NAME
property It returns a nonzero status on success; otherwise, it returns a zero status.

The following two functions hge keen superseded SetWMName and XGetWMName,
respectiely. You can use these additional eemience functions for winde names that are
encoded as STRING properties.

To assign a name to a winadpuse XStoreName.

352

XStoreNamedisplay, w, window_namg
Display *display;,
Windoww;
char *window_name

display Specifies the connection to the X server.

w Specifies the winde.
window_name Specifies the winde name, which should be a null-terminated string.

The XStoreNamefunction assigns the name passed to window_name to the specifiedvwindo

A window manager can display the windamame in some prominent place, such as the title bar,

to allow users to identify windows easihSome windav managers may display a wind@vame

in the windows icon, although theare encouraged to use the windsi¢on name if one is pro-

vided by the application. If the string is not in the Host Portable Character Encoding, the result is
implementation-dependent.

XStoreName can generatBadAlloc and BadWindow errors.
To get the name of a winag use XFetchName.

Status XFetchNamel{splay, w, window_name_retum
Display *display;
Windoww;
char **window_name_return

display Specifies the connection to the X server.

w Specifies the winde.

window_name_return
Returns the winde name, which is a null-terminated string.

The XFetchNamefunction returns the name of the specified wimddf it succeeds, it returns a
nonzero status; otherwise, no name has been set for thenyemdbit returns zero. If the
WM_NAME property has not been set for this wing&XFetchName sets window_name_return

to NULL. If the data returned by the server is in the Latin Portable Character Encoding, then the
returned string is in the Host Portable Character Encoding. Otherwise, the result is implementa-
tion-dependent. Whefimished with it, a client must free the widmame string usingFree.

XFetchName can generate BadWindow error.

14.1.5. Settingand Reading the WM_ICON_NAME Property
Xlib provides comenience functions that you can use to set and read the WM_ICON_NAME
property for a gien window.

To =t a windows WM_ICON_NAME property use XSetWMIconName.

353

void XSetWMIconNamedisplay, w, text_prop

Display *display;,

Windoww;

XTextProperty text_prop
display Specifies the connection to the X server.
w Specifies the winde.

text_prop Specifies thexXTextProperty structure to be used.

The XSetWMIconName corvenience function callXSetTextProperty to set the
WM_ICON_NAME property.

To read a windovs WM_ICON_NAME property use XGetWMIconName.

Status XGetWMIconNamelfsplay, w, text_prop_returi
Display *display;,
Windoww;
XTextProperty text_prop_return
display Specifies the connection to the X server.
w Specifies the winde.

text_prop_return
Returns theXTextProperty structure.

The XGetWMIconName corvenience function callXGetTextProperty to obtain the
WM_ICON_NAME property It returns a nonzero status on success; otherwise, it returns a zero
status.

The next tvo functions hae been superseded B¥SetWMIconName and XGetWMIconName,
respectiely. You can use these additional eemience functions for winde names that are
encoded as STRING properties.

To st the name to be displayed in a windeigbn, useXSetlconName

XSetlconNamedisplay, w, icon_namé
Display *display;,
Windoww;
char *icon_name
display Specifies the connection to the X server.
w Specifies the winde.
icon_name Specifies the icon name, which should be a null-terminated string.

If the string is not in the Host Portable Character Encoding, the result is implementation-depen-
dent. XSetlconNamecan generat®adAlloc and BadWindow errors.

To get the name a windowants displayed in its icon, ug&eticonName.

354

Status XGetlconNamel{splay, w, icon_name_returh
Display *display;,
Windoww;
char **icon_name_return

display Specifies the connection to the X server.

w Specifies the winde.

icon_name_return
Returns the window'icon name, which is a null-terminated string.

The XGetlconName function returns the name to be displayed in the specified wisdoovi. If

it succeeds, it returns a nonzero status; otherwise, if no icon name has been set for thdtwindo
returns zero. If you ner assigned a name to the windaXGetlconName sets

icon_name_return to NULL. If the data returned by the server is in the Latin Portable Character
Encoding, then the returned string is in the Host Portable Character Encoding. Otherwise, the
result is implementation-dependent. When finished with it, a client must free the icon name
string usingXFree.

XGetlconName can generate BadWindow error.

14.1.6. Settingand Reading the WM_HINTS Property

Xlib provides functions that you can use to set and read the WM_HINTS property ¥ena gi
window. These functions use the flags and ¥¢MHints structure, as defined in the
<X11/Xutil.h> header file.

To dlocate anXWMHints structure, useXAllocWMHints .

XWMHints *XAllocWMHints ()

The XAllocWMHints function allocates and returns a pointer tod&WMHints structure. Note
that all fields in theXWMHints structure are initially set to zero. If insufficient memoryJaila
able, XAllocWMHints returns NULL. To free the memory allocated to this structure, use
XFree.

The XWMHints structure contains:

355

/* Window manager hints mask bits */

#define InputHint (1L << 0)
#define StateHint (1L << 1)
#define lconPixmapHint (1L << 2)
#define IconWindowHint (AL << 3)
#define IconPositionHint (1L << 4)
#define lconMaskHint (1L << 5)
#define WindowGroupHint (1L << 6)
#define UrgencyHint (1L << 8)
#define AllHints (InputHint|StateHint|IconPixmapHint|

IconWindowHint|IconPositionHint|
IconMaskHint|WindowGroupHint)

[* Values */
typedef struct {
long flags; /* marks which fields in this structure are defined */
Bool input; /* does this application rely on the wimdmanager to
get keyboard input? */
int initial_state; [* see belo*/
Pixmap icon_pixmap; /* pixmap to be used as icon */
Window icon_windav; /* window to be wsed as icon */
int icon_x, icon_y; /* initial position of icon */
Pixmap icon_mask; [* pixmap to be used as mask for icon_pixmap */
XID window_group; /*id of related winde group */
[* this structure may be extended in the future */
} X WMHints;

The input member is used to communicate to the windanager the input focus model used by

the application. Applications that expect input butanexplicitly set focus to ayof their sub-
windows (that is, use the push model of focus management), such as X Version 10 style applica-
tions that use real-estatewan focus, should set this memberTioue. Similarly, applications

that set input focus to their subwindows only when itvemgto their top-level window by a win-

dow manager should also set this membefitae. Applications that manage their own input

focus by explicitly setting focus to one of their subwindows wherthey want keyboard input

(that is, use the pull model of focus management) should set this mentaéseio Applications

that neer expect aly keyboard input also should set this membeFaise.

Pull model windav managers should makt possible for push model applications to get input by
setting input focus to the topvie windows of applications whose input membefiisie. Push
model windev managers should malaire that pull model applications do not break them by
resetting input focus tBointerRoot when it is appropriate (for example, wheeean gplica-

tion whose input member Kalse sets input focus to one of its subwindows).

The definitions for the initial_state flag are:

#define WithdrawnState 0
#define NormalState 1 /* most applications start this way */
#define IconicState 3 /* application wants to start as an icon */

The icon_mask specifies which pixels of the icon_pixmap should be used as the icon. This allows

356

for nonrectangular icons. Both icon_pixmap and icon_mask must be bitmaps. The icon_window
lets an application provide a wingdor use as an icon for windomanagers that support such

use. Thavindow_group lets you specify that this windbelongs to a group of other windows.

For example, if a single application manipulates multiple tollevindows, this allows you to

provide enough information that a windonanager can iconify all of the windows rather than

just the one windw.

The UrgencyHint flag, if set in the flags field, indicates that the client deems the wiooio-

tents to be urgent, requiring the timely response of the iberwindav manager will make
some effort to dna the usess dtention to this winde while this flag is set. The client must pro-
vide some means by which the user can cause the yrfj@gdo be cleared (either mitigating the
condition that made the windourgent or merely shutting bthe alarm) or the windoto be
withdrawn.

To st a windows WM_HINTS property use XSetWMHints .

XSetWMHints display, w, wmhintg
Display *display;,
Windoww;
XWMHints *wmbhints

display Specifies the connection to the X server.
w Specifies the winde.
wmhints Specifies theXWMHints structure to be used.

The XSetWMHints function sets the windo manager hints that include icon information and
location, the initial state of the windpand whether the application relies on the wiwdoan-
ager to get &yboard input.

XSetWMHints can generat®adAlloc and BadWindow errors.
To read a windows WM_HINTS property use XGetWMHints .

XWMHints *XGetWMHints (display, w)

Display *display,

Windoww;
display Specifies the connection to the X server.
w Specifies the winde.

The XGetWMHints function reads the windomanager hints and returns NULL if no
WM_HINTS property was set on the winder returns a pointer to akWMHints structure if it
succeeds. Whelimished with the data, free the space used for it by califge.

XGetWMHints can generate BadWindow error.

14.1.7. Settingand Reading the WM_NORMAL_HINTS Property

Xlib provides functions that you can use to set or read the WM_NORMAL_HINTS property for a
given window. The functions use the flags and &K8izeHints structure, as defined in the

357

<X11/Xutil.h> header file.

The size of theXSizeHints structure may gm in future releases, aswmeomponents are added
to support n& ICCCM features.Passing statically allocated instances of this structure into Xlib
may result in memory corruption when running against a future release of the lilsagych, it

is recommended that only dynamically allocated instances of the structure be used.

To dlocate anXSizeHints structure, useXAllocSizeHints.

XSizeHints *XAllocSizeHintg)

The XAllocSizeHints function allocates and returns a pointer toX&izeHints structure. Note
that all fields in theXSizeHints structure are initially set to zero. If insufficient memorywvaila
able, XAllocSizeHints returns NULL. To free the memory allocated to this structure, use
XFree.

The XSizeHints structure contains:

358

/* Size hints mask bits */

#define USPosition (1L << 0) /* user specified x, y */

#define USSize (1L << 1) [* user specified width, height */

#define PPosition (1L << 2) [* program specified position */

#define PSize (1L << 3) [* program specified size */

#define PMinSize (AL << 4) [* program specified minimum size */
#define PMaxSize (1L << 5) [* program specified maximum size */
#define PResizelnc (1L << 6) [* program specified resize increments */
#define PAspect (AL << 7) /* program specified min and max aspect ratios */
#define PBaseSize (1L << 8)

#define PWinGravity (1L << 9)

#define PAllHints (PPosition|PSize|

PMinSize|PMaxSize|
PResizelnc|PAspect)

/* Values */

typedef struct {
long flags; /* marks which fields in this structure are defined */
intx,y; /* Obsolete */
int width, height; /* Obsolete */

int min_width, min_height;
int max_width, max_height;
int width_inc, height_inc;

struct {
int x; /* numerator */
inty; /* denominator */

} min_aspect, max_aspect;

int base_width, base_height;

int win_gravity;

[* this structure may be extended in the future */
} X SizeHints;

The x, y width, and height members aremnobsolete and are left solely for compatibility rea-

sons. Themin_width and min_height members specify the minimum windre that still

allows the application to be useful. The max_width and max_height members specify the maxi-
mum windav size. Thewidth_inc and height_inc members define an arithmetic progression of
sizes (minimum to maximum) into which the windprefers to be resized. The min_aspect and
max_aspect members are expressed as ratios of x amtlthey allow an gplication to specify

the range of aspect ratios it prefers. The base_width and base_height members define the desired
size of the winde. The windav manager will interpret the position of the windand its border
width to position the point of the outer rectangle of therall window specified by the win_grav-

ity member The outer rectangle of the windancludes ay borders or decorations supplied by

the windav manager In other words, if the winde manager decides to place the windehere

the client asked, the position on the parent winddwider named by the win_gravity will be

placed where the client windowvould have been placed in the absence of a windoanager.

Note that use of thBAllHints macro is highly discouraged.

359

To =t a windows WM_NORMAL_HINTS property use XSetWMNormalHints .

void XSetWMNormalHints{isplay, w, hints)
Display *display,
Windoww;
XSizeHints *hints;

display Specifies the connection to the X server.

w Specifies the winde.
hints Specifies the size hints for the windm its normal state.

The XSetWMNormalHints function replaces the size hints for the WM_NORMAL_HINTS
property on the specified wingo If the property does not already exi¥§etWMNormalHints
sets the size hints for the WM_NORMAL_HINTS property on the specified windbe prop-
erty is stored with a type of WM_SIZE_HINTS and a format of 32.

XSetWMNormalHints can generat8adAlloc and BadWindow errors.
To read a windows WM_NORMAL_HINTS property use XGetWMNormalHints .

Status XGetWMNormalHintsiisplay, w, hints_return supplied_returi
Display *display;,
Windoww;
XSizeHints *ints_return
long *supplied_return

display Specifies the connection to the X server.
w Specifies the winde.
hints_return Returns the size hints for the windn its normal state.

supplied_return
Returns the hints that were supplied by the user.

The XGetWMNormalHints function returns the size hints stored in the

WM_NORMAL_HINTS property on the specified wingdo If the property is of type
WM_SIZE_HINTS, is of format 32, and is long enough to contain either an old (pre-ICCCM) or
new size hints structureXGetWMNormalHints sets the various fields of thé€SizeHints struc-

ture, sets the supplied_return argument to the list of fields that were supplied by the user (whether
or not theg contained defined values), and returns a nonzero status. Otherwise, it returns a zero
status.

If XGetWMNormalHints returns successfully and a pre-ICCCM size hints property is read, the
supplied_return argument will contain the following bits:

(USPosition|USSize|PPosition|PSize|PMinSize|
PMaxSize|PResizelnc|PAspect)

If the property is large enough to contain the base size andwirdwity fields as well, the sup-
plied_return argument will also contain the following bits:

PBaseSize|PWinGravity

360

XGetWMNormalHints can generate BadWindow error.
To st a windows WM_SIZE_HINTS propertyuse XSetWMSizeHints.

void XSetWMSizeHintsdisplay, w, hints, property)
Display *display;,
Windoww;
XSizeHints *hints;
Atom property,

display Specifies the connection to the X server.

w Specifies the winde.

hints Specifies theXSizeHints structure to be used.
property Specifies the property name.

The XSetWMSizeHints function replaces the size hints for the specified property on the named
window. If the specified property does not already eXdSetWMSizeHints sets the size hints

for the specified property on the named windd@he property is stored with a type of
WM_SIZE_HINTS and a format of 32To st a windows normal size hints, you can use the
XSetWMNormalHints function.

XSetWMSizeHints can generat®adAlloc, BadAtom, and BadWindow errors.
To read a windovs WM_SIZE_HINTS propertyuse XGetWMSizeHints.

Status XGetWMSizeHintsljsplay, w, hints_return supplied_returnproperty)
Display *display,
Windoww;
XSizeHints *hints_return
long *supplied_return

Atom property,
display Specifies the connection to the X server.
w Specifies the winde.

hints_return Returns theXSizeHints structure.

supplied_return
Returns the hints that were supplied by the user.

property Specifies the property name.

The XGetWMSizeHints function returns the size hints stored in the specified property on the
named windw. If the property is of type WM_SIZE_HINTS, is of format 32, and is long enough
to contain either an old (pre-ICCCM) onmeize hints structureXGetWMSizeHints sets the
various fields of theXSizeHints structure, sets the supplied_return argument to the list of fields
that were supplied by the user (whether or not tomtained defined values), and returns a
nonzero status. Otherwise, it returns a zero stataget a windows normal size hints, you can

use theXGetWMNormalHints function.

If XGetWMSizeHints returns successfully and a pre-ICCCM size hints property is read, the sup-
plied_return argument will contain the following bits:

361

(USPosition|USSize|PPosition|PSize|PMinSize|
PMaxSize|PResizelnc|PAspect)

If the property is large enough to contain the base size andwrdwity fields as well, the sup-
plied_return argument will also contain the following bits:

PBaseSize|PWinGravity

XGetWMSizeHints can generatBadAtom and BadWindow errors.

14.1.8. Settingand Reading the WM_CLASS Property

Xlib provides functions that you can use to set and get the WM_CLASS property ¥enavgi-
dow. These functions use th€ClassHint structure, which is defined in th&X&1/Xutil.h >
header file.

To dlocate anXClassHint structure, useXAllocClassHint.

XClassHint *XAllocClassHin()

The XAllocClassHint function allocates and returns a pointer tox&@lassHint structure. Note
that the pointer fields in th€ClassHint structure are initially set to NULL. If insufficient mem-
ory is available, XAllocClassHint returns NULL. To free the memory allocated to this structure,
use XFree.

The XClassHint contains:

typedef struct {
char *res_name;
char *res_class;
} X ClassHint;

The res_name member contains the application name, and the res_class member contains the
application class. Note that the name set in this property may differ from the name set as
WM_NAME. Thatis, WM_NAME specifies what should be displayed in the title bar and, there-
fore, can contain temporal information (for example, the name of a file currently in an editor’s
buffer). Onthe other hand, the name specified as part of WM_CLASS is the formal name of the
application that should be used when retrieving the applicatiesdurces from the resource
database.

To st a windows WM_CLASS propertyuse XSetClassHint

362

XSetClassHintdisplay, w, class_hint3
Display *display;,
Windoww;
XClassHint ftlass_hints
display Specifies the connection to the X server.
w Specifies the winde.
class_hints Specifies theXClassHint structure that is to be used.

The XSetClassHint function sets the class hint for the specified wimdd the strings are not in
the Host Portable Character Encoding, the result is implementation-dependent.

XSetClassHint can generat®adAlloc and BadWindow errors.
To read a windows WM_CLASS propertyuse XGetClassHint.

Status XGetClassHintlfsplay, w, class_hints_returh
Display *display,
Windoww;
XClassHint tlass_hints_return

display Specifies the connection to the X server.

w Specifies the winde.

class_hints_return
Returns theXClassHint structure.

The XGetClassHint function returns the class hint of the specified winttmthe members of

the supplied structure. If the data returned by the server is in the Latin Portable Character Encod-
ing, then the returned strings are in the Host Portable Character Encoding. Otherwise, the result
is implementation-dependent. It returns a nonzero status on success; otherwise, it returns a zero
status. © free res_name and res_class when finished with the stringsFtese on each indi-

vidually.

XGetClassHint can generate BadWindow error.

14.1.9. Settingand Reading the WM_TRANSIENT_FOR Property
Xlib provides functions that you can use to set and read the WM_TRANSIENT_FOR property
for a given window.

To =t a windows WM_TRANSIENT_FOR propertyuse XSetTransientForHint .

363

XSetTransienterHint (display, w, prop_window
Display *display;
Windoww;
Windowprop_window
display Specifies the connection to the X server.
w Specifies the winde.
prop_window Specifies the winde that the WM_TRANSIENT _FOR property is to be set to.

The XSetTransientForHint function sets the WM_TRANSIENT_FOR property of the specified
window to the specified prop_winao

XSetTransientForHint can generat®adAlloc and BadWindow errors.
To read a windove WM_TRANSIENT_FOR propertyuse XGetTransientForHint .

Status XGetTransientifHint (display, w, prop_window_returi
Display *display,
Windoww;
Window *prop_window_returpn

display Specifies the connection to the X server.

w Specifies the winde.

prop_window_return
Returns the WM_TRANSIENT_FOR property of the specified windo

The XGetTransientForHint function returns the WM_TRANSIENT_FOR property for the
specified windw. It returns a nonzero status on success; otherwise, it returns a zero status.

XGetTransientForHint can generate BadWindow error.

14.1.10. Settingand Reading the WM_PROTOCOLS Property
Xlib provides functions that you can use to set and read the WMITPROLS property for a
given window.

To st a windows WM_PROTOCOLS propertyuse XSetWMProtocols.

364

Status XSetWMProtocolsl{splay, w, protocols count)
Display *display;,
Windoww;
Atom *protocols
int count,

display Specifies the connection to the X server.

w Specifies the winde.

protocols Specifies the list of protocols.

count Specifies the number of protocols in the list.

The XSetWMProtocols function replaces the WM_RIR OCOLS property on the specified win-
dow with the list of atoms specified by the protocolguement. Ifthe property does not already
exist, XSetWMProtocols sets the WM_PRTOCOLS property on the specified wirddo the

list of atoms specified by the protocolg@ament. Theroperty is stored with a type of/®M

and a format of 32. If it cannot intern the WM_@'ROCOLS atom XSetWMProtocols returns

a zero status. Otherwise, it returns a nonzero status.

XSetWMProtocols can generatBadAlloc and BadWindow errors.
To read a windows WM_PROTOCOLS propertyuse XGetWMProtocols.

Status XGetWMProtocolsglfsplay, w, protocols_returnpcount_returr
Display *display,
Windoww;
Atom **protocols_return
int *count_return

display Specifies the connection to the X server.

w Specifies the winde.

protocols_return
Returns the list of protocols.

count_return Returns the number of protocols in the list.

The XGetWMProtocols function returns the list of atoms stored in the WMOIRCOLS

property on the specified windo These atoms describe windonanager protocols in which the

owner of this windwv is willing to participate. If the property exists, is of typ&@@M, is of for-

mat 32, and the atom WM_EHOCOLS can be interneckGetWMProtocols sets the proto-
cols_return argument to a list of atoms, sets the count_return argument to the number of elements
in the list, and returns a nonzero status. Otherwise, it sets neither of the return arguments and
returns a zero statugo release the list of atoms, uXé&ree.

XGetWMProtocols can generate BadWindow error.

14.1.11. Settingand Reading the WM_COLORMAP_WINDOWS Property

Xlib provides functions that you can use to set and read the WM_COLORMAP_WINDOWS
property for a gien window.

365

To =t a windows WM_COLORMAP_WINDOWS propertyuse XSetWMColormapWindows.

Status XSetWMColormapWines (display, w, colormap_windowscount)
Display *display,
Windoww;
Window *colormap_windows
int count,

display Specifies the connection to the X server.
w Specifies the winde.

colormap_windows
Specifies the list of windows.

count Specifies the number of windows in the list.

The XSetWMColormapWindows function replaces the WM_COLORMAP_WINDOWS prop-
erty on the specified windowith the list of windows specified by the colormap_windows argu-
ment. Ifthe property does not already exi¥§etWMColormapWindows sets the WM_COL-
ORMAP_WINDOWS property on the specified windto the list of windows specified by the
colormap_windows gument. Theroperty is stored with a type of WINDDand a format of

32. Ifit cannot intern the WM_COLORMAP_WINDOWS atoXSetWMColormapWindows
returns a zero status. Otherwise, it returns a nonzero status.

XSetWMColormapWindows can generat®adAlloc and BadWindow errors.

To read a windovs WM_COLORMAP_WINDOWS propertyuse XGetWMColormapWin-
dows.

Status XGetWMColormapWindes (display, w, colormap_windows_returrcount_returr)
Display *display,
Windoww;
Window **colormap_windows_return
int *count_return

display Specifies the connection to the X server.
w Specifies the winde.

colormap_windows_return
Returns the list of windows.

count_return Returns the number of windows in the list.

The XGetWMColormapWindows function returns the list of windoidentifiers stored in the
WM_COLORMAP_WINDOWS property on the specified wimdoThese identifiers indicate the
colormaps that the windomanager may need to install for this wimdolf the property exists, is

of type WINDQW, is of format 32, and the atom WM_COLORMAP_WINDOWS can be
interned, XGetWMColormapWindows sets the windows_return argument to a list of window
identifiers, sets the count_return argument to the number of elements in the list, and returns a
nonzero status. Otherwise, it sets neither of the return arguments and returns a zertostatus.
release the list of windoidentifiers, useXFree.

366

XGetWMColormapWindows can generate BadWindow error.

14.1.12. Settingand Reading the WM_ICON_SIZE Property

Xlib provides functions that you can use to set and read the WM_ICON_SIZE property for a
given window. These functions use thdconSize structure, which is defined in the
<X11/Xutil.h> header file.

To dlocate anXlconSize structure, useXAlloclconSize.

XlconSize *XAlloclconSizé)

The XAlloclconSize function allocates and returns a pointer toXdoonSize structure. Note
that all fields in theXlconSize structure are initially set to zero. If insufficient memoryvsila
able, XAlloclconSize returns NULL. To free the memory allocated to this structure, XiBese.

The XlconSize structure contains:

typedef struct {
int min_width, min_height;
int max_width, max_height;
int width_inc, height_inc;

} X IconSize;

The width_inc and height_inc members define an arithmetic progression of sizes (minimum to
maximum) that represent the supported icon sizes.

To st a windows WM_ICON_SIZE propertyuse XSetlconSizes

XSetlconSizesdisplay, w, size_list count)
Display *display;,
Windoww;
XlconSize *size_list
int count
display Specifies the connection to the X server.
w Specifies the winde.
size_list Specifies the size list.

count Specifies the number of items in the size list.

The XSetlconSizesfunction is used only by windomanagers to set the supported icon sizes.
XSetlconSizescan generat®adAlloc and BadWindow errors.

To read a windows WM_ICON_SIZE propertyuse XGetlconSizes

367

Status XGetlconSizedisplay, w, size_list_returncount_returr
Display *display;
Windoww;
XlconSize **size_list_return
int *count_return

display Specifies the connection to the X server.
w Specifies the winde.

size_list_return
Returns the size list.

count_return Returns the number of items in the size list.

The XGetlconSizesfunction returns zero if a winelomanager has not set icon sizes; otherwise,
it returns nonzeroXGetlconSizesshould be called by an application that wants to find out what
icon sizes would be most appreciated by the wind@nager under which the application is run-
ning. Theapplication should then us€SetWMHints to supply the winde manager with an

icon pixmap or winde in one of the supported size$o free the data allocated in
size_list_return, us¥Free.

XGetlconSizescan generate BadWindow error.

14.1.13. UsingNindow Manager Corvenience Functions

The XmbSetWMProperties function stores the standard set of wiwdnanager properties, with
text properties in standard encodings for internationalized text communication. The standard
window manager properties for avgn window are WM_NAME, WM_ICON_NAME,
WM_HINTS, WM_NORMAL_HINTS, WM_CLASS, WM_COMMAND,
WM_CLIENT_MACHINE, and WM_LOCALE_NAME.

368

void XmbSetWMPropertiegi{isplay, w, window_nameicon_nameargv, argc,
normal_hints wm_hints class_hint$
Display *display,
Windoww;
char *window_name
char *icon_name
char *argv(];
int argc;
XSizeHints 'normal_hints
XWMHints *wm_hints
XClassHint ftlass_hints

display Specifies the connection to the X server.

w Specifies the winde.

window_name Specifies the winde name, which should be a null-terminated string.
icon_name Specifies the icon name, which should be a null-terminated string.

argv Specifies the applicationagument list.

argc Specifies the number of arguments.

hints Specifies the size hints for the wind its normal state.
wm_hints Specifies theXWMHints structure to be used.

class_hints Specifies theXClassHint structure to be used.

The XmbSetWMProperties corvenience function provides a simple programming interface for
setting those essential wind@roperties that are used for communicating with other clients (par-
ticularly windov and session managers).

If the window_name argument is non-NULKmbSetWMProperties sets the WM_NAME

property If the icon_name argument is non-NULXmbSetWMProperties sets the
WM_ICON_NAME property The window_name and icon_name arguments are null-terminated
strings in the encoding of the current locale. If the arguments can be fulisrisahto the

STRING encoding, the properties are created with type “STRING”; otherwise, the arguments are
corverted to Compoundéxt, and the properties are created with type “COMPOUND_TEXT".

If the normal_hints argument is non-NULKmbSetWMProperties calls XSetWMNormal-
Hints, which sets the WM_NORMAL_HINTS property (see section 14.1.7). If the wm_hints
argument is non-NULLXmbSetWMProperties calls XSetWMHints , which sets the
WM_HINTS property (see section 14.1.6).

If the argv argument is non-NULIXmbSetWMProperties sets the WM_COMMAND property
from argv and ayjc. Anargc of zero indicates a zero-length command.

The hostname of the machine is stored u3iBgtWMClientMachine (see section 14.2.2).

If the class_hints argument is non-NULXmbSetWMProperties sets the WM_CLASS prop-

erty. If the res_name member in tA€lassHint structure is set to the NULL pointer and the
RESOURCE_NAME environment variable is set, the value of the environment variable is substi-
tuted for res_name. If the res_name member is NULL, the environment variable is not set, and
argv and argv|[0] are set, then the value of argv[0], strippedyafieectory prefixes, is substi-

tuted for res_name.

It is assumed that the supplied class_hints.res_name antherQESOURCE_NAME environ-
ment variable, and the hostname of the machine are in the encoding of the locale announced for

369

the LC_CTYPE category (on POSIX-compliant systems, the LC_CTYPE, else LANG environ-
ment \ariable). Thecorresponding WM_CLASS, WM_COMMAND, and
WM_CLIENT_MACHINE properties are typed according to the local host locale annouvicer
encoding coversion is performed prior to storage in the properties.

For clients that need to process the property text in a loZadSetWMProperties sets the
WM_LOCALE_NAME property to be the name of the current locale. The name is assumed to be
in the Host Portable Character Encoding and iverted to STRING for storage in the property.

XmbSetWMProperties can generat®adAlloc and BadWindow errors.

To st a windows dandard winder manager properties with strings in client-specified encodings,
useXSetWMProperties. The standard winde manager properties for avgh window are
WM_NAME, WM_ICON_NAME, WM_HINTS, WM_NORMAL_HINTS, WM_CLASS,
WM_COMMAND, and WM_CLIENT_MACHINE.

void XSetWMPropertiegdisplay, w, window_namgicon_nameargy, argc, normal_hintswm_hintsclass_hint$
Display *display;,
Windoww;
XTextProperty ®vindow_name
XTextProperty fcon_name
char **argyv;
int argc;
XSizeHints 'normal_hints
XWMHints *wm_hints
XClassHint ftlass_hints

display Specifies the connection to the X server.

w Specifies the winde.

window_name Specifies the winde name, which should be a null-terminated string.
icon_name Specifies the icon name, which should be a null-terminated string.

argv Specifies the applicationagument list.

argc Specifies the number of arguments.

normal_hints Specifies the size hints for the wind its normal state.
wm_hints Specifies theXWMHints structure to be used.

class_hints Specifies theXClassHint structure to be used.

The XSetWMProperties corvenience function provides a single programming interface for set-
ting those essential windoproperties that are used for communicating with other clients (partic-
ularly windov and session managers).

If the window_name argument is non-NULKSetWMProperties calls XSetWMName, which,

in turn, sets the WM_NAME property (see section 14.1.4). If the icon_name argument is non-
NULL, XSetWMProperties calls XSetWMIconName, which sets the WM_ICON_NAME
property (see section 14.1.5). If the argv argument is non-NMSetWMProperties calls
XSetCommand, which sets the WM_COMMAND property (see section 14.2.1). Note that an
argc of zero is allowed to indicate a zero-length command. Note also that the hostname of this
machine is stored usingSetWMClientMachine (see section 14.2.2).

370

If the normal_hints argument is non-NULKSetWMProperties calls XSetWMNormalHints ,

which sets the WM_NORMAL_HINTS property (see section 14.1.7). If the wm_hints argument
is non-NULL, XSetWMProperties calls XSetWMHints , which sets the WM_HINTS property
(see section 14.1.6).

If the class_hints argument is non-NULXSetWMProperties calls XSetClassHint, which sets

the WM_CLASS property (see section 14.1.8). If the res_name member{iCtassHint

structure is set to the NULL pointer and the RESOURCE_NAME environment variable is set,

then the value of the environment variable is substituted for res_name. If the res_name member is
NULL, the environment variable is not set, and argv and argv[0] are set, then the value of argv[0],
stripped of an directory prefixes, is substituted for res_name.

XSetWMProperties can generat®adAlloc and BadWindow errors.

14.2. Clientto Session Manager Communication

This section discusseswido:

. Set and read the WM_COMMAND property

. Set and read the WM_CLIENT_MACHINE property

14.2.1. Settingand Reading the WM_COMMAND Property

Xlib provides functions that you can use to set and read the WM_COMMAND property for a
given window.

To st a windows WM_COMMAND property use XSetCommand.

XSetCommanddisplay, w, argv, argc)
Display *display,
Windoww;
char **argyv;
int argc;
display Specifies the connection to the X server.
w Specifies the winde.
argv Specifies the applicationagument list.

argc Specifies the number of arguments.

The XSetCommand function sets the command and arguments usedakerthe application.
(Typically, argv is the argv array of your main program.) If the strings are not in the Host
Portable Character Encoding, the result is implementation-dependent.

XSetCommand can generat®adAlloc and BadWindow errors.

To read a windows WM_COMMAND property use XGetCommand.

371

Status XGetCommandyisplay, w, argv_return argc_return
Display *display;,
Windoww;
char ***argv_return
int *argc_return
display Specifies the connection to the X server.
w Specifies the winde.
argv_return Returns the applicationagument list.

argc_return Returns the number of arguments returned.

The XGetCommand function reads the WM_COMMAND property from the specified window

and returns a string list. If the WM_COMMAND property exists, it is of type STRING and for-
mat 8. If sufficient memory can be allocated to contain the string@gtCommand fills in

the argv_return and argc_return arguments and returns a nonzero status. Otherwise, it returns a
zero status. If the data returned by the server is in the Latin Portable Character Encoding, then
the returned strings are in the Host Portable Character Encoding. Otherwise, the result is imple-
mentation-dependent.oTree the memory allocated to the string list, ¥§@eeStringList .

14.2.2. Settingand Reading the WM_CLIENT_MACHINE Property

Xlib provides functions that you can use to set and read the WM_CLIENT_MACHINE property
for a given window.

To =t a windows WM_CLIENT_MACHINE property use XSetWMClientMachine..

void XSetWMClientMachinedisplay, w, text_prop
Display *display;
Windoww;
XTextProperty text_prop
display Specifies the connection to the X server.
w Specifies the winde.
text_prop Specifies theXTextProperty structure to be used.

The XSetWMClientMachine corvenience function callXSetTextProperty to set the
WM_CLIENT_MACHINE property.

To read a windovs WM_CLIENT_MACHINE property use XGetWMClientMachine .

372

Status XGetWMClientMachinelfsplay, w, text_prop_returi
Display *display;
Windoww;
XTextProperty text_prop_return

display Specifies the connection to the X server.
w Specifies the winde.

text_prop_return
Returns theXTextProperty structure.

The XGetWMClientMachine corvenience function performs axGetTextProperty on the
WM_CLIENT_MACHINE property It returns a nonzero status on success; otherwise, it returns
a zero status.

14.3. StandardColormaps

Applications with color palettes, smooth-shaded drawings, or digitized images demand large
numbers of colors. In addition, these applications often require an efficient mapping from color
triples to pixel values that display the appropriate colors.

As an example, consider a three-dimensional display program that wante @ sinaothly

shaded sphere. At each pixel in the image of the sphere, the program computes the intensity and
color of light reflected back to the viewerhe result of each computation is a triple of red, green,
and blue (RGB) coefficients in the range 0.0 to T@®draw the sphere, the program needs a col-
ormap that provides a large range of uniformly distributed colors. The colormap should be
arranged so that the program canweonits RGB triples into pixel values very quicklecause

drawing the entire sphere requires snamch cowersions.

On may current workstations, the display is limited to 256 or fewer colors. Applications must
allocate colors carefullyot only to malk sure the cover the entire range tlyeneed but also to
malke use of as manof the aailable colors as possible. On a typical X displamry applica-

tions are actie & once. Mostworkstations hee anly one hardware look-up table for colors, so
only one application colormap can be installed avangime. Theapplication using the

installed colormap is displayed correctiid the other applications go technicolor and are dis-
played with false colors.

As another example, consider a user who is running an image processing program to display
earth-resources data. The image processing program needs a colormap set up with 8 reds, 8
greens, and 4 blues, for a total of 256 colors. Because some colors are already in use in the

default colormap, the image processing program allocates and installcaloenap.

The user decides to alter some of the colors in the image/diing a color palette program to

mix and choose colors. The color palette program also needs a colormap with eight reds, eight
greens, and four blues, so juselike image processing program, it must allocate and install a
new colormap.

Because only one colormap can be installed at a time, the color palette may be displayed incor-
rectly wheneer the image processing program is aetiCornversely, wheneer the palette pro-

gram is actie, the image may be displayed incorrectRhe user can wer match or compare

colors in the palette and image. Contention for colormap resources can be reduced if applications
with similar color needs share colormaps.

The image processing program and the color palette program could share the same colormap if
there existed a coantion that described mothe colormap was set up. Wheeeeither program

373

was active, both would be displayed correctly.

The standard colormap properties define a set of commonly used colormaps. Applications that
share these colormaps andwentions display true colors more often and provide a better inter-
face to the user.

Standard colormaps alloapplications to share commonly used color resources. This allows
mary applications to be displayed in true colors simultaneq@sn when each application
needs an entirely filled colormap.

Several standard colormaps are described in this section. Usaallpgdow manager creates
these colormaps. Applications should use the standard colormapg afrtreedy exist.

To dlocate anXStandardColormap structure, us&AllocStandardColormap .

XStandardColormap *XAllocStandardColorm@p

The XAllocStandardColormap function allocates and returns a pointer toXx@tandardCol-
ormap structure. Notehat all fields in theXStandardColormap structure are initially set to
zero. Ifinsufficient memory is\ailable, XAllocStandardColormap returns NULL. To free the
memory allocated to this structure, USEree.

The XStandardColormap structure contains:

[* Hints */
#define ReleaseByFreeingColormap ((XID) 1L)
[* Values */

typedef struct {
Colormap colormap;
unsigned long red_max;
unsigned long red_mult;
unsigned long green_max;
unsigned long green_mult;
unsigned long blue_max;
unsigned long blue_mult;
unsigned long base_pixel;
VisuallD visualid,;
XID killid;

} X StandardColormap;

The colormap member is the colormap created bytbeeateColormap function. The

red_max, green_max, and blue_max membeestge maximum red, green, and blue values,
respectiely. Each color coefficient ranges from zero to its max, ineckusiFor example, a com-

mon colormap allocation is 3/3/2 (3 planes for red, 3 planes for green, and 2 planes for blue).
This colormap would hee red_max = 7, green_max = 7, and blue_max = 3. An alternate alloca-
tion that uses only 216 colors is red_max = 5, green_max = 5, and blue_max = 5.

The red_mult, green_mult, and blue_mult members tjie scale factors used to compose a full
pixel value. (Seghe discussion of the base_pixel members for further informatiemn.i 33/2
allocation, red_mult might be 32, green_mult might be 4, and blue_mult mightHue 4.

374

6-colors-each allocation, red_mult might be 36, green_mult might be 6, and blue_mult might be
1.

The base_pixel membervgs the base pixel value used to compose a full piakles Usually

the base_pixel is obtained from a call to ¥¥sllocColorPlanes function. Gven integer red,

green, and blue coefficients in their appropriate ranges, one then can compute a corresponding
pixel value by using the following expression:

(r *red_mult + g * green_mult + b * blue_mult + base_pixel) & OXFFFFFFFF

For GrayScale colormaps, only the colormap, red_max, red_mult, and base_pixel members are
defined. Thesther members are ignoretdio compute aGrayScale pixel value, use the follow-
ing expression:

(gray * red_mult + base_pixel) & OXFFFFFFFF

Negative nultipliers can be represented by genting the 25 complement representation of the
multiplier into an unsigned long and storing the result in the appropriate _mult field. The step of
masking by OxFFFFFFFF effeefly corverts the resulting posite nrultiplier into a ngaive ame.

The masking step will takdace automatically on mgmmachine architectures, depending on the
size of the integer type used to do the computation.

The visualid member ges the ID number of the visual from which the colormap was created.
The killid member gies a esource ID that indicates whether the cells held by this standard col-
ormap are to be released by freeing the colormap ID or by callingkhi€lient function on

the indicated resource. (Note that this method is necessary for allocating out of an existing col-
ormap.)

The properties containing théStandardColormap information hae te type
RGB_COLOR_MAP.

The remainder of this section discusses standard colormap properties and atoms as wedl as ho
manipulate standard colormaps.

14.3.1. StandardColormap Properties and Atoms

Several standard colormaps areadiable. Eactstandard colormap is defined by a propeaty

each such property is identified by an atom. The following list names the atoms and describes the
colormap associated with each one. Thd ¥/ Xatom.h> header file contains the definitions for

each of the following atoms, which are prefixed with XA .

RGB_DERULT_MAP
This atom names a propertyhe value of the property is an arrayX$tandardCol-
ormap structures. Eacantry in the array describes an RGB subset of the default color
map for the Visual specified by visual_id.

Some applications only need avfRGB colors and may be able to allocate them from the
system default colormap. This is the ideal situation because the fewer colormaps that are
active in the system the more applications are displayed with correct colors at all times.

A typical allocation for the RGB_DE®LT _MAP on 8-plane displays is 6 reds, 6 greens,
and 6 blues. This ges 216 uniformly distributed colors (6 intensities of 36 different hues)
and still lexes 40 dements of a 256-element colormajaitable for special-purpose colors
for text, borders, and so on.

RGB_BEST_MAP
This atom names a propertyhe value of the property is &StandardColormap.

375

The property defines the best RGB colormeslable on the screen. (Of course, this is a
subjectve evaluation.) Maty image processing and three-dimensional applications need to
use all aailable colormap cells and to distribute as mparceptually distinct colors as
possible wer those cells. This implies that there may be more green valeisbée than

red, as well as more green or red than blue.

For an 8planePseudoColorvisual, RGB_BEST_ MAP is likely to be a 3/3/2 allocation.
For a 24-planeDirectColor visual, RGB_BEST_MAP is normally an 8/8/8 allocation.

RGB_RED_MAP
RGB_GREEN_MAP
RGB_BLUE_MAP
These atoms name properties. The value of each propertyiStandardColormap.

The properties define all-red, all-green, and all-blue colormaps, respeciihese maps

are used by applications that want to maklor-separated image&.or example, a user

might generate a full-color image on an 8-plane display both by rendering an image three
times (once with high color resolution in red, once with green, and once with blue) and by
multiply exposing a single frame in a camera.

RGB_GRAY_MAP
This atom names a propertyhe value of the property is &StandardColormap.

The property describes the b&tayScale colormap &ailable on the screen. As previ-
ously mentioned, only the colormap, red_max, red_mult, and base_pixel members of the
XStandardColormap structure are used f@rayScale colormaps.

14.3.2. Settingand Obtaining Standard Colormaps
Xlib provides functions that you can use to set and obtaXStandardColormap structure.

To st anXStandardColormap structure, us&XSetRGBColormaps.

void XSetRGBColormapsiisplay, w, std_colormapcount property)
Display *display;
Windoww;
XStandardColormapstd_colormap
int count,
Atom property,

display Specifies the connection to the X server.

w Specifies the winde.

std_colormap Specifies theXStandardColormap structure to be used.
count Specifies the number of colormaps.

property Specifies the property name.

The XSetRGBColormaps function replaces the RGB colormap definition in the specified prop-
erty on the named windo If the property does not already exi¥§etRGBColormapssets the
RGB colormap definition in the specified property on the named windbe property is stored
with a type of RGB_COLOR_MAP and a format of 32. Note that it is the catEsponsibility

to honor the ICCCM restriction that only RGB_D®H.T_MAP contain more than one defini-
tion.

376

The XSetRGBColormaps function usually is only used by windar session managerslo ae-
ate a standard colormap, fallghis procedure:

1. Opena rew mnnection to the same server.
2 Grabthe server.
3. Sedf the property is on the property list of the root windr the screen.
4 If the desired property is not present:
. Create a colormap (unless you are using the default colormap of the screen).
. Determine the color characteristics of the visual.
. Allocate cells in the colormap (or create it wikHocAll).
. Call XStoreColors to store appropriate color values in the colormap.
. Fill in the descriptre members in theXStandardColormap structure.
. Attach the property to the root wingdo
. Use XSetCloseDownModeto male the resource permanent.
5. Ungrakthe server.
XSetRGBColormaps can generat®adAlloc, BadAtom, and BadWindow errors.

To dbtain theXStandardColormap structure associated with the specified propedy
XGetRGBColormaps.

Status XGetRGBColormapdigplay, w, std_colormap_returncount_return property)
Display *display,
Windoww;
XStandardColormap *8td_colormap_return
int *count_return

Atom property;
display Specifies the connection to the X server.
w Specifies the winde.

std_colormap_return
Returns theXStandardColormap structure.

count_return Returns the number of colormaps.
property Specifies the property name.

The XGetRGBColormaps function returns the RGB colormap definitions stored in the specified
property on the named windo If the property exists, is of type RGB_COLOR_MAdof for-

mat 32, and is long enough to contain a colormap definl@gtRGBColormaps allocates and

fills in space for the returned colormaps and returns a nonzero status. If the visualid is not pre-
sent,XGetRGBColormaps assumes the default visual for the screen on which the wirgdo
located; if the killid is not presenjone is assumed, which indicates that the resources cannot be
released. Otherwisapne of the fields are set, akGetRGBColormaps returns a zero status.

Note that it is the calles’responsibility to honor the ICCCM restriction that only
RGB_DEFRULT_MAP contain more than one definition.

XGetRGBColormaps can generat8adAtom and BadWindow errors.

377

Chapter 15

Resource Manager Functions

A program often needs a variety of options in the X environment (for example, fonts, colors,
icons, and cursors). Specifying all of these options on the command line is awkward because
users may want to customize maspects of the program and need avenrent way to establish
these customizations as the default settings. The resource manager is provided for this purpose.
Resource specifications are usually stored in human-readable files and in server properties.

The resource manager is a database manager with a twist. In most database systems, you perform
a query using an imprecise specification, and you get back a set of records. The resource man-
ager howevae, dlows you to specify a large set of values with an imprecise specification, to query

the database with a precise specification, and to get back only a silgle Vhisshould be used

by applications that need to kmavhat the user prefers for colors, fonts, and other resources. ltis

this use as a database for dealing with X resources that inspired the name “Resource’Manager
although the resource manager can be and is used in other ways.

For example, a user of your application may want to specify that all windows shoddhtiaie
background but that all mail-reading windows shoublkraed backgroundWith well-engi-
neered and coordinated applications, a user can define this information usingodimg svof
specifications.

As an example of Mo the resource manager works, consider a mail-reading application called

xmh. Assumehat it is designed so that it uses a complandow hierarcty al the way down to
individual command buttons, which may be actual small subwindows in some toolkits. These are
often called objects or widgets. In such toolkit systems, each user interface object can be com-
posed of other objects and can be assigned a name and a class. Fully qualified names or classes
can hae abitrary numbers of component names, but a fully qualified nawaysihas the same
number of component names as a fully qualified class. This generally reflects the structure of the
application as composed of these objects, starting with the application itself.

For example, the xmh mail program has a name “Xrahd is one of a class of “Mailpro-

grams. Bycorvention, the first character of class components is capitalized, and the first letter of
name components is inMercase. Eachame and class finally has an attribute (for example,
“foreground’ or ‘‘font”’). If each windw is properly assigned a name and class, it is easy for the
user to specify attributes ofaportion of the application.

At the top leel, the application might consist of a paned wwdthat is, a winde divided into
several sections) named “toc’ Onepane of the paned windds a hutton box windav named

“ buttons’ and is filled with commanduitons. Onef these command buttons is used to incorpo-
rate nev mail and has the name “incorporateThis window has a fully qualified name,
“xmh.toc.buttons.incorporate”, and a fully qualified class, “Xmh.Paned.Box.Commaisd’

fully qualified name is the name of its parent, “xmh.toc.buttons”, followed by its name, “incor-
porate’. Its class is the class of its parent, “Xmh.Paned.Box”, followed by its particular class,
“Command’ Thefully qualified name of a resource is the attribsit®ime appended to the
objects fully qualified name, and the fully qualified class is its class appended to the object’s
class.

The incorporate button might need the following resources: Title string, Font, Foreground color
for its inactve gate, Background color for its inaati gate, Foreground color for its acti ate,

378

and Background color for its aeti date. Eachiesource is considered to be an attribute of the
button and, as such, has a name and a ckgsexample, the foreground color for the button in
its actve gate might be named “agtFaeground”, and its class might be “Foreground”.

When an application looks up a resource (for example, a color), it passes the complete name and
complete class of the resource to a look-up routine. The resource manager compares this com-
plete specification against the incomplete specifications of entries in the resource database, finds
the best match, and returns the corresponding value for that entry.

The definitions for the resource manager are containedid/Xresource.h.

15.1. Resouce File Syntax

The syntax of a resource file is a sequence of resource lines terminated by newline characters or
the end of the file. The syntax of an individual resource line is:

ResourceLine = Comment | IncludeFile | ResourceSpec | <empty line>
Comment = "I"{<any character except null or newline>}

IncludeFile = "#" WhiteSpace "include" WhiteSpace FileName WhiteSpace
FileName = <valid filename for operating system>

ResourceSpec =WhiteSpace ResourceName WhiteSpace ":" WhiteSpace Value
ResourceName = [Binding] {Component Binding} ComponentName

Binding = "

WhiteSpace = {<space> | <horizontal tab>}

Component = "?" | ComponentName

ComponentName = NameChar {NameChar}

NameChar = "a"-"z" | "A"="Z | o=t |

Value = {<any character except null or unescaped newline>}

Elements separated by vertical bar (]) are altesgatiCurlybraces ({...}) indicate zero or more
repetitions of the enclosed elements. Square brackets (]...]) indicate that the enclosed element is
optional. Quotes"...") are used around literal characters.

IncludeFile lines are interpreted by replacing the line with the contents of the specified file. The
word “include” must be in lavercase. Théle name is interpreted relad o the directory of the

file in which the line occurs (for example, if the file name contains no directory or contains a rela-
tive drectory specification).

If a ResourceName contains a contiguous sequenceafrtmore Binding characters, the
sequence will be replaced with a singlé¢haracter if the sequence contains onlycharacters;
otherwise, the sequence will be replaced with a singlecttaracter.

A resource databasevee contains more than one entry for &ayi ResourceName. H resource
file contains multiple lines with the same ResourceName, the last line in the file is used.

Any white space characters before or after the name or colon in a ResourceSpec areTgnored.
allow a Value to begin with white space, the two-character sequaspacé (backslash fol-

lowed by space) is recognized and replaced by a space chaaadtibre two-character sequence

“\ tab” (backslash followed by horizontal tab) is recognized and replaced by a horizontal tab
character To dlow a Value to contain embedded newline characters, the two-character sequence
“\n” i s recognized and replaced by a newline charaddlow a Value to be broken across
multiple lines in a text file, the two-character sequeiiceivling (backslash followed by new-

line) is recognized and remad from the \alue. D dlow a Value to contain arbitrary character
codes, the four-character sequentenn’ , where eachis a digit character in the range of
“0"="7", is recognized and replaced with a single byte that contains the octal value specified by
the sequence. Finallthe two-character sequen€d’ is recognized and replaced with a single

379

backslash.

As an example of these sequences, the following resource line contains a value consisting of four
characters: a backslash, a null, a “z”, and a newline:

magic.values: \Q00\
z\n

15.2. Resouce Manager Matching Rules

The algorithm for determining which resource database entry matchesm auggry is the heart

of the resource manageill queries must fully specify the name and class of the desired

resource (use of the characters' ‘&hd “?” is not permitted). The library supports up to 100
components in a full name or class. Resources are stored in the database with only partially spec-
ified names and classes, using pattern matching constructs. An asterisk (*) is a loose binding and
is used to representyanumber of intervening components, including noAgeriod (.) is a tight
binding and is used to separate immediately adjacent comporegtestion mark (?) is used to
match ag single component name or clasi.database entry cannot end in a loose binding; the

final component (which cannot be the character “?") must be specified. The lookup algorithm
searches the database for the entry that most closely matches (is most specific for) the full name
and class being queried. When more than one database entry matches the full name and class,
precedence rules are used to select just one.

The full name and class are scanned from left to right (from highlwekirie¢he hierarci to low-

est), one component at a time. At eactllehe corresponding component and/or binding of

each matching entry is determined, and these matching components and bindings are compared
according to precedence rules. Each of the rules is applied at eeldiefere moving to the

next level, until a rule selects a single entryepall others. The rules, in order of precedence, are:

1. Anentry that contains a matching component (whether name, class, or the character “?”
takes precedencee entries that elide the Vel (that is, entries that match thedkin a
loose binding).

2. Anentry with a matching name takes precedewee lwth entries with a matching class
and entries that match using the character “2h entry with a matching class takes prece-
dence wer entries that match using the character “?”.

3. Anentry preceded by a tight binding takes precedewnereentries preceded by a loose
binding.

To illustrate these rules, consider the following resource database entries:

xmh*Paned*actieFaeground: red (entry A)
*incorporate.Forground: blue (entry B)
xmh.toc*Command*actieFaeground: green (entry C)
xmh.toc*?.Forground: white (entry D)
xmh.toc*Command.acteFaeground: black (entry E)

Consider a query for the resource:

xmh.toc.messagefunctions.incorporatevadioreground(name)
Xmh.Paned.Box.Command.Foreground (class)

At the first level (xmh, Xmh), rule 1 eliminates entry B. At the seconglétoc, Paned), rule 2
eliminates entry A. At the third Vel (messagefunctions, Box), no entries are eliminated. At the
fourth levd (incorporate, Command), rule 2 eliminates entry D. At the fiftHl le

380

(activeFaeground, Foreground), rule 3 eliminates entry C.

15.3. Quarks

Most uses of the resource managegolve defining names, classes, and representation types as
string constants. Hower, dways referring to strings in the resource manager can te slo
because it is so heavily used in some toolKlis.lve this problem, a shorthand for a string is

used in place of the string in maof the resource manager functions. Simple comparisons can
be performed rather than string comparisons. The shorthand name for a string is called a quark
and is the typ&XrmQuark . On some occasions, you may want to allocate a quark that has no
string equvalent.

A quark is to a string what an atom is to a string in the sdmreits use is entirely local to your
application.

To dlocate a ne quark, useXrmUniqueQuark .

XrmQuark XrmUniqueQuark)

The XrmUniqueQuark function allocates a quark that is guaranteed not to represestriag
that is known to the resource manager.

Each name, class, and representation type is typemedin XrmQuark .

typedef int XrmQuark, *XrmQuarkList;
typedef XrmQuark XrmName;

typedef XrmQuark XrmClass;

typedef XrmQuark XrmRepresentation;
#define NULLQUARK ((XrmQuark) 0)

Lists are represented as null-terminated arrays of quarks. The size of the array must be large
enough for the number of components used.

typedef XrmQuarkList XrmNamelList;

typedef XrmQuarkList XrmClassList;

To corvert a string to a quark, usérmStringToQuark or XrmPermStringToQuark .

381

#define XrmStringToName(string) XrmStringToQuark(string)
#define XrmStringToClass(string) XrmStringToQuark(string)
#define XrmStringToRepresentation(string) XrmStringToQuark(string)

XrmQuark XrmString®Quark Etring)
char *string;

XrmQuark XrmPermStringdQuark 6tring)
char *string;

string Specifies the string for which a quark is to be allocated.

These functions can be used towehfrom string to quark representation. If the string is not in

the Host Portable Character Encoding, thevexmion is implementation-dependent. The string
argument toXrmStringToQuark need not be permanently allocated storagenPermsString-
ToQuark is just like XrmStringToQuark , except that Xlib is permitted to assume the string
argument is permanently allocated, and, hence, that it can be used as the value to be returned by
XrmQuarkToString .

For any gven quark, if XrmStringToQuark returns a non-NULL value, all future calls will
return the same value (identical address).

To corvert a quark to a string, usermQuarkToString .

#define XrmNameToString(name) XrmQuarkToString(name)
#define XrmClassToString(class) XrmQuarkToString(class)
#define XrmRepresentationToString(type) XrmQuarkToString(type)

char *XrmQuarkDString Quark)
XrmQuarkquark;

quark Specifies the quark for which the eeplént string is desired.

These functions can be used tovamhfrom quark representation to string. The string pointed to
by the return value must not be modified or freed. The returned string is byte-for-byte equal to
the original string passed to one of the string-to-quark routines. If no string exists for that quark,

XrmQuarkToString returns NULL. For any gven quark, if XrmQuarkToString returns a
non-NULL value, all future calls will return the same value (identical address).

To convert a string with one or more components to a quark listXusestringToQuarkList .

382

#define XrmStringToNameList(stname) XrmString®QuarkList((str), (hame))
#define XrmStringToClassList(stlass) XrmStringToQuarkList((str), (class))

void XrmStringToQuarkList 6tring, quarks_returr)
char *string;
XrmQuarkListquarks_return

string Specifies the string for which a quark list is to be allocated.

guarks_return Returns the list of quarks. The caller must allocate sufficient space for the quarks
list before callingXrmStringToQuarkList .

The XrmStringToQuarkList function comwerts the null-terminated string (generally a fully qual-
ified name) to a list of quarks. Note that the string must be in the valid ResourceName format
(see section 15.1). If the string is not in the Host Portable Character Encoding vidysionris
implementation-dependent.

A binding list is a list of typeXrmBindingList and indicates if components of name or class lists
are bound tightly or loosely (that is, if wildcarding of intermediate components is specified).

typedef enum {XrmBindTightlyXrmBindLoosely} XrmBinding, *XrmBindingList;

XrmBindTightly indicates that a period separates the componentmanindLoosely indi-
cates that an asterisk separates the components.

To convert a string with one or more components to a binding list and a quark listrose
StringToBindingQuarkList .

XrmStringToBindingQuarkList§tring, bindings_returnquarks_return
char *string;
XrmBindingListbindings_return
XrmQuarkListquarks_return

string Specifies the string for which a quark list is to be allocated.

bindings_return
Returns the binding list. The caller must allocate sufficient space for the binding
list before callingXrmStringToBindingQuarkList .

quarks_return Returns the list of quarks. The caller must allocate sufficient space for the quarks
list before callingXrmStringToBindingQuarkList .

Component names in the list are separated by a period or an asterisk ch@lhecstring must
be in the format of a valid ResourceName (see section 15.1). If the string does not start with a
period or an asterisk, a tight binding is assunfeat.example, the string “*a.b*¢’becomes:

guarks: a b C
bindings: loose tight loose

15.4. Crating and Storing Databases

A resource database is an opaque tyfgpmDatabase. Each database value is stored inxam-
Value structure. Thistructure consists of a size, an address, and a representation type. The size

383

is specified in bytes. The representation type is a way for you to store data tagged by some appli-
cation-defined type (for example, the strings “foat’*‘color”). It has nothing to do with the C
data type or with its class. Thé&mValue structure is defined as:

typedef struct {
unsigned int size;
XPointer addr;

} X rmValue, *XrmValuePtr;

To initialize the resource managease Xrminitialize .

void Xrminitialize();

To retrieve a dtabase from disk, usé&mGetFileDatabase.

XrmDatabase XrmGetFileDatabagigshameé
char *filename

filename Specifies the resource database file name.

The XrmGetFileDatabase function opens the specified file, createsa resource database, and

loads it with the specifications read in from the specified file. The specified file should contain a
sequence of entries in valid ResourceLine format (see section 15.1); the database that results from
reading a file with incorrect syntax is implementation-dependent. The file is parsed in the current
locale, and the database is created in the current locale. If it cannot open the specified file,
XrmGetFileDatabasereturns NULL.

To dore a cop of a database to disk, usérmPutFileDatabase.

void XrmPutFileDatabasa&@atabasestored_db
XrmDatabaselatabase
char *stored_db

database Specifies the database that is to be used.
stored_db Specifies the file name for the stored database.

The XrmPutFileDatabase function stores a cgpof the specified database in the specified file.

Text is written to the file as a sequence of entries in valid ResourceLine format (see section 15.1).
The file is written in the locale of the database. Entries containing resource names that are not in
the Host Portable Character Encoding or containing values that are not in the encoding of the
database locale, are written in an implementation-dependent mameeorder in which entries

are written is implementation-dependent. Entries with representation types other than “String”
are ignored.

To dbtain a pointer to the screen-independent resources of a dig@a§ResourceManager-
String .

384

char *XResourceManagerStringjsplay)
Display *display;,

display Specifies the connection to the X server.

The XResourceManagerStringfunction returns the RESOURCE_MAGER property from

the serves root windawv of screen zero, which was returned when the connection was opened
using XOpenDisplay. The property is corerted from type STRING to the current locale. The
corversion is identical to that produced BynbTextPropertyToTextList for a single element
STRING property The returned string is owned by Xlib and should not be freed by the client.
The property value must be in a format that is acceptaitenisetStringDatabase. If no
property exists, NULL is returned.

To dbtain a pointer to the screen-specific resources of a screedSoseenResourceString

char *XScreenResourceStrirgpfeer)
Screen screen

screen Specifies the screen.

The XScreenResourceStringfunction returns the SCREEN_RESOURCES property from the
root windav of the specified screen. The property isvanted from type STRING to the current
locale. Thecorversion is identical to that produced BynbTextPropertyToTextList for a sin-

gle element STRING propertyhe property value must be in a format that is acceptable to
XrmGetStringDatabase. If no property exists, NULL is returned. The caller is responsible for
freeing the returned string by usiXdrree.

To aeate a database from a string, ¥smGetStringDatabase.

XrmDatabase XrmGetStringDatabada{a)
char "data;

data Specifies the database contents using a string.

The XrmGetStringDatabase function creates a medatabase and stores the resources specified

in the specified null-terminated stringrmGetStringDatabase is similar toXrmGetFile-
Databaseexcept that it reads the information out of a string instead of out of a file. The string
should contain a sequence of entries in valid ResourceLine format (see section 15.1) terminated
by a null character; the database that results from using a string with incorrect syntax is imple-
mentation-dependent. Tle&ing is parsed in the current locale, and the database is created in the
current locale.

To dbtain the locale name of a database, XiseLocaleOfDatabase.

385

char *XrmLocaleOfDatabasdatabas¢
XrmDatabasa@latabase

database Specifies the resource database.

The XrmLocaleOfDatabase function returns the name of the locale bound to the specified
database, as a null-terminated string. The returned locale name string is owned by Xlib and
should not be modified or freed by the client. Xlib is not permitted to free the string until the
database is desyred. Untilthe string is freed, it will not be modified by Xlib.

To destrgy a resource database and free its allocated memsgXrmDestroyDatabase
void XrmDestrgyDatabasedatabasg

XrmDatabaselatabase

database Specifies the resource database.
If database is NULLXrmDestroyDatabasereturns immediately.
To associate a resource database with a disptsXrmSetDatabase

void XrmSetDatabasel{splay, databas¢
Display *display,
XrmDatabaselatabase

display Specifies the connection to the X server.
database Specifies the resource database.

The XrmSetDatabasefunction associates the specified resource database (or NULL) with the
specified display The database previously associated with the display (if any) is not destroyed.
A client or toolkit may find this function ceenient for retaining a database once it is con-
structed.

To get the resource database associated with a diggl(rmGetDatabase.

XrmDatabase XrmGetDatabaskgplay)
Display *display,

display Specifies the connection to the X server.

The XrmGetDatabase function returns the database associated with the specified disiplay
returns NULL if a database has not yet been set.

15.5. Memging Resource Databases
To merge the contents of a resource file into a databaséraggombineFileDatabase

386

Status XrmCombineFileDatabafisgnametarget_db, override)
char *filename
XrmDatabase target_db;

Bool override;
filename Specifies the resource database file name.
target_db Specifies the resource database into which the source database is to be merged.
override Specifies whether source entriegmide target ones.

The XrmCombineFileDatabasefunction merges the contents of a resource file into a database.

If the same specifier is used for an entry in both the file and the database, the entry in the file will
replace the entry in the databaseviéroide is Tr ue; otherwise, the entry in the file is discarded.

The file is parsed in the current locale. If the file cannot be read, a zero status is returned; other-
wise, a nonzero status is returned. If target_db contains NMirhCombineFileDatabasecre-

ates and returns awelatabase to it. Otherwise, the database pointed to by target_db is not
destroyed by the mge. Thedatabase entries are merged without changing values or types,
regardless of the locale of the database. The locale of the target database is not modified.

To merge the contents of one database into another databa3@ém@GembineDatabase

void XrmCombineDatabasefurce_dbtarget_db, override)
XrmDatabaseource db*target_db;
Bool override;

source_db Specifies the resource database that is to be merged into the target database.

target_db Specifies the resource database into which the source database is to be merged.
override Specifies whether source entriegmide target ones.

The XrmCombineDatabasefunction merges the contents of one database into andthbe

same specifier is used for an entry in both databases, the entry in the source_db will replace the
entry in the target_db ifverride is Tr ue; otherwise, the entry in source_db is discarded. If tar-
get_db contains NULLXrmCombineDatabasesimply stores source_db in it. Otherwise,
source_db is destroyed by the merge, but the database pointed to by target_db is not destroyed.
The database entries are merged without changing values or tyzedless of the locales of the
databases. THecale of the target database is not modified.

To merge the contents of one database into another databaseemittieosemantics, usgérm-
MergeDatabases

void XrmMergeDatabases¢urce_dbtarget_db)
XrmDatabaseource_db*target_db;

source_db Specifies the resource database that is to be merged into the target database.
target_db Specifies the resource database into which the source database is to be merged.

Calling theXrmMergeDatabasesfunction is equalent to calling theXrmCombineDatabase
function with an gerride argument offr ue.

387

15.6. LookingUp Resources

To retrieve a esource from a resource database XreeGetResource, XrmQGetResource, or
XrmQGetSearchResource

Bool XrmGetResourcalatabasestr_namestr_classstr_type_returnvalue_returr)
XrmDatabaselatabase
char *str_name
char *str_class
char **str_type_return
XrmValue *value_return

database Specifies the database that is to be used.
str_name Specifies the fully qualified name of the value being nadd€as a string).
str_class Specifies the fully qualified class of the value being nedti¢as a string).

str_type_return
Returns the representation type of the destination (as a string).

value_return Returns the value in the database.

Bool XrmQGetResourcaatabasequark _namequark_classquark_type_returpvalue_returr)
XrmDatabaselatabase
XrmNamelListquark_name
XrmClassListquark_class
XrmRepresentationquark_type_return
XrmValue *value_return

database Specifies the database that is to be used.
quark_name Specifies the fully qualified name of the value being netddas a quark).
quark_class Specifies the fully qualified class of the value being nadddas a quark).

quark_type_return
Returns the representation type of the destination (as a quark).

value_return Returns the value in the database.

The XrmGetResource and XrmQGetResource functions retrige a esource from the specified
database. Bottake a ully qualified name/class paa cestination resource representation, and

the address of a value (size/address pair). The value and returned type point into database mem-
ory; therefore, you must not modify the data.

The database only frees areowrites entries orxXrmPutResource, XrmQPutResource, or
XrmMergeDatabases A client that is not storing mevalues into the database or is not merging
the database should be safe using the address passed bydinae amtil it exits. If a resource

was found, bothXrmGetResource and XrmQGetResource return Tr ue; otherwise, thg return
False.

Most applications and toolkits do not neatandom probes into a resource database to fetch

388

resources. ThX toolkit access pattern for a resource database is quite styizseties of from

1 to 20 pobes is made with only the last name/class differing in each probeXrit@etRe-
source function is at worst a"2algorithm, where is the length of the name/class list. This can
be impraved upon by the application programmer by prefetching a list of database tleat

might match the first part of a name/class list.

To dbtain a list of databasevids, useXrmQGetSearchList.

typedef XrmHashTable *XrmSearchList;

Bool XrmQGetSearchListfatabasenamesclasseslist_return list_length
XrmDatabas@atabase
XrmNameListnames
XrmcClassListclasses
XrmSearchListist_return;

int list_length
database Specifies the database that is to be used.
names Specifies a list of resource names.
classes Specifies a list of resource classes.
list_return Returns a search list for further use. The caller must allocate sufficient space for

the list before callingKrmQGetSearchList.
list_length Specifies the number of entries (not the byte size) allocated for list_return.

The XrmQGetSearchList function takes a list of names and classes and returns a list of database
levels where a match might occufhe returned list is in best-to-worst order and uses the same
algorithm asXrmGetResource for determining precedence. If list_return was large enough for

the search listKrmQGetSearchList returnsTr ue; otherwise, it return$-alse.

The size of the search list that the caller must allocate is dependent upon the nunvieksr ariide
wildcards in the resource specifiers that are stored in the database. The worst case fgngth is 3
wheren is the number of name or class components in names or classes.

When usingXrmQGetSearchList followed by multiple probes for resources with a common
name and class prefix, only the common prefix should be specified in the name and class list to
XrmQGetSearchList.

To search resource databaseds for a gven resource, usXrmQGetSearchResource

389

Bool XrmQGetSearchResourdis{, name class type_returnvalue_returr)
XrmSearchListist;
XrmNamename
XrmClassclass
XrmRepresentationtype_return
XrmValue *value_return

list Specifies the search list returnedXymQGetSearchList.
name Specifies the resource name.
class Specifies the resource class.

type_return Returns data representation type.
value_return Returns the value in the database.

The XrmQGetSearchResourcefunction searches the specified databaggddor the resource
that is fully identified by the specified name and class. The search stops with the first match.
XrmQGetSearchResourcereturnsTr ue if the resource was found; otherwise, it retuRasse.

A call to XrmQGetSearchList with a name and class list containing all but the last component
of a resource name followed by a calXomQGetSearchResourcewith the last component
name and class returns the same database erXnynézetResource and XrmQGetResource

with the fully qualified name and class.

15.7. Storinginto a Resource Database

To dore resources into the database, XisaPutResource or XrmQPutResource. Both func-
tions tale a fartial resource specification, a representation type, aatlia.vThisvalue is copied
into the specified database.

void XrmPutResourcedatabasespecifier type value)
XrmDatabase database
char *specifier
char type
XrmValue *value;
database Specifies the resource database.
specifier Specifies a complete or partial specification of the resource.
type Specifies the type of the resource.

value Specifies the value of the resource, which is specified as a string.

If database contains NULIXrmPutResource creates a ve database and returns a pointer to it.
XrmPutResource is a corenience function that call&rmStringToBindingQuarkList fol-
lowed by:

XrmQPutResource(database, bindings, quarks, XrmStringToQuark(type), value)

If the specifier and type are not in the Host Portable Character Encoding, the result is implemen-
tation-dependent. Thelue is stored in the database without modification.

390

void XrmQPutResourcaelatabasebindings quarks type value)
XrmDatabase database
XrmBindingListbindings
XrmQuarkListquarks
XrmRepresentatiotype;
XrmValue *value

database Specifies the resource database.

bindings Specifies a list of bindings.

quarks Specifies the complete or partial name or the class list of the resource.
type Specifies the type of the resource.

value Specifies the value of the resource, which is specified as a string.

If database contains NULIXrmQPutResource creates a ve database and returns a pointer to

it. If a resource entry with the identical bindings and quarks already exists in the database, the
previous type and value are replaced by the geecified type andalue. Thevalue is stored in

the database without modification.

To add a resource that is specified as a string Xus&PutStringResource.

void XrmPutStringResourcelatabasespecifier value)
XrmDatabase database
char *specifier,
char *value

database Specifies the resource database.

specifier Specifies a complete or partial specification of the resource.
value Specifies the value of the resource, which is specified as a string.

If database contains NULIXrmPutStringResource creates a e database and returns a

pointer to it. XrmPutStringResource adds a resource with the specified value to the specified
database XrmPutStringResource is a corenience function that first call&rmStringToBind-
ingQuarkList on the specifier and then calsmQPutResource, using a “String’ representa-

tion type. If the specifier is not in the Host Portable Character Encoding, the result is implemen-
tation-dependent. Thelue is stored in the database without modification.

To add a string resource using quarks as a specificatiorXus@PutStringResource.

391

void XrmQPutStringResourcé@tabasebindings quarks value)
XrmDatabase database
XrmBindingListbindings
XrmQuarkListquarks
char *value;

database Specifies the resource database.

bindings Specifies a list of bindings.

guarks Specifies the complete or partial name or the class list of the resource.
value Specifies the value of the resource, which is specified as a string.

If database contains NULIXrmQPutStringResource creates a ve database and returns a
pointer to it. XrmQPutStringResource is a conenience routine that constructs ArmValue

for the value string (by callingtrlen to compute the size) and then calisnQPutResource,

using a “String’ representation type. The value is stored in the database without modification.

To add a single resource entry that is specified as a string that contains both a name and a value,
useXrmPutLineResource.

void XrmPutLineResourcalatabaseline)

XrmDatabase database
char Hine;
database Specifies the resource database.
line Specifies the resource name and value pair as a single string.

If database contains NULIXrmPutLineResource creates a ve database and returns a pointer

to it. XrmPutLineResource adds a single resource entry to the specified database. The line
should be in valid ResourceLine format (see section 15.1) terminated by a newline or null charac-
ter; the database that results from using a string with incorrect syntax is implementation-depen-
dent. Thestring is parsed in the locale of the database. IRésourceNames not in the Host
Portable Character Encoding, the result is implementation-dependent. Note that comment lines
are not stored.

15.8. EnumeratingDatabase Entries
To enumerate the entries of a database XrseEnumerateDatabase

392

#define XrmEnumAllLe vels 0
#define XrmEnumOnelLevel 1

Bool XrmEnumerateDatabasggtabasename_prefixclass_prefixmode proc, arg)
XrmDatabaselatabase
XrmNameListname_ prefix
XrmClassListclass_prefix
int mode
Bool (*proc)();
XPointerarg;

database Specifies the resource database.
name_prefix Specifies the resource name prefix.
class_prefix Specifies the resource class prefix.

mode Specifies the number ofds to enumerate.
proc Specifies the procedure that is to be called for each matching entry.
arg Specifies the user-supplied argument that will be passed to the procedure.

The XrmEnumerateDatabasefunction calls the specified procedure for each resource in the
database that would match some completion of tngiame/class resource prefix. The order

in which resources are found is implementation-dependent. If mottenEnumOnelLevel, a
resource must match thevgn name/class prefix with just a single name and class appended. If
mode isXrmEnumAllLe vels, the resource must match thean name/class prefix with one or
more names and classes appended. If the procedure rétueghe enumeration terminates

and the function return®r ue. If the procedure alays returnsFalse, al matching resources are
enumerated and the function retufrese.

The procedure is called with the following arguments:

(*proc)(databasebindings quarks type value arg)
XrmDatabase database
XrmBindingListbindings
XrmQuarkListquarks
XrmRepresentationtype;

XrmValue *valug
XPointerarg;

The bindings and quarks lists are terminatedNbiLLQ UARK . Note that pointers to the
database and type are passed, but these values should not be modified.

The procedure must not modify the database. If Xlib has been initialized for threads, the proce-
dure is called with the database locked and the result of a call by the procedyrilib &umc-
tion using the same database is not defined.

15.9. Rarsing Command Line Options

The XrmParseCommand function can be used to parse the command line arguments to a pro-
gram and modify a resource database with selected entries from the command line.

393

typedef enum {

XrmoptionNoAmg, /* Value is specified in XrmOptionDescRec.value */
XrmoptionIsAmg, /* Value is the option string itself */
XrmoptionStickyAg, [* Value is characters immediately following option */
XrmoptionSepAg, /* Value is next argument in argv */
XrmoptionResAg, /* Resource and value in next argument in argv */
XrmoptionSkipAg, /* Ignore this option and the next argument in argv */
XrmoptionSkipLine, [*Ignore this option and the rest of argv */
XrmoptionSkipNAgs [* Ignore this option and the next

XrmOptionDescRec.value arguments in argv */
} X rmOptionKind;

Note thatXrmoptionSkipArg is equiaent to XrmoptionSkipNArgs with the XrmOptionDe-
scRec.valu€field containing the value one. Note also that the value zerdrfooptionSkip-
NArgs indicates that only the option itself is to be skipped.

typedef struct {
char *option; /* Option specification string ingar */
char *specifier; /* Binding and resource nhame (sans application name) */
XrmOptionKind agKind; /* Which style of option itis */
XPointer \alue; /*Value to provide if XrmoptionNoAg or

XrmoptionSkipNAgQs */
} X rmOptionDescRec, *XrmOptionDescList;

To load a resource database from a C command lineXrmsBarseCommand.

void XrmParseCommandiatabase table, table_count name argc_in_out argv_in_ou)
XrmDatabase database
XrmOptionDesclListable;
int table_count
char name
int *argc_in_out
char **argv_in_out

database Specifies the resource database.

table Specifies the table of command line arguments to be parsed.

table_count Specifies the number of entries in the table.

name Specifies the application name.

argc_in_out Specifies the number of arguments and returns the number of remaining argu-
ments.

argv_in_out Specifies the command line arguments and returns the remaining arguments.

The XrmParseCommand function parses an (argc, argv) pair according to the specified option
table, loads recognized options into the specified database with type “Samaignodifies the
(argc, argv) pair to renve dl recognized options. If database contains NULL,

394

XrmParseCommand creates a e database and returns a pointer to it. Otherwise, entries are
added to the database specified. If a database is created, it is created in the current locale.

The specified table is used to parse the command line. Recognized options in the table are
removed from argy and entries are added to the specified resource database in the order they
occur in argv The table entries contain information on the option string, the option name, the

style of option, and a value to provide if the option kinXisoptionNoArg . The option names

are compared byte-for-byte to arguments in g@rglependent of arlocale. Theesource values

given in the table are stored in the resource database without modification. All resource database
entries are created using a “Stringgpresentation type. The argc argument specifies the number

of arguments in argv and is set on return to the remaining number of arguments that were not
parsed. Th@ame argument should be the name of your application for use in building the
database entryThe name argument is prefixed to the resourceName in the option table before
storing a database entryhe name argument is treated as a single compomentifé has

embedded periods. No separating (binding) character is inserted, so the table must contain either
a period (.) or an asterisk (*) as the first character in each resourceNameTengpgcify a more
completely qualified resource name, the resourceName entry can contain multiple components. If
the name argument and the resourceNames are not in the Host Portable Character Encoding, the
result is implementation-dependent.

The following provides a sample option table:

static XrmOptionDescRec opTable[] = {

{"-background", "*background", XrmoptionSepAg, (XPointer)NULL},
{"=bd", "*porderColor", XrmoptionSepAg, (XPointer)NULL},
{"-bg", "*background”, XrmoptionSepAg, (XPointer)NULL},
{"-borderwidth", "*TopLevelShell.borderVifith", XrmoptionSepAg, (XPointer)NULL},
{"-bordercolor", "*borderColor", XrmoptionSepAg, (XPointer)NULL},
{"-bw", "*T opLevelShell.bordervidth”, XrmoptionSepAg, (XPointer)NULL},
{"—display", ".display", XrmoptionSepAg, (XPointer)NULL},
{"-fg", "*fore ground", XrmoptionSepAy, (XPointer)NULL},
{"-fn", "*font", XrmoptionSepAg, (XPointer)NULL},
{"-font", "*font", XrmoptionSepAg, (XPointer)NULL},
{"-foreground”, "*forgground", XrmoptionSepAy, (XPointer)NULL},
{"-geometry", ".TopLevelShell.geometry", XrmoptionSepdr (XPointer)NULL},
{"=iconic", " TopLevelShell.iconic", XrmoptionNOoAg, (XPointer)'on"},
{"-name", ".name", XrmoptionSepAg, (XPointer)NULL},
{"-reverse", "*reverseMdeo”, XrmoptionNoAg, (XPointer)'on"},
{"=rv", "*re verseMdeo", XrmoptionNoAg, (XPointer)'on"},
{"-synchronous", "*synchronous", XrmoptionNoAIg, (XPointer)'on"},
{"-title", ".T opLevelShell.title", XrmoptionSepAg, (XPointer)NULL},
{"=xrm", NULL, XrmoptionResAg, (XPointer)NULL},
I

In this table, if the —background (or —bg) option is used to set background colors, the stored
resource specifier matches all resources of attribute background. If the —borderwidth option is
used, the stored resource specifier applies only to border width attributes of classeBiple

(that is, outer-most windows, including pop-up windd. If the —title option is used to set a win-
dow name, only the topmost application windows reedhe resource.

When parsing the command lineyamique unambiguous abbreviation for an option name in the
table is considered a match for the option. Note that uppercase and lowercase matter.

395

Chapter 16

Application Utility Functions

Once you hee initialized the X system, you can use the Xlib utility functions to:
. Use leyboard utility functions

. Use Latin-1 keyboard @ent functions

. Allocate permanent storage

. Parse the winde geometry

. Manipulate regions

. Use cut buffers

. Determine the appropriate visual type
. Manipulate images

. Manipulate bitmaps

. Use the context manager

As a group, the functions discussed in this chapter provide the functionality that is frequently
needed and that spans toolkits. Marfithese functions do not generate actual protocol requests
to the server.

16.1. UsingKeyboard Utility Functions

This section discusses mapping betweeyd6des and KySyms, classifying KySyms, and

mapping between ¢&/Syms and string names. The first three functions in this section operate on
a cached cop of the server &yboard mapping. The first fourdgSyms for each ByCode are
modified according to the rulesvgn in section 12.7.To dbtain the untransformedeySyms

defined for a &y, use the functions described in section 12.7.

To dbtain a keySym for the KeyCode of an eent, useXLookupKeysym.

KeySym XLookupkeysym(key_eventindex)
XKeyEvent *key_event
intindex;
key_event Specifies th&KeyPressor KeyReleaseevent.
index Specifies the indeinto the keySyms list for the went’s KeyCode.

The XLookupKeysym function uses a géen keyboard @ent and the indeyou specified to
return the KySym from the list that corresponds to they&ode member in thE¥KeyPressedE-
vent or XKeyReleasedEventstructure. 1fno KeySym is defined for the é/Code of the eent,
XLookupKeysym returnsNoSymbol.

To dbtain a keySym for a specific KyCode, useXxKeycodeToKeysym

396

KeySym XKeycodeTokeysym (display, keycode indeX)

Display *display;,

KeyCodekeycode

intindex
display Specifies the connection to the X server.
keycode Specifies the KyCode.
index Specifies the element ofeCode vector.

The XKeycodeToKeysymfunction uses internal Xlib tables and returns tleg3¢m defined for
the specified KyCode and the element of theyCode vectar If no symbol is definedXKey-
codeToKeysymreturnsNoSymbol.

To dbtain a keyCode for a ky having a specific I€ySym, useXKeysymToKeycode

KeyCode XKeysymToKeycode @isplay, keysym

Display *display;,

KeySymkeysym
display Specifies the connection to the X server.
keysym Specifies the KySym that is to be searched for.

If the specified €ySym is not defined for grkKeyCode, XKeysymToKeycodereturns zero.

The mapping betweendgCodes and BySyms is cached internal to XliWhen this information
is changed at the seryan Xib function must be called to refresh the cache.refresh the
stored modifier anddymap information, us&XRefreshKeyboardMapping.

XRefreshkeyboardMappingévent_map
XMappingEvent €\vent_map
event_map Specifies the mappingent that is to be used.
The XRefreshKeyboardMapping function refreshes the stored modifier aegrkap informa-
tion. You usually call this function whenMappingNotify event with a request member of

MappingKeyboard or MappingModifier occurs. Theesult is to update Xlils’knowledge of
the keyboard.

To dbtain the uppercase and lowercase forms ofyblm, useXConvertCase.

397

void XCorvertCasekeysym lower_return upper_returr)
KeySymkeysym
KeySym *lower_return
KeySym *upper_return
keysym Specifies the BySym that is to be ceerted.
lower_return Returns the lowercase form aéysym, or leysym.

upper_return Returns the uppercase form afykym, or leysym.

The XConvertCase function returns the uppercase and lowercase forms of the spea@feghi
if the KeySym is subject to case ca@nsion; otherwise, the specifiec¥Sym is returned to both
lower_return and upper_return. Support forvamsion of other than Latin and CyrillicdgSyms
is implementation-dependent.

KeySyms hae gring names as well as numeric cod&e.ornvert the name of the &Sym to the
KeySym code, usXStringToKeysym.

KeySym XStringTokeysym (string)
char *string;

string Specifies the name of thee¥Sym that is to be cerrted.

Standard KySym names are obtained frorX Kl/keysymdef.l» by removing the XK_ prefix

from each nameKeySyms that are not part of the Xlib standard also may be obtained with this
function. Theset of KeySyms that arewailable in this manner and the mechanisms by which
Xlib obtains them is implementation-dependent.

If the KeySym name is not in the Host Portable Character Encoding, the result is implementation-
dependent. Ithe specified string does not match a val@3ym, XStringToKeysym returns
NoSymbol.

To corvert a KeySym code to the name of theySym, usexKeysymToString.

char *XKeysymToString keysym
KeySymkeysym

keysym Specifies the EySym that is to be ceerted.
The returned string is in a static area and must not be modified. The returned string is in the Host

Portable Character Encoding. If the specifieyBym is not definedXKeysymToString returns
a NULL.

16.1.1. KeySym Classification Macros

You may want to test if a &ySym is, for example, on the&ypad or on one of the functiomeys.
You can use KKySym macros to perform the following tests.

398

IsCursorkey (keysym
keysym Specifies the BySym that is to be tested.

ReturnsTr ue if the specified €ySym is a cursorey.

IsFunctionkey (keysym
keysym Specifies the EySym that is to be tested.

ReturnsTr ue if the specified I€ySym is a function &y.

IsKeypadkey (keysyn)
keysym Specifies the KySym that is to be tested.

ReturnsTr ue if the specified I€ySym is a standardelgpad ley.

IsPrivateKeypadkey (keysyn)
keysym Specifies the EySym that is to be tested.

ReturnsTr ue if the specified I€ySym is a vendor-prate keypad ley.

IsMiscFunctionkey (keysym)
keysym Specifies the BySym that is to be tested.

ReturnsTr ue if the specified K€ySym is a miscellaneous functioayk

IsModifierKey (keysym
keysym Specifies the EySym that is to be tested.

ReturnsTr ue if the specified I€ySym is a modifier &y.

IsPFKey (keysym
keysym Specifies the KySym that is to be tested.

ReturnsTr ue if the specified I€ySym is a PF &y.

399

16.2. UsingLatin-1 Keyboard Event Functions

Chapter 13 describes internationalized text input facilities, but sometimes it is expedient to write
an application that only deals with Latin-1 characters and ASCII controls, so Xlib provides a sim-
ple function for that purposeXLookupString handles the standard modifier semantics

described in section 12.7. This function does not ugefthe input method facilities described

in chapter 13 and does not depend on the current locale.

To map a ley event to an ISO Latin-1 string, us&_ookupString .

int XLookupStringewent_structbuffer_return bytes_bufferkeysym_returpstatus_in_out
XKeyEvent *event_struct
char *buffer_return;
int bytes_buffer
KeySym *keysym_return
XComposeStatusstatus_in_out

ewvent_struct Specifies the &y event structure to be usedou can passXKeyPressedEvent
or XKeyReleasedEvent

buffer_return Returns the translated characters.

bytes_buffer Specifies the length of the buffeko more than bytes_buffer of translation are
returned.

keysym_return Returns the KySym computed from thesent if this argument is not NULL.
status_in_out Specifies or returns thé¢ComposeStatusstructure or NULL.

The XLookupString function translates agly event to a keySym and a string. Thed¢Sym is
obtained by using the standard interpretation of3hit, Lock, group, and numlock modifiers

as defined in the X Protocol specification. If theyBym has been rebound (s¢Rebind-

Keysym), the bound string will be stored in the buff@therwise, the KySym is mapped, if

possible, to an ISO Latin-1 character or (if the Control modifier is on) to an ASCII control charac-
ter, and that character is stored in the buff&tookupString returns the number of characters

that are stored in the buffer.

If present (non-NULL), theXComposeStatusstructure records the state, which isvae to

Xlib, that needs preservation across callXt@okupString to implement compose processing.
The creation oiKComposeStatusstructures is implementation-dependent; a portable program
must pass NULL for this argument.

XLookupString depends on the cacheeykoard information mentioned in the previous section,
S0 it is necessary to uddRefreshKeyboardMapping to keep this information up-to-date.

To rebind the meaning of aggSym for XLookupString , use XRebindKeysym.

400

XRebindKeysym(display, keysym list, mod_countstring, num_byte¥
Display *display;
KeySymkeysym
KeySymlist[];
int mod_count
unsigned charstring;
int num_bytes

display Specifies the connection to the X server.

keysym Specifies the EySym that is to be rebound.

list Specifies the BySyms to be used as modifiers.

mod_count Specifies the number of modifiers in the maodifier list.

string Specifies the string that is copied and will be returnelbyokupString .

num_bytes Specifies the number of bytes in the string argument.

The XRebindKeysym function can be used to rebind the meaning oegS¢m for the client. It
does not redefine wkey in the X server but merely provides an easy way for long strings to be
attached to &ys. XLookupString returns this string when the appropriate set of modiégs k

are pressed and when they®ym would hae keen used for the translation. No textwasions

are performed; the client is responsible for supplying appropriately encoded strings. Note that
you can rebind a &/Sym that may not exist.

16.3. AllocatingPermanent Storage
To dlocate some memory you will wier give back, useXpermalloc.

char *Xpermallocéize)
unsigned insize

The Xpermalloc function allocates storage that cawvarde freed for the life of the program.
The memory is allocated with alignment for the C type double. This function may provide some
performance and space savingsrdhe standard operating system memory allocator.

16.4. Rarsing the Window Geometry
To parse standard winglogeometry strings, us¥ParseGeometry.

401

int XParseGeometnyarsestring x_return, y_return, width_return height_returnp
char *parsestring
int *X_return, *y_return;
unsigned int tvidth_return *height_return

parsestring Specifies the string you want to parse.

X_return
y_return Return the x and y offsets.

width_return
height_return Return the width and height determined.

By corvention, X applications use a standard string to indicate wirsiltee and placement.
XParseGeometrymakes it easier to conform to this standard because it allows you to parse the
standard windw geometry Specifically this function lets you parse strings of the form:

[Fll<width>{xX}< height][{+-}< xoffseb{+-}< yoffser]

The fields map into the arguments associated with this function. (Iltems enclosedr@irte-

gers, items in]J[are optional, and items enclosed ihifidicate “choose one &f.N ote that the

brackets should not appear in the actual string.) If the string is not in the Host Portable Character
Encoding, the result is implementation-dependent.

The XParseGeometryfunction returns a bitmask that indicates which of the four values (width,
height, xoffset, and yoffset) were actually found in the string and whether the x and y values are
negaive. By corvention, —0 is not equal to +0, because the user needs to be able to say “position
the windav relative o the right or bottom edde F or each value found, the corresponding argu-
ment is updatedFor each value not found, the argument is left unchanged. The bits are repre-
sented byXValue, YValue, WidthValue, HeightValue, XNegative, or YNegative and are

defined in ¥11/Xutil.h>. They will be set wheneer one of the values is defined or one of the

signs is set.

If the function returns either théValue or YValue flag, you should place the windat the
requested position.

To oonstruct a windove geometry information, usEWMGeometry .

402

int XWMGeometry display, screenuser_geomdef _geombwidth, hints x_return y_return
width_return height_returngravity_return
Display *display,
int screen
char *‘user_geom
char *def_geom
unsigned inbwidth;
XSizeHints Hints;
int *X_return *y_return,
int *width_return
int *height_return
int *gravity_return

display Specifies the connection to the X server.
screen Specifies the screen.

user_geom Specifies the user-specified geometry or NULL.
def_geom Specifies the applicationtefault geometry or NULL.

bwidth Specifies the border width.

hints Specifies the size hints for the wind its normal state.
X_return

y_return Return the x and y offsets.

width_return
height_return Return the width and height determined.

gravity_return Returns the winde gravity.

The XWMGeometry function combines angeometry information (gien in the format used by
XParseGeometry) specified by the user and by the calling program with size hints (usually the
ones to be stored in WM_NORMAL_HINTS) and returns the position, size, and griseitih{
WestGravity , NorthEastGravity , SouthEastGravity, or SouthWestGravity) that describe the
window. If the base size is not set in tK8izeHints structure, the minimum size is used if set.
Otherwise, a base size of zero is assumed. If no minimum size is set in the hints structure, the
base size is usedd mask (in the form returned byParseGeometry) that describes which val-

ues came from the user specification and whether or not the position coordinates aeeorelati

the right and bottom edges is returned. Note that these coordinatesveiiready been

accounted for in the x_return and y_return values.

Note that inalid geometry specifications can cause a width or height of zero to be returned. The
caller may pass the address of the hints win_gravity field as gravity_return to update the hints
directly.

16.5. Manipulating Regions

Regions are arbitrary sets of pixel locations. Xlib provides functions for manipulating regions.
The opaque typRegionis defined in ¥X11/Xutil.h>. Xlib provides functions that you can use
to manipulate gions. Thissection discusses Wwao:

. Create, cop, or destrgy regons
. Move a shrink regions

403

. Compute with regions
. Determine if regions are empty or equal
. Locate a point or rectangle in a region

16.5.1. Ceating, Copying, or Destroying Regions
To aeate a n@ empty region, useXCreateRegion

Region XCreateRgon ()

To generate a region from a polygon, d§eolygonRegion

Region XPolygonRgion (points, n, fill_rule)
XPointpointsl[];

intn;
int fill_rule;
points Specifies an array of points.
n Specifies the number of points in the polygon.
fill_rule Specifies the fill-rule you want to set for the specified ®Qu can pasEven-

OddRule or WindingRule.

The XPolygonRegionfunction returns a region for the polygon defined by the points. afay
an explanation of fill_rule, se¥CreateGC.

To st the clip-mask of a GC to a region, u§getRegion

XSetRgjion (display, gc, r)

Display *display,

GCgc;

Regionr;
display Specifies the connection to the X server.
gc Specifies the GC.
r Specifies the region.

The XSetRegionfunction sets the clip-mask in the GC to the specifigtbre Theregion is
specified relatie the dravable’s arigin. Theresulting GC clip origin is implementation-depen-
dent. Oncat is set in the GC, the region can be destroyed.

To deallocate the storage associated with a specified regioXDesroyRegion

404

XDestroyR@gion(r)
Regionr;

r Specifies the region.

16.5.2. Mawing or Shrinking Regions
To move a egon by a specified amount, u¥®©ffsetRegion.

XOffsetRegion (r, dx, dy)

Regionr;
int dx, dy;
r Specifies the region.
dx
dy Specify the x and y coordinates, which define the amount you wantvi theo

specified region.

To reduce a region by a specified amount, XiSarinkRegion.

XShrinkRegion (r, dx, dy)

Regionr;
int dx, dy;
r Specifies the region.
dx
dy Specify the x and y coordinates, which define the amount you want to shrink the

specified region.

Positive values shrink the size of the region, andaige values expand the region.

16.5.3. Computingwith Regions
To generate the smallest rectangle enclosing a regionX@pBox .

XClipBox(r, rect_return)
Regionr;
XRectangle tect_return;

r Specifies the region.
rect_return Returns the smallest enclosing rectangle.

The XClipBox function returns the smallest rectangle enclosing the specified region.

To compute the intersection of twegons, useXIntersectRegion.

405

XlntersectRgion (sra, srb, dr_return)
Regionsra, srb, dr_return;

sra
srb Specify the tw regons with which you want to perform the computation.
dr_return Returns the result of the computation.

To compute the union of twregons, useXUnionRegion.

XUnionRegion (sra, srb, dr_return)
Regionsra, srb, dr_return;

sra
srb Specify the tw regons with which you want to perform the computation.
dr_return Returns the result of the computation.

To aeate a union of a source region and a rectangleXus@nRectWithRegion.

XUnionRectWithRegion (rectangle src_regon, dest_egon_return)
XRectangle fectangle
Regionsrc_regon;
Regiondest_egon_return;

rectangle Specifies the rectangle.

src_regon Specifies the source region to be used.

dest_egon_return
Returns the destination region.

The XUnionRectWithRegion function updates the destination region from a union of the speci-
fied rectangle and the specified source region.

To subtract tvo regons, useXSubtractRegion.

XSubtractRgion (sra, srb, dr_return)
Regionsra, srb, dr_return;

sra
srb Specify the tw regons with which you want to perform the computation.
dr_return Returns the result of the computation.

The XSubtractRegion function subtracts srb from sra and stores the results in dr_return.

To calculate the difference between the union and intersectionoaktyons, useXXorRegion.

406

XXorRegion (sra, srb, dr_return)
Regionsra, srb, dr_return;

sra
srb Specify the tw regons with which you want to perform the computation.
dr_return Returns the result of the computation.

16.5.4. Determiningif Regions Are Empty or Equal
To determine if the specified region is empiye XEmptyRegion.

Bool XEmptyRejion (r)
Regionr;

r Specifies the region.
The XEmptyRegion function returnslr ue if the region is empty.
To determine if tvo regons hae the same offset, size, and shape, XiEgualRegion.

Bool XEqualRgion(r1, r2)
Regionrl, r2;

ri
r2 Specify the tw regons.

The XEqualRegion function returnsTr ue if the two regons hae the same offset, size, and
shape.

16.5.5. Locatinga Point or a Rectangle in a Region
To determine if a specified point resides in a specified regionXBsatinRegion.

Bool XPointiInRgion(r, x, y)

Regionr;
intx,y;
r Specifies the region.
X
y Specify the x and y coordinates, which define the point.

The XPointInRegion function returnsIr ue if the point (x, y) is contained in the region r.

To determine if a specified rectangle is inside a region Xi&ectinRegion.

407

int XRectinRgion(r, x, y, width, heighf)

Regionr;
intx,y;
unsigned intvidth, height
r Specifies the region.
X
y Specify the x and y coordinates, which define the coordinates of the upper-left
corner of the rectangle.
width
height Specify the width and height, which define the rectangle.

The XRectIinRegion function returnsRectangleln if the rectangle is entirely in the specified
region, RectangleOutif the rectangle is entirely out of the specified region, RadtanglePart
if the rectangle is partially in the specified region.

16.6. UsingCut Buffers

Xlib provides functions to manipulate cut buffers, a very simple form of cut-and-paste inter-client
communication. Selectiorase a much more powerful and useful mechanism for interchanging
data between clients (see section 4.5) and generally should be used instead of cut buffers.

Cut buffers are implemented as properties on the first root winflthe display The buffers can

only contain text, in the STRING encoding. The text encoding is not changed by Xlib when
fetching or storing. Eight buffers are provided and can be accessed as a ring or as explicit buffers
(numbered 0 through 7).

To dore data in cut buffer 0, us€StoreBytes.

XStoreBytesdisplay, bytes nbyteg
Display *display,
char *bytes
int nbytes
display Specifies the connection to the X server.
bytes Specifies the bytes, which are not necessarily ASCII or null-terminated.

nbytes Specifies the number of bytes to be stored.
The data can va enbedded null characters and need not be null-terminated. The cut buffer’s
contents can be retried later by ag client calling XFetchBytes.

XStoreBytescan generate BadAlloc error.

To dore data in a specified cut buffase XStoreBuffer.

408

XStoreBufer (display, bytes nbytes buffer)

Display *display;,
char *bytes
int nbytes
int buffer;
display Specifies the connection to the X server.
bytes Specifies the bytes, which are not necessarily ASCII or null-terminated.
nbytes Specifies the number of bytes to be stored.
buffer Specifies the buffer in which you want to store the bytes.

If an invalid buffer is specified, the call has ndesft. Thedata can hae enbedded null charac-
ters and need not be null-terminated.

XStoreBuffer can generate BadAlloc error.
To return data from cut buffer 0, udd-etchBytes.

char *XFetchBytesdisplay, nbytes_returiy

Display *display;

int *nbytes_return
display Specifies the connection to the X server.
nbytes_return Returns the number of bytes in the buffer.

The XFetchBytesfunction returns the number of bytes in the nbytes_return argument, if the

buffer contains data. Otherwise, the function returns NULL and sets nbytes to 0. The appropriate
amount of storage is allocated and the pointer returned. The client must free this storage when
finished with it by callingXFree.

To return data from a specified cut buffese XFetchBuffer.

char *XFetchBufler (display, nbytes_returnbuffer)

Display *display,

int *nbytes_return

int buffer;
display Specifies the connection to the X server.
nbytes_return Returns the number of bytes in the buffer.

buffer Specifies the buffer from which you want the stored data returned.

The XFetchBuffer function returns zero to the nbytes_return argument if there is no data in the
buffer or if an ivalid buffer is specified.

To rotate the cut buffers, uséRotateBuffers.

409

' XRotateBufers (display, rotate)

Display *display;,
int rotate;
display Specifies the connection to the X server.
L rotate Specifies hev much to rotate the cut buffers.

The XRotateBuffers function rotates the cut buffers, such that buffer 0 becomes buffer n, buffer
1 becomes n + 1 mod 8, and so on. This cut buffer numbering is global to the .diNptaythat
XRotateBuffers generate8adMatch errors if aly of the eight buffers hae rot been created.

16.7. Determiningthe Appropriate Visual Type

A single display can support multiple screens. Each screen garsharal different visual types
supported at different depth¥ou can use the functions described in this section to determine
which visual to use for your application.

The functions in this section use the visual information masks arXMiseallnfo structure,
which is defined in X11/Xutil.h> and contains:

' /* Visual information mask bits */

#define VisualNoMask 0x0
#define VisuallDMask 0x1
#define VisualScreenMask 0x2
#define VisualDepthMask 0x4
#define VisualClassMask 0x8
#define VisualRedMaskMask 0x10
#define VisualGreenMaskMask 0x20
#define VisualBlueMaskMask 0x40
#define VisualColormapSizeMask 0x80
#define VisualBitsPerRGBMask 0x100
#define VisualAllMask Ox1FF
/* Values */

typedef struct {

Visual *visual;
VisuallD visualid,;
int screen;
unsigned int depth;
int class;
unsigned long red_mask;
unsigned long green_mask;
unsigned long blue_mask;
int colormap_size;
int bits_per_rgb;
} X Visuallnfo;

-

To dbtain a list of visual information structures that match a specified templatéQet¥isual-
Info .

410

XVisuallnfo *XGetVisuallnfo (display, vinfo_maskvinfo_templatenitems_return
Display *display;,
longvinfo_mask
XVisuallnfo *vinfo_template
int *nitems_return

display Specifies the connection to the X server.

vinfo_mask Specifies the visual mask value.

vinfo_template Specifies the visual attributes that are to be used in matching the visual structures.
nitems_return Returns the number of matching visual structures.

The XGetVisuallnfo function returns a list of visual structures thaténdtributes equal to the
attributes specified by vinfo_template. If no visual structures match the template using the speci-
fied vinfo_maskXGetVisualinfo returns a NULL.To free the data returned by this function,
useXFree.

To dbtain the visual information that matches the specified depth and class of the screen, use
XMatchVisuallnfo .

Status XMatchisuallnfo (display, screendepth class vinfo_return)

Display *display,
int screen
int depth
int class
XVisuallnfo *vinfo_return
display Specifies the connection to the X server.
screen Specifies the screen.
depth Specifies the depth of the screen.
class Specifies the class of the screen.

vinfo_return Returns the matched visual information.

The XMatchVisuallnfo function returns the visual information for a visual that matches the
specified depth and class for a screen. Because multiple visuals that match the specified depth
and class can exist, the exact visual chosen is undefined. If a visual isXddaidthVisuallnfo
returns nonzero and the information on the visual to vinfo_return. Otherwise, when a visual is
not found,XMatchVisuallnfo returns zero.

16.8. Manipulating Images

Xlib provides sgeral functions that perform basic operations on images. All operations on
images are defined using Xitmage structure, as defined ilX& 1/Xlib.h>. Becaus¢he number

of different types of image formats can be very large, this hides details of image storage properly
from applications.

This section describes the functions for generic operations on images. Manufacturers can provide
very fast implementations of these for the formats frequently encountered on their hardware.
These functions are neither sufficient nor desirable to use for general image processing. Rather,
they are here to provide minimal functions on screen format images. The basic operations for

411

getting and putting images axX&etimage and XPutimage.
Note that no functions ke been defined, as yet, to read and write images to and from disk files.

The Xlmage structure describes an image as it exists in the diemtmory The user can

request that some of the members such as height, width, and xoffset be changed when the image
is sent to the serveNote that bytes_per_line in concert with offset can be used to extract a sub-
set of the image. Other members (for example, byte duitlerap unit, and so forth) are charac-
teristics of both the image and the sendéthese members differ between the image and the
server,XPutimage makes the appropriate cansions. Thdirst byte of the first line of plane n

must be located at the address (data + (n * height * bytes_per_Ikue)d.description of the

XImage structure, see section 8.7.

To dlocate anXlmage structure and initialize it with image format values from a displsg
XCreatelmage.

XImage *XCreatelmageadisplay, visual depth format offset data width, height, bitmap_pad
bytes per_ling
Display *display;
Visual #isual;
unsigned indepth
int format;
int offset
char "data;
unsigned inwvidth;
unsigned inteight
int bitmap_pad
int bytes_per_ling

display Specifies the connection to the X server.

visual Specifies thé/isual structure.

depth Specifies the depth of the image.

format Specifies the format for the imag¥ou can passXYBitmap , XYPixmap, or
ZPixmap.

offset Specifies the number of pixels to ignore at the beginning of the scanline.

data Specifies the image data.

width Specifies the width of the image, in pixels.

height Specifies the height of the image, in pixels.

bitmap_pad Specifies the quantum of a scanline (8, 16, or 32). In other words, the start of one
scanline is separated in client memory from the start of the next scanline by an
integer multiple of this manbits.

bytes_per_lineSpecifies the number of bytes in the client image between the start of one scan-
line and the start of the next.

The XCreatelmage function allocates the memory needed foixdmage structure for the spec-

ified display but does not allocate space for the image itself. Ratimgtializes the structure
byte-orderbit-order, and bitmap-unit values from the display and returns a pointer t¥lthe
agestructure. Theed, green, and blue mask values are defined for Z format images only and are
derived from theVisual structure passed in. Other values also are passed in. The offset permits

412

the rapid displaying of the image without requiring each scanline to be shifted into position. If
you pass a zero value in bytes_per_line, Xlib assumes that the scanlines are contiguous in mem-
ory and calculates the value of bytes_per_line itself.

Note that when the image is created usti@yeatelmage, XGetlmage, or XSublmage, the
destry procedure that thXDestroylmage function calls frees both the image structure and the
data pointed to by the image structure.

The basic functions used to get a pixel, set a pixel, create a subimage, and add a constant value to
an image are defined in the image object. The functions in this section are really maaeo in
tions of the functions in the image object and are definediriAXutil.h>.

To dbtain a pixel value in an image, us&etPixel.

unsigned long XGetPeét(ximage, X, y)

XImage *ximage;
int X;
inty;
Ximage Specifies the image.
X
y Specify the x and y coordinates.

The XGetPixel function returns the specified pixel from the named image. The pixel value is
returned in normalized format (that is, the least significant byte of the long is the least significant
byte of the piel). Theimage must contain the x and y coordinates.

To st a pixel value in an image, ux®utPixel.

XPutPixel (ximage, X, y, pixel)
XImage *image;

int x;
inty;
unsigned longpixel;
Ximage Specifies the image.
X
y Specify the x and y coordinates.
pixel Specifies the e pixel value.

The XPutPixel function overwrites the pixel in the named image with the specified pixel value.
The input pixel value must be in normalized format (that is, the least significant byte of the long is
the least significant byte of the pix Theimage must contain the x and y coordinates.

To aeate a subimage, u¥Sublmage.

413

Xlmage *XSublmageXimage, x, y, subimaye width, subimaye _heighi
XImage *image;
int x;
inty;
unsigned insubimae_width;
unsigned insubimae_height

ximage Specifies the image.
X
y Specify the x and y coordinates.

subimae_width

Specifies the width of the wesubimage, in pixels.
subimaye height

Specifies the height of thewsubimage, in pixels.

The XSublmage function creates a meimage that is a subsection of an existing one. It allocates
the memory necessary for the ngvnage structure and returns a pointer to thevinmage. The

data is copied from the source image, and the image must contain the rectangle defined by x, v,
subimage_width, and subimage_height.

To increment each pixel in an image by a constant valueXAddPixel.

XAddPixel (ximage, value)
XImage *image;

longvalue;
ximage Specifies the image.
value Specifies the constant value that is to be added.

The XAddPixel function adds a constant value tee pixel in an image. It is useful when you
have a lase pixel value from allocating color resources and need to manipulate the image to that
form.

To deallocate the memory allocated in a previous ca@eatelmage, use XDestroylmage.

XDestroylmage kimage)
XImage *ximage;

ximage Specifies the image.

The XDestroylmage function deallocates the memory associated withxiimeage structure.

Note that when the image is created usfi@@yeatelmage, XGetlmage, or XSublmage, the
destry procedure that this macro calls frees both the image structure and the data pointed to by
the image structure.

414

16.9. Manipulating Bitmaps

Xlib provides functions that you can use to read a bitmap from a file asitmap to a file, or

create a bitmap. This section describes those functions that transfer bitmaps to and from the
client’s file system, thus allowing their reuse in a later connection (for example, from an entirely
different client or to a different display or server).

The X version 11 bitmap file format is:

#definename width width

#definename heightheight

#definename x_hotx

#definename y _hoty

static unsigned charame bits[] = { OXNN,... }

The lines for the variables ending with _x_hot and _y_hot suffixes are optional becsuae the
present only if a hotspot has been defined for this bitmap. The lines for the other variables are
required. Thevord “unsigned’ is optional; that is, the type of the _bits array can be “cloar’
“unsigned char’ The _bits array must be large enough to contain the size bitmap. The bitmap
unit is 8.

To read a bitmap from a file and store it in a pixmap,XReadBitmapFile.

int XReadBitmapFiledisplay, d, filenamewidth_return height_returnbitmap_returnx_hot_return

y_hot_return

Display *display;,

Drawabled;

char *filename

unsigned int tvidth_return *height_return

Pixmap *bitmap_return

int *x_hot_return*y_hot_return

display Specifies the connection to the X server.

d Specifies the dreable that indicates the screen.

filename Specifies the file name to use. The format of the file name is operating-system
dependent.

width_return
height_return Return the width and height values of the read in bitmap file.

bitmap_return Returns the bitmap that is created.

Xx_hot_return
y_hot_return Return the hotspot coordinates.

The XReadBitmapFile function reads in a file containing a bitmap. The file is parsed in the
encoding of the current locale. The ability to read other than the standard format is implementa-
tion-dependent. Ithe file cannot be openedReadBitmapFile returnsBitmapOpenFailed. If

the file can be opened but does not contain valid bitmap data, it r&itmrepFileinvalid . If
insufficient working storage is allocated, it retuBitmapNoMemory . If the file is readable and
valid, it returnsBitmapSuccess

415

XReadBitmapFile returns the bitmap’height and width, as read from the file, to width_return

and height_return. It then creates a pixmap of the appropriate size, reads the bitmap data from the
file into the pixmap, and assigns the pixmap to the caNariable bitmap. The caller must free

the bitmap usingFreePixmap when finished. Ihame x_hot anchame y _hot exist XRead-

BitmapFile returns them to x_hot_return and y_hot_return; otherwise, it returns -1,-1.

XReadBitmapFile can generat8adAlloc, BadDrawable, and BadGC errors.
To read a bitmap from a file and return it as data,XReadBitmapFileData.

int XReadBitmapFileDatdilename width_return height_returndata_return x_hot_returny_hot_return)
char *filename
unsigned int vidth_return *height_return
unsigned chardata_return
int *x_hot_return*y_hot_return

filename Specifies the file name to use. The format of the file name is operating-system
dependent.

width_return
height_return Return the width and height values of the read in bitmap file.

data_return Returns the bitmap data.

Xx_hot_return
y_hot_return Return the hotspot coordinates.

The XReadBitmapFileData function reads in a file containing a bitmap, in the same manner as
XReadBitmapFile, but returns the data directly rather than creating a pixmap in the.séhesr
bitmap data is returned in data_return; the client must free this storage when finished with it by
calling XFree. The status and other return values are the same XREadBitmapFile.

To write out a bitmap from a pixmap to a file, us@/riteBitmapFile .

416

int XWriteBitmapFiledisplay, filename bitmap width, height x_hot y_ho)
Display *display;,
char *filename
Pixmapbitmap;
unsigned intvidth, height,
int x_hoty_hot

display Specifies the connection to the X server.

filename Specifies the file name to use. The format of the file name is operating-system
dependent.

bitmap Specifies the bitmap.

width

height Specify the width and height.

x_hot

y_hot Specify where to place the hotspot coordinates (or —1,-1 if none are present) in
the file.

The XWriteBitmapFile function writes a bitmap out to a file in the X Version 11 format. The
name used in the output file is deed from the file name by deleting the directory prefix. The
file is written in the encoding of the current locale. If the file cannot be opened for writing, it
returnsBitmapOpenFailed. If insufficient memory is allocatedWriteBitmapFile returns
BitmapNoMemory ; otherwise, on no erroit returnsBitmapSuccess If x_hot and y_hot are
not -1, -1 XWriteBitmapFile writes them out as the hotspot coordinates for the bitmap.

XWriteBitmapFile can generatBadDrawable and BadMatch errors.

To aeate a pixmap and then store bitmap-format data into iiXGseatePixmapFromBitmap-
Data.

Pixmap XCreatePixmapFromBitmapDadiigplay, d, data width, height fg, bg, depth
Display *display;
Drawabled;
char *data;
unsigned inwvidth, height,
unsigned londg, bg;
unsigned indepth

display Specifies the connection to the X server.

d Specifies the dreable that indicates the screen.

data Specifies the data in bitmap format.

width

height Specify the width and height.

fg

bg Specify the foreground and background pixel values to use.
depth Specifies the depth of the pixmap.

The XCreatePixmapFromBitmapData function creates a pixmap of thevgn depth and then
does a bitmap-formaXPutimage of the data into it. The depth must be supported by the screen

417

of the specified dr@able, or aBadMatch error results.

XCreatePixmapFromBitmapData can generatBadAlloc, BadDrawable, BadGC, and Bad-
Value errors.

To include a bitmap written out b¢WriteBitmapFile in a program directlyas gposed to read-
ing it in every time at run time, us&CreateBitmapFromData.

Pixmap XCreateBitmapFromDat#iéplay, d, data width, heigh)

Display *display,

Drawable d;

char "data;

unsigned intvidth, height,
display Specifies the connection to the X server.
d Specifies the dreable that indicates the screen.
data Specifies the location of the bitmap data.
width
height Specify the width and height.

The XCreateBitmapFromData function allows you to include in your C program (using
#include) a btmap file that was written out byWriteBitmapFile (X version 11 format only)
without reading in the bitmap file. The following example creates a gray bitmap:

#include "gray.bitmap"

Pixmap bitmap;
bitmap = XCreateBitmapFromData(displayndow, gray_bits, gray_width, gray height);

If insufficient working storage was allocateXCreateBitmapFromData returnsNone. Itis
your responsibility to free the bitmap usiXgreePixmap when finished.

XCreateBitmapFromData can generatBadAlloc andBadGC errors.

16.10. Usinghe Context Manager

The context manager provides a way of associating data with an X resource ID (mostly typically
awindow) in your program. Note that this is local to your program; the data is not stored in the
server on a property list. Aramount of data in annumber of pieces can be associated with a
resource ID, and each piece of data has a type associated with it. The context manager requires
knowledge of the resource ID and type to store or wetrita.

Essentiallythe context manager can be viewed as a two-dimensional, sparse array: one dimen-
sion is subscripted by the X resource ID and the other by a context type field. Each entry in the
array contains a pointer to the data. Xlib provides context management functions with which you
can s@e data values, get data values, delete entries, and create a unique context type. The sym-
bols used are inX11/Xutil.h>.

To savea data value that corresponds to a resource ID and context typgSageContext.

418

int XSaveContextdisplay, rid, context data)

Display *display;
XID rid;
XContextcontext
XPointerdata;
display Specifies the connection to the X server.
rid Specifies the resource ID with which the data is associated.
context Specifies the context type to which the data belongs.
data Specifies the data to be associated with the wirathal type.

If an entry with the specified resource ID and type already eXiSa/eContext overides it
with the specified conx¢ The XSaveContext function returns a nonzero error code if an error
has occurred and zero otherwise. Possible errorK@GMOMEM (out of memory).

To get the data associated with a resource ID and typeXkiselContext.

int XFindContext(@isplay, rid, context data_return
Display *display,
XID rid;
XContextcontext
XPointer *data_return
display Specifies the connection to the X server.
rid Specifies the resource ID with which the data is associated.
context Specifies the context type to which the data belongs.

data_return Returns the data.

Because it is a return value, the data is a poifitee XFindContext function returns a nonzero
error code if an error has occurred and zero otherwise. Possible errdIGN@ENT (context-
not-found).

To delete an entry for agén resource ID and type, uséeleteContext

int XDeleteContextdisplay, rid, contex)
Display *display,
XID rid;
XContextcontext
display Specifies the connection to the X server.
rid Specifies the resource ID with which the data is associated.
context Specifies the context type to which the data belongs.

The XDeleteContextfunction deletes the entry for thevgn resource ID and type from the data
structure. Thigunction returns the same error codes tBindContext returns if called with
the same argumentDeleteContextdoes not free the data whose address wasslsa

419

To aeate a unique context type that may be used in subsequent ¢célavsContext and
XFindContext, use XUniqueContext.

L XContext XUniqueConte()

420

Appendix A

Xlib Functions and Protocol Requests

This appendix provides tables that relate to Xlib functions and the X protocol. The following
table lists each Xlib function (in alphabetical order) and the corresponding protocol request that it

generates.

Xlib Function Protocol Request
XActivateScreenSaer ForceScreenSar
XAddHost ChangeHosts
XAddHosts ChangeHosts
XAddToSaeSet ChangeSaSet
XAllocColor AllocColor

XAllocColorCells
XAllocColorPlanes
XAllocNamedColor
XAllowEvents
XAutoRepeatOf
XAutoRepeatOn

XBell
XChangeActvePointerGrab
XChangeGC
XChangeleyboardControl
XChangekeyboardMapping
XChangePointerControl
XChangeProperty
XChangeSeeSet
XChangeWindowAttrilntes
XCirculateSubwindws
XCirculateSubwindowsDan
XCirculateSubwindesUp
XClearArea

XClearWindav
XConfigureWindav
XCorvertSelection
XCopyArea
XCopyColormapAndFree
XCopyGC

XCopyPlane
XCreateBitmapFromData

XCreateColormap

AllocColorCells
AllocColorPlanes
AllocNamedColor
AllovEvents
ChangekeyboardControl
ChangelyboardControl
Bell
ChangeAggPointerGrab
ChangeGC
Change¥poardControl
ChangeboardMapping
ChangePointerControl
ChangeProperty
ChangeSaSet
ChangeWdowAttributes
CirculateVihdow
CirculateWhdow
CirculateVihdow
ClearArea
ClearArea
ConfigureWindow
CovertSelection
CopyArea
CoiColormapAndFree
CopGC
CopPlane
CreateGC
CreatePixmap
FreeGC
Putimage
CreateColormap

421

Xlib Function

Protocol Request

XCreatef®ntCursor
XCreateGC
XCreateGlyphCursor
XCreatePixmap
XCreatePixmapCursor

XCreatePixmapFromData

XCreateSimpleWinde
XCreateWindav
XDefineCursor
XDeleteProperty
XDestroySubwindas
XDestroyWindav
XDisableAccessControl
XDrawArc
XDrawArcs
XDrawlmageString
XDrawlmageString16
XDrawLine
XDrawLines
XDrawPoint
XDrawPoints
XDrawRectangle
XDrawRectangles
XDrawSements
XDrawString
XDrawString16
XDrawText
XDrawText16
XEnableAccessControl
XFetchBytes
XFetchName
XFillArc

XFillArcs
XFillPolygon
XFillRectangle
XFillRectangles
XForceScreenSay
XFreeColormap
XFreeColors
XFreeCursor
XFreefont

XFreeGC
XFreePixmap
XGetAtomName

CreateGlyphCursor
CreateGC
CreateGlyphCursor
CreatePixmap
CreateCursor
CreateGC
CreatePixmap
FreeGC
Putimage
CreateWindow
CreateWindow
ChangewdowAttributes
DeleteProperty
DestrgSubwindows
DestroyWindow
SetAccessControl
PolyArc
PolyArc
Imagedxt8
Imageskt16
PolySgment
PolyLine
PolyPoint
PolyPoint
PolyRectangle
PolyRectangle
PolySgment
PolyExt8
Poly€&xt16
Poly Text8
Polyext16
SetAccessControl
GetProperty
GetProperty
PolyFillArc
PolyFillArc
FillPoly
PolyFillRectangle
PolyFillRectangle
ForceScreenSar
FreeColormap
FreeColors
FreeCursor
Closeknt
FreeGC
FreePixmap
GetAtomName

422

Xlib Function

Protocol Request

XGetClassHint
XGetFontRith
XGetGeometry
XGetlconName
XGetlconSizes
XGetlmage
XGetlnputfocus
XGetKeyboardControl

XGetKeyboardMapping

XGetModifierMapping
XGetMotionEwents
XGetNormalHints
XGetPointerControl
XGetPointerMapping
XGetRGBColormaps
XGetScreenSaer
XGetSelectionOwner
XGetSizeHints
XGetTextProperty
XGetTransientBrHint

XGetWMClientMachine
XGetWMColormapWindws

XGetWMHints
XGetWMIconName
XGetWMName
XGetWMNormalHints
XGetWMProtocols

XGetWMSizeHints
XGetWindowAttributes

XGetWindovProperty
XGetZoomHints
XGrabButton
XGrabKey
XGrabKeyboard
XGrabPointer
XGrabSerer
XlconifyWindow

XInitExtension
XlInstallColormap
XlnternAtom
XKillClient
XListExtensions
XListFonts

GetProperty
GetlentPath
GetGeometry
GetProperty
GetProperty
Getlmage
Getlnputécus
GetKyboardControl
Get&yboardMapping
GetModifierMapping
GetMotionEents
GetProperty
GetPointerControl
GetPointerMapping
GetProperty
GetScreenSaer
GetSelectionOwner
GetProperty
GetProperty
GetProperty
GetProperty
GetProperty
InternAtom
GetProperty
GetProperty
GetProperty
GetProperty
GetProperty
InternAtom
GetProperty
GetVihdowAttributes
GetGeometry
GetProperty
GetProperty
GrabButton
GabKkey
Grablk€yboard
GrabPointer
GrabSersr
InternAtom
SendEvent
QueryExtension
InstallColormap
InternAtom
KillClient
ListExtensions
Listfonts

423

Xlib Function

Protocol Request

XListFontsWithinfo
XListHosts
XListInstalledColormaps
XListProperties
XLoadFont
XLoadQuerynt

XLookupColor
XLowerWindown
XMapRaised

XMapSubwindavs
XMapWindow
XMoveResizeWindw
XMoveWindown
XNoOp
XOpenDisplay
XParseColor
XPutimage
XQueryBestCursor
XQueryBestSize
XQueryBestStipple
XQueryBestTle
XQueryColor
XQueryColors
XQueryExtension
XQueryFont
XQueryKeymap
XQueryPointer
XQueryTextExtents
XQueryTextExtents16
XQueryTree
XRaiseWindov
XReadBitmapFile

XRecolorCursor
XReconfigureWMWindor

XRemoreFromSaeSet
XRemoreHost
XRemoveHosts
XReparentWindw
XResetScreenSer
XResizeWinda
XRestackWindws

ListFontsWithInfo
ListHosts
ListInstalledColormaps
ListProperties
Openent
Openknt
QueryFont
LookupColor
ConfigureWindow
Configureivdow
MapWindow
MapSubwinda's
MapWindow
ConfigureWindow
ConfigureWindow
NoOperation
CreateGC
LookupColor
Putlmage
QueryBestSize
QueryBestSize
QueryBestSize
QueryBestSize
QueryColors
QueryColors
QueryExtension
Queryflnt
Querylkeymap
QueryPointer
Queryd@xtExtents
Query@xtExtents
QueryTee
ConfigureWindow
CreateGC
CreatePixmap
FreeGC
Putimage
RecolorCursor
ConfigureWindow
SendEvent
ChangeSaSet
ChangeHosts
ChangeHosts
ReparentWindow
ForceScreenSar
ConfigureWindow
Configurevihdow

424

Xlib Function

Protocol Request

XRotateBufers
XRotateWindavProperties
XSelectinput
XSendEent
XSetAccessControl
XSetArcMode
XSetBackground
XSetClassHint
XSetClipMask
XSetClipOrigin
XSetClipRectangles
XSetCloseDwnMode
XSetCommand
XSetDashes
XSetFillRule
XSetFillStyle
XSetFont
XSetFontRth
XSetForground
XSetFunction
XSetGraphicsExposures
XSetlconName
XSetlconSizes
XSetlnputfocus
XSetLineAttrikutes
XSetModifierMapping
XSetNormalHints
XSetPlaneMask
XSetPointerMapping
XSetRGBColormaps
XSetScreenSaer
XSetSelectionOwner
XSetSizeHints
XSetStandardProperties
XSetState
XSetStipple
XSetSubwindewMode
XSetTextProperty
XSetTile
XSetTransientbrHint
XSetTSOrigin
XSetWMClientMachine

XSetWMColormapWindars

XSetWMHints
XSetWMIconName
XSetWMName

RotateProperties
RotateProperties
ChangeifdowAttributes

SendEsnt

SetAccessControl

ChangeGC
ChangeGC
ChangeProperty
ChangeGC
ChangeGC

SetClipRectangles

SetCloseDenMode
ChangeProperty
SetDashes
ChangeGC
ChangeGC

ChangeGC

SetBntPath
ChangeGC
ChangeGC

ChangeGC
ChangeProperty
ChangeProperty

Setlnputbcus
ChangeGC
SetModifierMapping
ChangeProperty
ChangeGC
SetPointerMapping

ChangeProperty

SetScreenSaer

SetSelectionOwner
ChangeProperty
ChangeProperty
ChangeGC

ChangeGC

ChangeGC
ChangeProperty

ChangeGC

ChangeProperty
ChangeGC
ChangeProperty

ChangeProperty

InternAtom

ChangeProperty
ChangeProperty
ChangeProperty

425

Xlib Function

Protocol Request

XSetWMNormalHints
XSetWMProperties
XSetWMProtocols

XSetWMSizeHints
XSetWindavBackground
XSetWindavBackgroundPixmap
XSetWindavBorder
XSetWindavBorderPixmap
XSetWindowBorder\With
XSetWindavColormap
XSetZoomHints
XStoreBufer
XStoreBytes
XStoreColor
XStoreColors
XStoreName
XStoreNamedColor
XSync

XSynchronize
XTranslateCoordinates
XUndefineCursor
XUngrabButton
XUngrabkey
XUngrabkeyboard
XUngrabPointer
XUngrabSerer
XUninstallColormap
XUnloadFont
XUnmapSubwindws
XUnmapWindav
XWarpPointer
XWithdrawWindav

ChangeProperty
ChangeProperty
ChangeProperty
InternAtom
ChangeProperty
ChangewdowAttributes
ChangendowAttributes
ChangeWdowAttributes
ChangeMtowAttributes
ConfigureVihdow
ChangeifdowAttributes
ChangeProperty
ChangeProperty
ChangeProperty
StoreColors
StoreColors
ChangeProperty
StoreNamedCaolor
Getlnputbcus
Getlnputscus
rdnslateCoordinates
ChangemdowAttributes
UngrabButton
Ungrabkey
Ungrablkyboard
UngrabPointer
UngrabSerer
UninstallColormap
Closebnt
UnmapSubwindes
UnmapWindow
VerpPointer
SendEvent
UnmapWindow

426

The following table lists each X protocol request (in alphabetical order) and the Xlib functions

that reference it.

Protocol Request

Xlib Function

AllocColor
AllocColorCells
AllocColorPlanes
AllocNamedColor
AllowEvents

Bell
ChangeActrePointerGrab
ChangeGC

ChangeHosts

ChangeleyboardControl

ChangeleyboardMapping
ChangePointerControl
ChangeProperty

XAllocColor
XAllocColorCells
XAllocColorPlanes
XAllocNamedColor
XAllovEvents
XBell
XChangeAe#PointerGrab
XChangeGC
XSetArcMode
XSetBackground
XSetClipMask
XSetClipOrigin
XSetFillRule
XSetFillStyle
XSetFont
XSetForeground
XSetFunction
XSetGraphicsExposures
XSetLineAttributes
XSetPlaneMask
XSetState
XSetStipple
XSetSubwindowMode
XSetTile
XSetTSOrigin
XAddHost
XAddHosts
XRemoveHost
XRemoveHosts
XAutoRepeatOf
XAutoRepeatOn
XChangekeyboardControl
XChangeboardMapping
XChangePointerControl
XChangeProperty
XSetClassHint
XSetCommand
XSetlconName
XSetlconSizes
XSetNormalHints
XSetRGBColormaps
XSetSizeHints
XSetStandardProperties
XSetTextProperty

427

Protocol Request

Xlib Function

ChangeSeSet

ChangeWindowAttribtes

CirculateWindaev

ClearArea
Closefont

ConfigureWindav

CorvertSelection
CopyArea
CopyColormapAndFree
CopyGC

XSetTransientForHint
XSetWMClientMachine
XSetWMColormapWindows
XSetWMHints
XSetWMIconName
XSetWMName
XSetWMNormalHints
XSetWMProperties
XSetWMProtocols
XSetWMSizeHints
XSetZoomHints
XStoreBuffer
XStoreBytes
XStoreName
XAddDbSaeSet
XChangeSeeSet
XRemoreFromSaeSet
XChangeVWddowAttributes
XDefineCursor
XSelectinput
XSetWindowBackground
XSetWindowBackgroundPixmap
XSetWindowBorder
XSetWindowBorderPixmap
XSetWindowColormap
XUndefineCursor
XCirculateSubwindowsDown
XCirculateSubwindowsUp
XCirculateSubwindows
XClearArea
XClearWindow
XFreelont
XUnloadFont
XConfigureWindow
XLowerWindow
XMapRaised
XMoveResizeWindow
XMoveWindow
XRaiseWindow
XReconfigureWMWindow
XResizeWindow
XRestackWindows
XSetWindowBorderWidth
XCowertSelection
XCopyArea
XCopolormapAndFree
XCopGC

428

Protocol Request

Xlib Function

CopyPlane
CreateColormap
CreateCursor
CreateGC

CreateGlyphCursor

CreatePixmap

CreateWindw

DeleteProperty
DestroySubwindes
DestroyWindev
FillPoly
ForceScreenSeer

FreeColormap
FreeColors
FreeCursor
FreeGC

FreePixmap
GetAtomName
GetFontRth
GetGeometry

Getlmage
Getlnputfocus

GetKeyboardControl
GetKeyboardMapping
GetModifierMapping
GetMotionEents
GetPointerControl
GetPointerMapping
GetProperty

XCopPlane
XCreateColormap
XCreatePixmapCursor
XCreateGC

XCreateBitmapFromData
XCreatePixmapFromData
XOpenDisplay
XReadBitmapFile
XCreateRtCursor
XCreateGlyphCursor
XCreatePixmap
XCreateBitmapFromData
XCreatePixmapFromData
XReadBitmapFile
XCreateSimpleWindow
XCreateWindow
XDeleteProperty
XDestroySubwindows
XDestroyWindow
XFillPolygon
XActivateScreenSaer
XForceScreenSar
XResetScreenSar
XFreeColormap

XFreeColors
XFreeCursor

XFreeGC

XCreateBitmapFromData
XCreatePixmapFromData
XReadBitmapFile

XFreePixmap
XGetAtomName

XGetlntPath
XGetGeometry

XGetWindowAttributes
XGetlmage
XGetlnputbcus

XSync

XSynchronize

XGetkyboardControl
XGetKyboardMapping
XGetModifierMapping

XGetMotionEegnts
XGetPointerControl
XGetPointerMapping
XFetchBytes

XFetchName

429

Protocol Request

Xlib Function

GetSelectionOwner
GetWindowAttritutes
GrabButton
Grabkey
GrabKeyboard
GrabPointer
GrabSerer
ImageExt8
ImageExt16
InstallColormap
InternAtom

KillClient
ListExtensions
ListFonts
ListFontsWithiInfo
ListHosts
ListInstalledColormaps
ListProperties
LookupColor

MapSubwindws
MapWindowv

NoOperation

XGetClassHint
XGetlconName
XGetlconSizes
XGetNormalHints
XGetRGBColormaps
XGetSizeHints
XGetTextProperty
XGetTransientForHint
XGetWMClientMachine
XGetWMColormapWindows
XGetWMHints
XGetWMIconName
XGetWMName
XGetWMNormalHints
XGetWMProtocols
XGetWMSizeHints
XGetWindowProperty
XGetZoomHints
XGetSelectionOwner
XGetVihdowAttributes
XGrabButton
XGrabKey
XGrableyboard
XGrabPointer
XGrabSergr
XDrawlmageString
XDrawlmageString16
XlnstallColormap
XGetWMColormap\ividows
XGetWMProtocols
XlconifyWindow
XInternAtom
XSetWMColormapWindows
XSetWMProtocols
XKillClient
XListExtensions
XListFonts
XListFontsWithInfo
XListHosts
XListInstalledColormaps
XListProperties
XLookupColor
XParseColor
XMapSubwindws
XMapRaised
XMapWindow
XNoOp

430

Protocol Request

Xlib Function

Openfont
PolyArc
PolyFillArc
PolyFillRectangle

PolyLine
PolyPaint

PolyRectangle
PolySegment
PolyText8
PolyText16

Putimage

QueryBestSize

QueryColors
QueryExtension
QueryFont

Querykeymap
QueryPointer
QuerylextExtents

QueryTree
RecolorCursor
ReparentWinde
RotateProperties

SendEent

SetAccessControl

XLoadfont
XLoadQueryFont
XDrawvArc
XDrawArcs
XFillArc
XFillArcs
XFillRectangle
XFillRectangles
XDrawLines
XDravPoint
XDrawPoints
XDraRectangle
XDrawRectangles
XDravLine
XDrawSegments
XDrawString
XDrawText
XDrawString16
XDrawText16
XPutlmage
XCreateBitmapFromData
XCreatePixmapFromData
XReadBitmapFile
XQueryBestCursor
XQueryBestSize
XQueryBestStipple
XQueryBestTile
XQueryColor
XQueryColors
XInitExtension
XQueryExtension
XLoadQuerybnt
XQueryFont
XQuerykeymap
XQueryPointer
XQueryé&xtExtents
XQueryTextExtents16
XQueryTee
XRecolorCursor
XReparentWindow
XRotateBefs
XRotateWindowProperties
XlconifyWindow
XReconfigureWMWindow
XSendEvent
XWithdrawWindow
XDisableAccessControl

431

Protocol Request

Xlib Function

SetClipRectangles
SetCloseDwnMode
SetDashes
SetFontRth
Setinputcus
SetModifierMapping
SetPointerMapping
SetScreenSar

SetSelectionOwner
StoreColors

StoreNamedColor
TranslateCoordinates
UngrabButton
Ungrabkey
Ungrabkeyboard
UngrabPointer
UngrabSerer
UninstallColormap
UnmapSubwindas
UnmapWindav

WarpPointer

XEnableAccessControl
XSetAccessControl
XSetClipRectangles
XSetCloseDenMode
XSetDashes
XSetBntPath
XSetlnputécus
XSetModifierMapping
XSetPointerMapping
XGetScreenSar
XSetScreenSer
XSetSelectionOwner
XStoreColor
XStoreColors
XStoreNamedColor
XdnslateCoordinates
XUngrabButton
XUngrabkey
XUngrablkyboard
XUngrabPointer
XUngrabSerer
XUninstallColormap
XUnmapSubWidows
XUnmapWindow
XWithdrawWindow
XVarpPointer

432

Appendix B

X Font Cursors

The following are theailable cursors that can be used witreateFontCursor.

#define XC_X cursor 0
#define XC_arrev 2

#define XC_based_arrow_down 4
#define XC_based_arrow_up 6
#define XC_boat 8

#define XC_bogosity 10
#define XC_bottom_left_corner 12
#define XC_bottom_right_corner 14
#define XC_bottom_side 16
#define XC_bottom_tee 18
#define XC_box_spiral 20
#define XC_center_ptr 22
#define XC_circle 24

#define XC_clock 26

#define XC_coffee_mug 28
#define XC_cross 30

#define XC_cross_verse 32
#define XC_crosshair 34
#define XC_diamond_cross 36
#define XC_dot 38

#define XC_dot_box_mask 40
#define XC_double_amn42
#define XC_draft_large 44
#define XC_draft_small 46
#define XC_draped_box 48
#define XC_exchange 50
#define XC_fleur 52

#define XC_gobbler 54
#define XC_gumby 56

#define XC_handl 58

#define XC_hand2 60

#define XC_heart 62

#define XC_icon 64

#define XC_iron_cross 66
#define XC_left_ptr 68

#define XC_left_side 70
#define XC_left_tee 72
#define XC_leftbutton 74

#define XC_Il_angle 76
#define XC_Ir_angle 78
#define XC_man 80
#define XC_middlebutton 82
#define XC_mouse 84
#define XC_pencil 86
#define XC_pirate 88
#define XC_plus 90
#define XC_question vad?
#define XC _right_ptr 94
#define XC_right_side 96
#define XC_right_tee 98
#define XC_rightbutton 100
#define XC_rtl_logo 102
#define XC_sailboat 104
#define XC_sb_down \art06
#define XC_sb_h_double_&rt08
#define XC_sb_left warid0
#define XC_sb_rightvalirt?
#define XC_sb_up_arrbl4
#define XC_sb_v_doublewali®
#define XC_shuttle 118
#define XC_sizing 120
#define XC_spider 122
#define XC_spraycan 124
#define XC_star 126
#define XC_target 128
#define XC_tcross 130
#define XC_top_left awrb32
#define XC_top_left_corner 134
#define XC_top_right_corner 136
#define XC_top_side 138
#define XC_top_tee 140
#define XC_trek 142
#define XC_ul_angle 144
#define XC_umbrella 146
#define XC_ur_angle 148
#define XC_watch 150
#define XC_xterm 152

433

Appendix C

Extensions

Because X canvelve by etensions to the core protocol, it is important that extensions not be
perceved as gcond-class citizens. At some point, yoavdite extensions may be adopted as
additional parts of the X Standard.

Therefore, there should be little to distinguish the use of an extension from that of the core proto-
col. To avoid having to initialize extensions explicitly in application programs, it is also impor-

tant that extensions perform lazayaliations, automatically initializing themselves when called

for the first time.

This appendix describes techniques for writing extensions to Xlib that will run at essentially the
same performance as the core protocol requests.

Note

It is expected that agn extension to X consists of multiple requests. Defining 10
new features as 10 separate extensions is a bad practice. , Raghdnould be pack-
aged into a single extension and should use minor opcodes to distinguish the
requests.

The symbols and macros used for writing stubs to Xlib are listed1dAXlibint.h >.

Basic Protocol Support Routines
The basic protocol requests for extensionsxdpeieryExtension and XListExtensions.

Bool XQueryExtensiordisplay, name major_opcode_returrfirst_event_returpfirst_error_return)
Display *display;,
char hame;
int *major_opcode_retum
int *first_event_return
int *first_error_return

display Specifies the connection to the X server.

name Specifies the extension name.

major_opcode_return
Returns the major opcode.

first_event_return
Returns the firstvent code, if ag.

first_error_return
Returns the first error code, ifyan

The XQueryExtension function determines if the named extension is present. If the extension is
not presentXQueryExtension returnsFalse; otherwise, it returngrue. If the extension is pre-
sent,XQueryExtension returns the major opcode for the extension to major_opcode_return; oth-
erwise, it returns zero. Arminor opcode and the request formats are specific taxteaszon. |If

434

the extension wolves additional eent types, XQueryExtension returns the basevent type code

to first_event_return; otherwise, it returns zero. The format of themts is specific to the exten-

sion. Ifthe extension wolves additional error codeXQueryExtension returns the base error

code to first_error_return; otherwise, it returns zero. The format of additional data in the errors is
specific to the extension.

If the extension name is not in the Host Portable Character Encoding the result is implementation-
dependent. Uppercaaed lowercase matter; the strings “thing”, “Thing”, and “thinGre all
considered different names.

char **XListExtensionsglisplay, nextensions_retumn
Display *display;,
int *nextensions_retutn

display Specifies the connection to the X server.

nextensions_return
Returns the number of extensions listed.

The XListExtensions function returns a list of all extensions supported by the selvdre data
returned by the server is in the Latin Portable Character Encoding, then the returned strings are in
the Host Portable Character Encoding. Otherwise, the result is implementation-dependent.

XFreeExtensionList{st)
char **list;

list Specifies the list of extension names.

The XFreeExtensionList function frees the memory allocated KiistExtensions.

Hooking into Xlib

These functions all@ you to hook into the libraryThey are not normally used by application
programmers but are used by people who need to extend the core X protocol and the X library
interface. Thdunctions, which generate protocol requests for X, are typically called stubs.

In extensions, stubs first should check to see ¥f tlageinitialized themselves on a connection.
If they havenot, they then should calKInitExtension to attempt to initialize themselves on the
connection.

If the extension needs to be informed of GC/font allocation or deallocation or if the extension
defines ne event types, the functions described herewalibe extension to be called when these
events occur.

The XExtCodes structure returns the information frodinitExtension and is defined in
<X11/Xlib.h>:

435

typedef struct _XExtCodes { /* public to extension, cannot be changed */

int extension; [*extension number */

int major_opcode; /* major op-code assigned by server */

int first_event; [* first event number for the extension */

int first_error; [* first error number for the extension */
} X ExtCodes;

XExtCodes *XInitExtensiorgisplay, namée
Display *display;,
char *name

display Specifies the connection to the X server.
name Specifies the extension name.

The XlnitExtension function determines if the named extensigists. Thenit allocates storage

for maintaining the information about the extension on the connection, chains this onto the exten-
sion list for the connection, and returns the information the stub implementor will need to access
the extension. Ifthe extension does not exidtinitExtension returns NULL.

If the extension nhame is not in the Host Portable Character Encoding, the result is implementa-
tion-dependent. Uppercaaad lowercase matter; the strings “thing”, “Thing”, and “thin@Gre
all considered different names.

The extension number in tEXtCodes structure is needed in the other calls that flldhis
extension number is unique only to a single connection.

XExtCodes *XAddExtensiordisplay)
Display *display,

display Specifies the connection to the X server.

For local Xlib extensions, th&AddExtension function allocates th&XExtCodes structure,
bumps the extension number count, and chains the extension onto the extension list. (This per-
mits extensions to Xlib without requiring server extensions.)

Hooks into the Library

These functions alle you to define procedures that are to be called when various circumstances
occur The procedures include the creation of & BC for a connection, the copying of a GC,

the freeing of a GC, the creating and freeing of fonts, theecgsion of eents defined by exten-

sions to and from wire format, and the handling of errors.

All of these functions return the previous procedure defined for this extension.

436

int (*XESetCloseDisplaydisplay, exension proc))()
Display *display;
int exension
int (*proc)();
display Specifies the connection to the X server.
exension Specifies the extension number.
proc Specifies the procedure to call when the display is closed.

The XESetCloseDisplayfunction defines a procedure to be called whenXCloseDisplayis
called. Itreturns ag previously defined procedure, usually NULL.

When XCloseDisplayis called, your procedure is called with these arguments:

(*proc)(display, codeg
Display *display;
XExtCodes todes

int (*XESetCreateGQisplay, exension proc))()
Display *display;
int exension
int (*proc)();
display Specifies the connection to the X server.
exension Specifies the extension number.
proc Specifies the procedure to call when a GC is closed.

The XESetCreateGC function defines a procedure to be called whkiena nrew GC is aeated. It
returns ag previously defined procedure, usually NULL.

When a GC is created, your procedure is called with these arguments:

(*proc)(display, gc, codeg
Display *display;,
GCgc;
XExtCodes todes

437

int (*XESetCopyGC(lisplay, exension proc))()

Display *display;

int exension

int (*proc)();
display Specifies the connection to the X server.
exension Specifies the extension number.

proc Specifies the procedure to call when GC components are copied.

The XESetCopyGC function defines a procedure to be called whiena GC is opied. It
returns ag previously defined procedure, usually NULL.

When a GC is copied, your procedure is called with these arguments:

(*proc)(display, gc, codeg
Display *display;
GCagc;
XExtCodes todes

int (*XESetFreeGCdisplay, exension proc))()
Display *display,
int exension
int (*proc)();
display Specifies the connection to the X server.
exension Specifies the extension number.
proc Specifies the procedure to call when a GC is freed.

The XESetFreeGCfunction defines a procedure to be called wkena GC is feed. lItreturns
ary previously defined procedure, usually NULL.

When a GC is freed, your procedure is called with these arguments:

(*proc)(display, gc, codeg
Display *display;
GCgc;
XExtCodes todes

438

int (*XESetCreateFont{isplay, extension proc))()
Display *display;,
int exension
int (*proc)();
display Specifies the connection to the X server.
exension Specifies the extension number.
proc Specifies the procedure to call when a font is created.

The XESetCreateFontfunction defines a procedure to be called when¥LoadQueryFont
and XQueryFont are called. It returns grpreviously defined procedure, usually NULL.

When XLoadQueryFont or XQueryFont is called, your procedure is called with these argu-
ments:

(*proc)(display; fs, codeg
Display *display;
XFontStruct fs;
XExtCodes todes

int (*XESetFreeFontisplay, exension proc))()
Display *display,
int exension
int (*proc)();
display Specifies the connection to the X server.
exension Specifies the extension number.
proc Specifies the procedure to call when a font is freed.

The XESetFreeFontfunction defines a procedure to be called whenXFreeFont is called. It
returns ag previously defined procedure, usually NULL.

When XFreeFont is called, your procedure is called with these arguments:

(*proc)(display; fs, codeg
Display *display,
XFontStruct Ts;
XExtCodes todes

The XESetWireToEvent and XESetEventToWire functions allev you to define n@ events to
the library An XEvent structure alkays has a type code (tyjet) as te first component. This
uniquely identifies what kind ofvent it is. The second component isvays the serial number
(type unsigned long of the last request processed by the servae third component is\sbys
a Boolean (typeBool) indicating whether thevent came from &endEventprotocol request.
The fourth component is\vays a pointer to the display theeat was read from. The fifth com-
ponent is akays a resource 1D of one kind or anotheually a windav, carefully selected to be

439

useful to toolkit dispatchers. The fifth component shoukdigd exist, gen if the ezent does not
have a ratural destination; if there is no value from the protocol to put in this component, initial-
ize it to zero.

Note

There is an implementation limit such that your heshestructure size cannot be
bigger than the size of théEvent union of structures. There also is no way to guar-
antee that more than 24 elements or 96 characters in the structure will be fully
portable between machines.

int (*XESetWireToEventdisplay, event_numberproc))()
Display *display,
int event_number
Status (proc)();

display Specifies the connection to the X server.
event_number Specifies thevent code.
proc Specifies the procedure to call whenwting an eent.

The XESetWireToEvent function defines a procedure to be called whervanteeeds to be
corverted from wire formatXEvent) to host format KEvent). Theevent number defines which
protocol @ent number to install a coarsion procedure forXESetWireToEvent returns any
previously defined procedure.

Note

You can replace a corevent corversion function with one of your own, although this
is not encouraged. It would, hoveg, dlow you to intercept a corevent and modify
it before being placed in the queue or otherwise examined.

When Xlib needs to ceert an eent from wire format to host format, your procedure is called
with these arguments:

Status (proc)(display, re, event)
Display *display,
XEvent *re;

XEvent *event;

Your procedure must return status to indicate if thev@sion succeeded. The re argument is a
pointer to where the host formateat should be stored, and theet argument is the 32-byte

wire event structure. In theXEvent structure you are creating, you must fill in the figquired
members of thevent structure.You should fill in the type member with the type specified for the
xEvent structure. ¥u should cop all other members from theEvent structure (wire format)

to the XEvent structure (host format)Your corversion procedure should retufimue if the

event should be placed in the queueFaise if it should not be placed in the queue.

To initialize the serial number component of therg, call XSetLastRequestReadvith the
event and use the return value.

440

unsigned long _XSetLastRequestReahsiflay, rep)
Display *display;,
xGenericReply rep;

display Specifies the connection to the X server.
rep Specifies the wirevent structure.

The XSetLastRequestReadunction computes and returns a complete serial number from the
partial serial number in thevent.

Status (*XESetEventToWiré{splay, event_numberproc))()
Display *display,
int event_number
int (*proc)();
display Specifies the connection to the X server.
event_number Specifies thewent code.
proc Specifies the procedure to call whenwating an eent.

The XESetEventToWire function defines a procedure to be called whervant@eeds to be
corverted from host formatXEvent) to wire format kEvent) form. Theevent number defines
which protocol gent number to install a cearsion procedure forXESetEventToWire returns
ary previously defined procedure. It returns zero if thevesion fails or nonzero otherwise.

Note

You can replace a corevent corversion function with one of your own, although this
is not encouraged. It would, howee, dlow you to intercept a corerent and modify
it before being sent to another client.

When Xlib needs to caert an e’ent from host format to wire format, your procedure is called
with these arguments:

(*proc)(display; re, event)
Display *display;,
XEvent *re;
XEvent *ewvent,

The re argument is a pointer to the host formahi and the ¥ent argument is a pointer to where
the 32-byte wireent structure should be storedou should fill in the type with the type from
the XEvent structure. Allother members then should be copied from the host format to the
XEvent structure.

441

Bool (*XESetWireToErrorflisplay, error_number proc)()
Display *display;,
int error_number
Bool (*proc)();

display Specifies the connection to the X server.
error_number Specifies the error code.
proc Specifies the procedure to call when an error isvedei

The XESetWireToError function defines a procedure to be called when an extension error needs
to be comerted from wire format to host format. The error number defines which protocol error
code to install the caersion procedure forXESetWireToError returns ay previously defined
procedure.

Use this function for extension errors that contain additional error values beyond those in a core X
error, when multiple wire errors must be combined into a single Xlib goraxhen it is neces-
sary to intercept an X error before it is otherwise examined.

When Xlib needs to caert an error from wire format to host format, the procedure is called with
these arguments:

Bool (*proc)(display, he we)
Display *display;,
XErrorEvent he;
XError *we;

The he argument is a pointer to where the host format error should be stored. The structure
pointed at by he is guaranteed to be as large ¥&&ant structure and so can be cast to a type
larger than arXErrorEvent to store additionalalues. Ifthe error is to be completely ignored

by Xlib (for example, seeral protocol error structures will be combined into one Xlib error), then
the function should returRalse; otherwise, it should returfiir ue.

int (*XESetErrordisplay, exension proc))()
Display *display,
int extension
int (*proc)();
display Specifies the connection to the X server.
exension Specifies the extension number.
proc Specifies the procedure to call when an error isvedei

Inside Xlib, there are times that you may want to suppress the calling of the external error han-
dling when an error occurs. This allows status to be returned on a call at the cost of the call being
synchronous (though most such functions are query operationy, ¢ase) and are typically pro-
grammed to be synchronous).

When Xlib detects a protocol error irKReply, it calls your procedure with these arguments:

442

int (*proc)(display, err, codesret_codée
Display *display;
XError *err;
XExtCodes todes
int *ret_code

The err argument is a pointer to the 32-byte wire format.efliioe codes argument is a pointer to
the extension codes structure. The ret_code argument is the return code you mayReghy
returned to.

If your procedure returns a zero value, the error is not suppressed, and theaitimwritandler is
called. (for further information, see section 11.8.2.) If your procedure returns nonzero, the error
is suppressed, and{Reply returns the value of ret_code.

char *(*XESetErrorStringdisplay, extension proc))()
Display *display;,
int exension
char *(*proc)();

display Specifies the connection to the X server.

exension Specifies the extension number.
proc Specifies the procedure to call to obtain an error string.

The XGetErrorText function returns a string to the user for an erddESetErrorString allows
you to define a procedure to be called that should return a pointer to the error message. The fol-
lowing is an example.

(*proc)(display, code codes buffer, nbyteg
Display *display,
int code
XExtCodes todes
char *uffer;
int nbytes

Your procedure is called with the error code fearg error detectedYou should copy nbytes of
a rull-terminated string containing the error message into buffer.

void (*XESetPrintErrorValuegdisplay, exension proc))()
Display *display,
int exension
void (*proc)();
display Specifies the connection to the X server.
exension Specifies the extension number.

proc Specifies the procedure to call when an error is printed.

The XESetPrintErrorValues function defines a procedure to be called when an extension error

443

is printed, to print the erroralues. Usehis function for extension errors that contain additional
error values beyond those in a core X ertoreturns ay previously defined procedure.

When Xlib needs to print an erradne procedure is called with these arguments:

void (*proc)(display, ey, fp)
Display *display;
XErrorEvent %v;
void *fp;

The structure pointed at by & guaranteed to be as large asXEvent structure and so can be
cast to a type larger than XicrrorEvent to obtain additional values set by usigSetWire-
ToError . The underlying type of the fp argument is system dependent; on a POSIX-compliant
system, fp should be cast to type FILE*.

int *XESetFlushGCdlisplay, exension proc))()
Display *display;
int exension
int *(* proc)();
display Specifies the connection to the X server.
exension Specifies the extension number.
proc Specifies the procedure to call when a GC is flushed.

The procedure set by tiESetFlushGC function has the same interface as the procedure set by
the XESetCopyGC function, but is called when a GC cache needs to be updated in the server.

int (*XESetBeforeFlushgisplay, exension proc))()
Display *display,
int exension
int *(* proc)();
display Specifies the connection to the X server.
exension Specifies the extension number.

proc Specifies the procedure to call when a buffer is flushed.

The XESetBeforeFlushfunction defines a procedure to be called when data is about to be sent to
the server When data is about to be sent, your procedure is called one or more times with these
arguments:

444

void (*proc)(display, codesdata, len)
Display *display;
XExtCodes todes
char *data;
longlen;

The data argument specifies a portion of the outgoing data, tanffieits length in bytes is speci-
fied by the len gjument. Yur procedure must not alter the contents of the data and must not do
additional protocol requests to the same display.

Hooks onto Xlib Data Structures

Various Xlib data structures w@ provisions for extension procedures to chain extension supplied
data onto a list. These structures &€, Visual, Screen ScreenFormat Display, and
XFontStruct. Because the list pointer isnadys the first member in the structure, a single set of
procedures can be used to manipulate the data on these lists.

The following structure is used in the functions in this section and is defined i 4ib.h>:

typedef struct _XExtData {

int number; /* number returned by XlInitExtension */
struct _XExtData *net; /* next item on list of data for structure */
int (*free_prwvate)(); [* if defined, called to free prite */
XPointer priate_data; [*data prvate to this extension. */

} X ExtData;

When an of the data structures listed afecae freed, the list is walked, and the structsifege
procedure (if any) is called. If free is NULL, then the library frees both the data pointed to by the
private_data member and the structure itself.

union { Display *display;
GC gc;
Visual *visual;
Screen *screen;
ScreenFormat *pixmap_format;
XFontStruct *font } XEDataObject;

XExtData **XEHeadOfExtensionList{bject)
XEDataObjecbbject,

object Specifies the object.
The XEHeadOfExtensionList function returns a pointer to the list of extension structures
attached to the specified object. In concert WifkddToExtensionList, XEHeadOfExtension-

List allows an extension to attach arbitrary data §painhe structures of types contained in
XEDataObject.

445

XAddToExtensionListstructure ex_data)
XExtData **structure
XExtData *ext_data;
structure Specifies the extension list.
ex_data Specifies the extension data structure to add.

The structure argument is a pointer to one of the data structures enumeratedvabbanust ini-
tialize ext_data->number with the extension number before calling this function.

XExtData *XFindOnExtensionLisgtructure numbej
struct _XExtData *Structure

int number,
structure Specifies the extension list.
number Specifies the extension number fro¢mitExtension .

The XFindOnExtensionList function returns the first extension data structure for the extension
numbered numbeilt is expected that an extension will add at most one extension data structure
to ary single data structure’extension data list. There is no way to find additional structures.

The XAllocID macro, which allocates and returns a resource ID, is define¢litvXlib.h>.

XAlloclID (display)
Display *display,

display Specifies the connection to the X server.

This macro is a call through th@isplay structure to an internal resource ID allocatidreturns
a resource ID that you can use when creating resources.

The XAllocIDs macro allocates and returns an array of resource ID.

XAllocIDs (display; ids_return count)
Display *display,
XID *ids_return
int count

display Specifies the connection to the X server.

ids_return Returns the resource IDs.
rep Specifies the number of resource IDs requested.

This macro is a call through th@isplay structure to an internal resource ID allocatidrreturns
resource IDs to the array supplied by the callercorrectly handle automatic reuse of resource
IDs, you must calXAllocIDs when requesting multiple resource IDs. This call might generate
protocol requests.

446

GC Caching

GCs are cached by the library to allmerging of independent change requests to the same GC
into single protocol requests. This is typically called a write-back cache edension proce-
dure whose behavior depends on the contents of a GC must flush the GC cacleeswaribk
server has up-to-date contents in its GC.

The FlushGC macro checks the dirty bits in the libraycC gructure and calls XFlushGC-
Cacheif any elements hae dhanged. Thd-lushGC macro is defined as follows:

FlushGC (isplay, gc)

Display *display;

GCgc;
display Specifies the connection to the X server.
gc Specifies the GC.

Note that if you extend the GC to add additional resource ID components, you should ensure that
the library stub sends the change request immediatélg is because a client can free a resource
immediately after using it, so if you only stored the value in the cache without forcing a protocol
request, the resource might be destroyed before being set into théoG€n use the
_XFlushGCCacheprocedure to force the cache to be flushed. TXielushGCCacheproce-

dure is defined as follows:

_XFlushGCCachelisplay, gc)

Display *display;

GCgc;
display Specifies the connection to the X server.
gc Specifies the GC.

Graphics Batching

If you extend X to add more poly graphics pringi, you may be able to takdvantage of facili-

ties in the library to all back-to-back single calls to be transformed into poly requests. This

may dramatically impnee performance of programs that are not written using poly requests. A
pointer to arxReq, called last_req in the display structure, is the last request being processed.

By checking that the last request type wifale, gc, and other options are the same as the new

one and that there is enough space left in the hyffarmay be able to just extend the previous
graphics request by extending the length field of the request and appending the data to the buffer.
This can impree performance by fig imes or more in naé pograms. Br example, here is the
source for theXDrawPoint stub (Writing extension stubs is discussed in the next section.)

447

#include <X11/Xlibint.h>
[* precompute the maximum size of batching request allowed */
static int size = sizeof(xPolyPointReq) + EPEREH * sizeof(xPoint);

XDrawPoint(dpy, d, gc, X, y)
register Display *dpy;
Drawable d;
GC gc;
intx, y; /*INT16 */
{
xPoint *point;
LockDisplay(dpy);
FlushGC(dp, gc);
{
register xPolyPointReq *req = (xPolyPointReq *) dpy->last_req;
[* if same as previous request, with samenadide, batch requests */
if (
(reg->reqType == X_PolyPoint)
&& (reg->drawable == d)
&& (reg->gc == gc->gid)
&& (reg->coordMode == CoordModeOrigin)
&& ((dpy->bufptr + sizeof (xPoint)) <= dpy->bufmax)
&& (((char *)dpy->bufptr - (char *)req) < size)) {
point = (xPoint *) dpy->bufptr;
reg->length += sizeof (xPoint) >> 2;
dpy->bufptr += sizeof (xPoint);
}

else {
GetRegExtra(PolyPoint, 4, req); /* 1 point = 4 bytes */
reg->dravable = d;
req->gc = gc->gid;
reg->coordMode = CoordModeOrigin;
point = (xPoint *) (req + 1);
}

point->Xx = X;

point->y =y;

}

UnlockDisplay(dpy);

SyncHandle();

}

To keep clients from generating very long requests that may monopolize the themeers a

symbol defined in X11/Xlibint.h > of EPERBAT CH on the number of requests batched. Most of
the performance benefit occurs in the first feerged requests. Note thatlushGC is called
beforepicking up the value of last_req, because it may modify this field.

448

Writing Extension Stubs

All X requests akays contain the length of the request, expressed as a 16-bit quantity of 32 bits.
This means that a single request can be no more than 256K bytes in length. Some servers may
not support single requests of such a length. The value of dpy->max_request_size contains the
maximum length as defined by the server implementat@nfurther information, see “X Win-

dow System Protocdl.

Requests, Replies, and Xproto.h

The <X11/Xproto.h> file contains three sets of definitions that are of interest to the stub imple-
mentor: request names, request structures, and reply structures.

You need to generate a file egalient to <X11/Xproto.h> for your extension and need to include
it in your stub procedure. Each stub procedure also must incKii#/ Xlibint.h >.

The identifiers are deliberately chosen in such a way that, if the request is called X_DoSome-
thing, then its request structure is xDoSomethingReq, and its reply is xDoSomethingReply
GetReq family of macros, defined iX¥1/Xlibint.h >, takes advantage of this naming scheme.

For each X request, there is a definition iIXXKL/Xproto.h> that looks similar to this:

#define X_DoSomething 42

In your extension header file, this will be a minor opcode, instead of a major opcode.

Request Format

Every request contains an 8-bit major opcode and a 16-bit length field expressed in units of 4
bytes. Eery request consists of 4 bytes of header (containing the major opcode, the length field,
and a data byte) followed by zero or more additional bytes of data. The length field defines the
total length of the request, including the headdre length field in a request must equal the min-
imum length required to contain the request. If the specified length is smaller or larger than the
required length, the server should generaBadLength error. Unused bytes in a request are not
required to be zero. Extensions should be designed in such a way that long protocol requests can
be split up into smaller requests, if it is possible to exceed the maximum request size of the server.
The protocol guarantees the maximum request size to be no smaller than 4096 units (16384
bytes).

Major opcodes 128 through 255 are reservedXtarsions. Extensiorare intended to contain

multiple requests, so extension requests typical laa additional minor opcode encoded in the
second data byte in the request headlgrthe placement and interpretation of this minor opcode

as well as all other fields in extension requests are not defined by the core protocol. Every request
is implicitly assigned a sequence number (starting with one) used in replies, errorserasd e

To help but not cure portability problems to certain machinesBttfeand B32 macros hee
been defined so that thean become bitfield specifications on some machiResexample, on
a Cray, these should be used for all 16-bit and 32-bit quantities, as discussed belo

Most protocol requests @ a orresponding structure typedef iX¥l/Xproto.h>, which looks
like:

449

typedef struct _DoSomethingReq {

CARDS reqype; /*X_DoSomething */
CARDS8 someDatum,; [* used differently in different requests */
CARD16 length B16; [* total # of bytes in request, divided by 4 */

[* request-specific data */
} x DoSomethingReq;
If a core protocol request has a single 32-bit argument, you need not declare a request structure in
your extension header file. Instead, such requests us®#sourceRegstructure in

<X11/Xproto.h>. Thisstructure is used for gmequest whose single argument g/andow,
Pixmap, Drawable, GContext, Font, Cursor, Colormap, Atom, or VisuallD.

typedef struct _ResourceReq {

CARDS reqype; [*the request type, e.g. X_DoSomething */

BYTE pad; /* not used */

CARD16 length B16; /* 2 (= total # of bytes in request, divided by 4) */
CARD32 id B32; /* the Windw, Drawable, Font, GContext, etc. */

} X ResourceReq;

If convenient, you can do something similar in your extension header file.

In both of these structures, the reqType field identifies the type of the request (for example,
X_MapWindav or X_CreatePixmap). Theength field tells hav long the request is in units of
4-byte longveords. Thidength includes both the request structure itself agdranable-length
data, such as strings or lists, that fallihe request structure. Request structures come in differ-
ent sizes, but all requests are padded to be multiples of four bytes long.

A few protocol requests takno aguments at all. Instead, these thexReq structure in
<X11/Xproto.h>, which contains only a reqType and a length (and a pad byte).

If the protocol request requires a repghen <X11/Xproto.h> aso contains a reply structure type-
def:

typedef struct _DoSomethingReply {

BYTE type; [* alvays X_Reply */

BYTE someDatum; /* used differently in different requests */
CARD16 sequenceNumber B16; [* # of requests sent so far */

CARD32 length B32; /* # of additional bytes, divided by 4 */

/* request-specific data */

} xDoSomethingReply;

Most of these reply structures are 32 bytes long. If there are not tharempiynvalues, then they
contain a sufficient number of pad fields to bring them up to 32 bytes. The length field is the total
number of bytes in the request minus 32, divided by 4. This length will be nonzero only if:

450

. The reply structure is followed by variable-length data, such as a list or string.
. The reply structure is longer than 32 bytes.

Only GetWindowAttributes , QueryFont, QueryKeymap, and GetKeyboardControl have
reply structures longer than 32 bytes in the core protocol.

A few protocol requests return replies that contain no dak¥dl18Xproto.h> does not define
reply structures for these. Instead\tlige thexGenericReply structure, which contains only a
type, length, and sequence number (and sufficient padding ®it&ikhytes long).

Starting to Write a Stub Procedure
An Xlib stub procedure should startdilthis:

#include "<X11/Xlibint.h>

XDoSomething (arguments, ...)
[* argument declarations */

{

register XDoSomethingReq *req;

If the protocol request has a replyen the variable declarations should include the reply structure
for the request. The following is an example:

xDoSomethingReply rep;

Locking Data Structures

To lock the display structure for systems that want to support multithreaded access to a single dis-
play connection, each stub will need to lock its critical section. Genghadlysection is the point

from just before the appropriate GetReq call until all arguments to the ealbden stored into

the buffer The precise instructions needed for this locking depend upon the machine architec-
ture. Wwo alls, which are generally implemented as macrog been provided.

LockDisplay(display)
Display *display;,

UnlockDisplaydisplay)
Display *display;

display Specifies the connection to the X server.

Sending the Protocol Request and Arguments

After the variable declarations, a stub procedure should call one of four macros defined in
<X11/Xlibint.h >: GetReq, GetRegExtra, GetResReq or GetEmptyReq. All of these macros
take, as their first argument, the name of the protocol request as declaxdd iXproto.h>

except with X_ remweed. Eachone declares Bisplay structure pointercalled dpy, and a pointer

to a request structure, called req, which is of the appropriate type. The macro then appends the
request structure to the output buffidts in its type and length field, and sets req to point to it.

451

If the protocol request has no arguments (for instance, X_GrabServer), th@at&septyReq.

GetEmptyReq (DoSomething, req);

If the protocol request has a single 32-bit argument (suclPasrap, Window, Drawable,
Atom, and so on), then uséetResReq The second argument to the macro is the 32-bit object.
X_MapWindow is a good example.

GetResReq (DoSomething, rid, req);

The rid argument is thBixmap, Window, or ather resource ID.

If the protocol request takesyaother argument list, then caBetReq. After the GetReq, you
need to set all the other fields in the request structure, usually from arguments to the stub proce-
dure.

GetReq (DoSomething, req);
[*fill in arguments here */
reg->argl = argl;

reg->arg2 = argz;

A few gub procedures (such ¥CreateGC and XCreatePixmap) return a resource ID to the

caller but pass a resource ID as an argument to the protocol request. Such procedures use the
macroXAllocID to allocate a resource ID from the range of IDs that were assigned to this client
when it opened the connection.

rid = reg->rid = XAllocID();

return (rid);

Finally, some stub procedures transmit a fixed amount of variable-length data after the request.
Typically, these procedures (suchXasloveWindow and XSetBackground) are special cases of
more general functions likEMoveResizeWindowand XChangeGC. These procedures use
GetRegEXxtra, which is the same aSetReq except that it takes an additional argument (the
number of extra bytes to allocate in the output buffer after the request structure). This number
should alvays be a multiple of four.

Variable Length Arguments

Some protocol requests takdditional variable-length data that faddhe xDoSomethingReq
structure. Thdormat of this data varies from request to request. Some requests require a
seqguence of 8-bit bytes, others a sequence of 16-bit or 32-bit entities, and still others a sequence
of structures.

It is necessary to add the length of &ariable-length data to the length field of the request struc-
ture. Thatength field is in units of 32-bit longwds. Ifthe data is a string or other sequence of
8-bit bytes, then you must round the length up and shift it before adding:

reg->length += (nbytes+3)>>2;

To transmit variable-length data, use hata macros. Ifthe data fits into the output bufféinen

this macro copies it to the buffelf it does not fit, howseer, the Data macro calls_XSend,

which transmits first the contents of the buffer and then your dataDateemacros tak three
arguments: the displag pinter to the beginning of the data, and the number of bytes to be sent.

452

Data(display, (char *)data nbytes;
Datal6@isplay, (short *)data nbytes;

Data32(isplay, (long *) data, nbyte9;

Data, Datal6, and Data32 are macros that may use their last argument more than once, so that
argument should be a variable rather than an expression such as “nitems*sizebf(item)’

should do that kind of computation in a separate statement before calling them. Use the appropri-
ate macro when sending byte, short, or long data.

If the protocol request requires a rephen call the procedureXSendinstead of théData

macro. _XSendtakes the same arguments, but because it sends your data immediately instead of
copying it into the output buffer (which would later be flushed anyway by the following call on
_XReply), it is faster.

Replies

If the protocol request has a reflyen call_XReply after you hse finished dealing with all the
fixed-length and variable-length argumentXReply flushes the output buffer and waits for an
XReply packet to arkie. If any events arrve in the meantime, XReply places them in the queue
for later use.

Status _XReplydisplay, rep, extra, discard)

Display *display;,
xReply *rep;
int extra;
Bool discard;
display Specifies the connection to the X server.
rep Specifies the reply structure.
exra Specifies the number of 32-bit words expected after the replay.
discard Specifies if ap data beyond that specified in the extra argument should be dis-
carded.

The XReply function waits for a reply packet and copies its contents into the specified rep.
_XReply handles error andrent packets that occur before the reply is nemki _XReply takes
four arguments:

. A Display * structure
. A pointer to a reply structure (which must be cast taReply *)

. The number of additional 32-bit words (beyond sizeREply) = 32 bytes) in the reply
structure

. A Boolean that indicates whetheXReply is to discard apadditional bytes beyond those
it was told to read

Because most reply structures are 32 bytes long, the third argument is usually 0. The only core
protocol exceptions are the repliesGetWindowAttributes , QueryFont, QueryKeymap, and
GetKeyboardControl, which have longer replies.

453

The last argument should Balse if the reply structure is followed by additional variable-length
data (such as a list or string). It shouldTwele if there is not apvariable-length data.

Note

This last argument is provided for upward-compatibility reasons tev alldient to
communicate properly with a hypothetical later version of the server that sends more
data than the clientxpected. Br example, some later version ®etWindowAt-

tributes might use a largebut compatible xGetWindowAttributesReply that con-

tains additional attribute data at the end.

_XReply returnsTr ue if it receved a reply successfully oFalse if it received any sort of error.

For a request with a reply that is not followed by variable-length data, you write something like:
_XReply(display (xReply *)&rep, 0, True);
*retl = rep.retl;

*ret2 = rep.ret2;
*ret3 = rep.ret3;

UnlockDisplay(dpy);
SyncHandle();
return (rep.retd);

}

If there is variable-length data after the rephange thelr ue to False, and use the appropriate
_XRead function to read the variable-length data.

_XReadgisplay, data_return nbyteg

Display *display;

char *data_return

long nbytes
display Specifies the connection to the X server.
data_return Specifies the buffer.

nbytes Specifies the number of bytes required.

The XRead function reads the specified number of bytes into data_return.

_XRead1l6display, data_return nbyteg

Display *display,

short *data_return

long nbytes
display Specifies the connection to the X server.
data_return Specifies the buffer.

nbytes Specifies the number of bytes required.

The XReadl6function reads the specified number of bytes, unpacking them as 16-bit quanti-
ties, into the specified array as shorts.

454

_XRead32(isplay, data_return nbyteg

Display *display;

long *data_return

long nbytes
display Specifies the connection to the X server.
data_return Specifies the buffer.

nbytes Specifies the number of bytes required.

The _XRead32function reads the specified number of bytes, unpacking them as 32-bit quanti-
ties, into the specified array as longs.

_XReadl6Padilisplay, data_return nbyteg
Display *display,
short *data_return
long nbytes
display Specifies the connection to the X server.
data_return Specifies the buffer.
nbytes Specifies the number of bytes required.

The XReadl6Padfunction reads the specified number of bytes, unpacking them as 16-bit quan-
tities, into the specified array as shorts. If the number of bytes is not a multiple of four,
_XReadl6Padreads and discards up toahadditional pad bytes.

_XReadPad{isplay, data_return nbyteg
Display *display,
char *data_return
long nbytes
display Specifies the connection to the X server.
data_return Specifies the buffer.
nbytes Specifies the number of bytes required.

The XReadPadfunction reads the specified number of bytes into data_return. If the number of
bytes is not a multiple of four,XReadPadreads and discards up to three additional pad bytes.

Each protocol request is a little fdifent. for further information, see the Xlib sources for exam-
ples.

Synchronous Calling

Each procedure shouldvea all, just before returning to the user a nacro calledSyncHan-

dle. If synchronous mode is enabled (s€8ynchronize), the request is sent immediateljhe
library, howeve, waits until ary error the procedure could generate at the server has been han-
dled.

455

Allocating and Deallocating Memory

To support the possible reentry of these procedures, you must elsseaal corventions when
allocating and deallocating memepmost often done when returning data to the user from the
window system of a size the caller could not itnim advance (for example, a list of fonts or a list
of extensions). Thetandard C library functions on masystems are not protected against sig-
nals or other multithreaded uses. The following analogies to standard I/O library functiens ha
been defined:

Xmalloc() Replacesmalloc()
XFree() Replacedree()
Xcalloc() Replacesalloc()

These should be used in place of aalls you would mak to he normal C library functions.

If you need a single scratch buffer inside a critical section (for example, to pack and unpack data
to and from the wire protocol), the general memory allocators may be too expensie (par-
ticularly in output functions, which are performance critical). The following function returns a
scratch buffer for use within a critical section:

char *_XAllocScratchdisplay, nbyteg

Display *display,

unsigned longnbytes
display Specifies the connection to the X server.
nbytes Specifies the number of bytes required.

This storage must only be used inside of a critical section of your Shereturned pointer can-
not be assumed valid afteryagall that might permit another thread taeeute inside Xlib For
example, the pointer cannot be assumed valid afteuse of theGetReq or Data families of
macros, after anuse of XReply, or dter ary use of the XSendor _XRead families of func-
tions.

The following function returns a scratch buffer for use across critical sections:

char *_XAllocTempgisplay, nbyteg
Display *display,
unsigned longhbytes

display Specifies the connection to the X server.
nbytes Specifies the number of bytes required.

This storage can be used across calls that might permit another threeclute aside Xlib The
storage must be explicitly returned to Xlibhe following function returns the storage:

456

void _XFreeTempdisplay, buf, nbyteg
Display *display;,
char *buf;
unsigned longhbytes

display Specifies the connection to the X server.
buf Specifies the buffer to return.
nbytes Specifies the size of the buffer.

You must pass back the same pointer and size that were returnethtigcTemp.

Portability Considerations

Many machine architectures, including nyaof the more recent RISC architectures, do not cor-

rectly access data at unaligned locations; their compilers pad out structures teepinesehar-
acteristic. Mag other machines capable of unaligned references pad inside of structures as well
to presere dignment, because accessing aligned data is usually much fBsteruse the library

and the server use structures to access data at arbitrary points in a byte stream, all data in request
and reply packetsustbe naturally aligned; that is, 16-bit data starts on 16-bit boundaries in the
request and 32-bit data on 32-bit boundaries. All requestibe a multiple of 32 bits in length

to presere the natural alignment in the data strearou must pad structures out to 32-bit bound-
aries. Rd information does not tia o be zroed unless you want to preserich fields for

future use in your protocol requests. Floating point varies radically between machines and should
be aoided completely if at all possible.

This code may run on machines with 16-bit ints. So, yfiateger argument, variable, or return
value either can takanly nonn@ative values or is declared asGARD16 in the protocol, be sure
to declare it asinsigned intand not asnt. (This, of course, does not apply to Booleans or enu-
merations.)

Similarly, if any integer argument or return value is declaB2xRD32 in the protocol, declare it
as anunsigned longand not asnt or long. This also goes for grinternal variables that may
take on \alues larger than the maximum 16-bitsigned int.

The library currently assumes thatlar is 8 bits, ashort is 16 bits, arint is 16 or 32 bits, and
along is 32 bits. ThePackData macro is a half-hearted attempt to deal with the possibility of
32 bit shorts. Howeer, much more work is needed to neakis work properly.

Deriving the Correct Extension Opcode

The remaining problem a writer of an extension stub procedure faces that the core protocol does
not face is to map from the call to the proper major and minor opcodes. While there are a number
of strategies, the simplest and fastest is outlinedibelo

1. Declarean array of pointers, _NFILE long (this is normally found étdéo.h> and is the
number of file descriptors supported on the system) of ¥fpaCodes. Make are these
are all initialized to NULL.

2. Whenyour stub is entered, your initialization test is just to use the display pointer passed in
to access the file descriptor and an inigo the array If the entry is NULL, then this is
the first time you are entering the procedure for this disglayl your initialization proce-
dure and pass to it the display pointer.

3. Oncen your initialization procedure, caXInitExtension ; if it succeeds, store the pointer
returned into this arrayMake aure to establish a close display handler tonaljfou to zero

457

the entry Do whatever other initialization your extension requires. (For example, install
event handlers and so onYour initialization procedure would normally return a pointer to

the XExtCodes structure for this extension, which is what would normally be found in
your array of pointers.

Afterreturning from your initialization procedure, the stub caw nontinue normally,
because it has its major opcode safely in its hand iXEwCodes structure.

458

Appendix D

Compatibility Functions

The X Version 11 and X Version 10 functions discussed in this appendix are obscletedra
superseded by newer X Version 11 functions, and are maintained for compatibility reasons only.

X Version 11 Compatibility Functions

You can use the X Version 11 compatibility functions to:
. Set standard properties

. Set and get windw sizing hints

. Set and get aiXStandardColormap structure

. Parse windw geometry

. Get X environment defaults

Setting Standard Properties

To gecify a minimum set of properties describing the simplest applicatior $stStandard-
Properties. This function has been supersededd8etWMProperties and sets all or portions
of the WM_NAME, WM_ICON_NAME, WM_HINTS, WM_COMMAND, and
WM_NORMAL_HINTS properties.

XSetStandardPropertiedi§play, w, window_namgicon_nameicon_pixmapargy, argc, hints)
Display *display;
Windoww;
char *window_name
char *icon_name
Pixmapicon_pixmap
char **argv;
int argc;
XSizeHints *hints;

display Specifies the connection to the X server.

w Specifies the winde.

window_name Specifies the winde name, which should be a null-terminated string.
icon_name Specifies the icon name, which should be a null-terminated string.
icon_pixmap Specifies the bitmap that is to be used for the icddare.

argv Specifies the applicatiohagument list.
argc Specifies the number of arguments.
hints Specifies a pointer to the size hints for the wimdoits normal state.

The XSetStandardPropertiesfunction provides a means by which simple applications set the
most essential properties with a single calbetStandardPropertiesshould be used toyg a

459

window manager some information about your progsaméferences. Ishould not be used by
applications that need to communicate more information than is possiblX3étiStandard-
Properties. (Typically, argv is the argv array of your main program.) If the strings are not in the
Host Portable Character Encoding, the result is implementation-dependent.

XSetStandardPropertiescan generat8adAlloc and BadWindow errors.

Setting and Getting Windaw Sizing Hints

Xlib provides functions that you can use to set or get wirglzing hints. The functions dis-
cussed in this section use the flags andd8&zeHints structure, as defined in thX&1/Xutil.h >
header file and use the WM_NORMAL_HINTS property.

To =t the size hints for aygn window in its normal state, us€SetNormalHints. This function
has been superseded ¥$etWMNormalHints .

XSetNormalHintsdisplay, w, hints)
Display *display;,
Windoww;
XSizeHints *hints;

display Specifies the connection to the X server.
w Specifies the winde.
hints Specifies a pointer to the size hints for the wimdoits normal state.

The XSetNormalHints function sets the size hints structure for the specified windplica-

tions useXSetNormalHints to inform the windas manager of the size or position desirable for
that windav. In addition, an application that wants to weoa resize itself should cakSetNor-
malHints and specify its ne desired location and size as well as making direct Xlib calls to
move a resize. Thigs because winde managers may ignore redirected configure requests, but
they pay attention to property changes.

To st size hints, an application not only must assign values to the appropriate members in the
hints structure but also must set the flags member of the structure to indicate which information is
present and where it came froi.call to XSetNormalHints is meaningless, unless the flags
member is set to indicate which members of the structwe len assigned values.

XSetNormalHints can generat®adAlloc and BadWindow errors.

To return the size hints for a windan its normal state, us€GetNormalHints . This function
has been superseded ¥¢etWMNormalHints .

460

Status XGetNormalHintsiisplay, w, hints_returr)
Display *display;,
Windoww;
XSizeHints *ints_return

display Specifies the connection to the X server.

w Specifies the winde.
hints_return Returns the size hints for the windn its normal state.

The XGetNormalHints function returns the size hints for a windm its normal state. It
returns a nonzero status if it succeeds or zero if the application specified no normal size hints for
this window.

XGetNormalHints can generate BadWindow error.

The next tvo functions set and read the WM_ZOOM_HINTS property.

To st the zoom hints for a windp use XSetZoomHints. This function is no longer supported
by thelnter-Client Communication Conventions Manual

XSetZoomHintsdisplay, w, zhintg)
Display *display,
Windoww;
XSizeHints *zhints

display Specifies the connection to the X server.
w Specifies the winde.
zhints Specifies a pointer to the zoom hints.

Many windowv managers think of windows in one of three states: iconic, normal, or zoomed. The
XSetZoomHints function provides the winde manager with information for the windan the
zoomed state.

XSetZoomHints can generatBadAlloc and BadwWindow errors.

To read the zoom hints for a wingipuse XGetZoomHints. This function is no longer supported
by thelnter-Client Communication Conventions Manual

Status XGetZoomHintslisplay, w, zhints_returr)

Display *display;,

Windoww;

XSizeHints *zhints_return
display Specifies the connection to the X server.
w Specifies the winde.

zhints_return Returns the zoom hints.

The XGetZoomHints function returns the size hints for a windm its zoomed state. It returns
a ronzero status if it succeeds or zero if the application specified no zoom size hints for this

461

window.
XGetZoomHints can generate BadWindow error.

To =t the value of anproperty of type WM_SIZE_HINTS, usgSetSizeHints This function
has been superseded ¥$etWMSizeHints.

XSetSizeHintsdisplay w, hints property)
Display *display,
Windoww;
XSizeHints *ints;
Atom property,

display Specifies the connection to the X server.
w Specifies the winde.

hints Specifies a pointer to the size hints.
property Specifies the property name.

The XSetSizeHintsfunction sets theXSizeHints structure for the named property and the speci-
fied windav. This is used byXSetNormalHints and XSetZoomHints and can be used to set the
value of ary property of type WM_SIZE_HINTS. Thus, it may be useful if other properties of
that type get defined.

XSetSizeHintscan generat8adAlloc, BadAtom, and BadWindow errors.

To read the value of grproperty of type WM_SIZE_HINTS, us€GetSizeHints. This function
has been superseded ¥¢GetWMSizeHints.

Status XGetSizeHintsi{splay, w, hints_return property)
Display *display;,
Windoww;
XSizeHints *ints_return
Atom property,

display Specifies the connection to the X server.
w Specifies the winde.

hints_return Returns the size hints.

property Specifies the property name.

The XGetSizeHints function returns thXSizeHints structure for the named property and the
specified windw. This is used byXGetNormalHints and XGetZoomHints. It aso can be
used to retrige the value of approperty of type WM_SIZE_HINTS. Thus, it may be useful if
other properties of that type get definetiGetSizeHints returns a nonzero status if a size hint
was defined or zero otherwise.

XGetSizeHints can generatBadAtom and BadWindow errors.

462

Getting and Setting an XStandardColormap Structure

To get theXStandardColormap structure associated with one of the described atoms, use
XGetStandardColormap. This function has been supersededdtyetRGBColormap.

Status XGetStandardColormaligplay, w, colormap_returnproperty)

Display *display;,

Windoww;

XStandardColormapcblormap_return

Atom property; /*RGB_BEST_MAReic. */
display Specifies the connection to the X server.
w Specifies the winde.

colormap_return
Returns the colormap associated with the specified atom.

property Specifies the property name.

The XGetStandardColormap function returns the colormap definition associated with the atom
supplied as the property argumeGetStandardColormap returns a nonzero status if suc-
cessful and zero otherwis€&or example, to fetch the standa@rayScale colormap for a dis-

play, you useXGetStandardColormap with the following syntax:

XGetStandardColormap(gipDefaultRootWindow(dpy), &cmap, XA _RGB_GRAY_MAP);

See section 14.3 for the semantics of standard colormaps.
XGetStandardColormap can generat8adAtom and BadWindow errors.

To st a standard colormap, ug&etStandardColormap. This function has been superseded by
XSetRGBColormap.

XSetStandardColormagisplay, w, colormap property)
Display *display;,
Windoww;
XStandardColormapcblormap
Atom property; /*RGB_BEST_MAReic. */
display Specifies the connection to the X server.
w Specifies the winde.
colormap Specifies the colormap.

property Specifies the property name.
The XSetStandardColormap function usually is only used by wingor session managers.

XSetStandardColormap can generat8adAlloc, BadAtom, BadDrawable, and BadWindow
errors.

463

Parsing Window Geometry

To parse windwv geometry gien a wser-specified position and a default position, X€e=ome-
try . This function has been supersededWMGeometry .

int XGeometry (lisplay, screen position, default_positionbwidth, fwidth, fheight, xadder,
yadder, x_return, y_return, width_return height_returr)
Display *display,
int screen
char *position, *default_position
unsigned inbwidth;
unsigned infwidth, fheight,
int xadder, yadder,
int *x_return, *y_return;
int *width_return *height_return

display Specifies the connection to the X server.
screen Specifies the screen.
position

default_position
Specify the geometry specifications.

bwidth Specifies the border width.

fheight

fwidth Specify the font height and width in pixels (increment size).
xadder

yadder Specify additional interior padding needed in the wimdo
X_return

y_return Return the x and y offsets.

width_return
height_return Return the width and height determined.

You pass in the border width (bwidth), size of the increments fwidth and fheight (typically font
width and height), and gradditional interior space (xadder and yadder) to enakasy to com-
pute the resulting size. ThéGeometry function returns the position the windshould be

placed gien a psition and a default positionXGeometry determines the placement of a win-
dow using a geometry specification as specifiedX®yarseGeometryand the additional informa-
tion about the windwe. Given a fully qualified default geometry specification and an incomplete
geometry specificatiol{ParseGeometryreturns a bitmask value as definedabin the
XParseGeometrycall, by using the position argument.

The returned width and height will be the width and height specified by default_positiosr-as o
ridden by ag user-specified position. There not affected by fwidth, fheight, xadder yadder.

The x and y coordinates are computed by using the border width, the screen width and height,
padding as specified by xadder and yadatet the fheight and fwidth times the width and height
from the geometry specifications.

Getting the X Environment Defaults

The XGetDefault function provides a primite interface to the resource manager facilities dis-
cussed in chapter 15. It is only useful in very simple applications.

464

char *XGetDeéult (display, program, option)
Display *display;,
char *program;
char *option;

display Specifies the connection to the X server.

program Specifies the program name for the Xlib defaults (usually argv[0] of the main
program).

option Specifies the option name.

The XGetDefault function returns the value of the resoupteg.option, whereprogis the pro-

gram argument with the directory prefix rered and optionmust be a single component. Note

that multilerel resources cannot be used witietDefault. The class "Program.Name" is

always used for the resource lookup. If the specified option name does not exist for this program,
XGetDefault returns NULL. The strings returned B§GetDefault are owned by Xlib and

should not be modified or freed by the client.

If a database has been set withnSetDatabase that database is used for the lookup. Other-
wise, a database is created and is set in the display (as if by cali@etDatabasg. The
database is created in the current locdle create a databasgGetDefault uses resources from
the RESOURCE_MANKGER property on the root windoof screen zero. If no such property
exists, a resource file in the usehbme directory is used. On a POSIX-conformant system, this
file is SBHOME/.Xdefaults. After loading these defaultXGetDefault merges additional

defaults specified by the XENVIRONMENT environmeatiable. IfXENVIRONMENT is

defined, it contains a full path name for the additional resource file. If XENVIRONMENT is not
defined,XGetDefault looks for S(HOME/.Xdefaults-name wherenamespecifies the name of

the machine on which the application is running.

X Version 10 Compatibility Functions

You can use the X Version 10 compatibility functions to:
. Draw and fill polygons and curves

. Associate user data with a value

Drawing and Filling Polygons and Cuwes

Xlib provides functions that you can use towdia fill arbitrary polygons or cues. Theséunc-
tions are provided mainly for compatibility with X Version 10 andeha server support. That
is, they call other Xlib functions, not the server directlyhus, if you just hae graight lines to
draw, using XDrawLines or XDrawSegmentsis much faster.

The functions discussed here provide all the functionality of the X Version 10 funiiarasv ,
XDrawFilled , XDrawPatterned, XDrawDashed, and XDrawTiled . They are as compatible

as possible gen X Version 115 rew line-drawing functions. One thing to note, haeris that
VertexDrawLastPoint is no longer supported. Also, the error status returned is the opposite of
what it was under X Version 10 (this is the X Version 11 standard error staidppendVertex

and XClearVertexFlag from X Version 10 also are not supported.

Just hav the graphics context you use is set up actually determines whether you get dashes or not,
and so on. Lines are properly joined ifytemnnect and include the closing of a closed figure
(seeXDrawlLines). Thefunctions discussed here fail (return zero) only ifythen out of mem-

ory or are passed\éertex list that has a/ertex with VertexStartClosed set that is not followed

465

by aVertex with VertexEndClosed set.

To echieve the effects of the X Version IADraw , XDrawDashed, and XDrawPatterned, use
XDraw .

#include <X11/X10.h>

Status XDrawdisplay, d, gc, vlist, vcoun)

Display *display,
Drawable d;
GCggc;
Vertex *vlist;
int vcount
display Specifies the connection to the X server.
d Specifies the dreable.
gc Specifies the GC.
vlist Specifies a pointer to the list of vertices that indicate what te. dra
vcount Specifies hay mary vertices are in vlist.

The XDraw function draws an arbitrary polygon or carvThefigure drawn is defined by the
specified list of vertices (vlist). The points are connected by lines as specified in the flags in the
vertex structure.

Each Vertex, as defined ilX¢1/X10.h>, is a structure with the following members:

typedef struct _Verte{

short x,y;

unsigned short flags;
} Vertex;

The x and y members are the coordinates of thextirée are relatie o dther the upper left
inside corner of the dvaable (if VertexRelative is zero) or the previous vextéif VertexRela-
tive is one).

The flags, as defined irXx41/X10.h>, are as follows:

VertexRelative 0x0001 /* else absolute */
VertexDontDraw 0x0002 /*else dmna */
VertexCur ved 0x0004 /* else straight */

VertexStartClosed 0x0008 /* else not */
VertexEndClosed 0x0010 /*else not */

. If VertexRelative is not set, the coordinates are absolute (that is,velatthe dravable’s
origin). Thefirst vertex must be an absolute vertex.
. If VertexDontDraw is one, no line or cuevis dawn from the previous verntdo this one.

This is analogous to picking up the pen and moving to another place before drawing

466

another line.

. If VertexCurved is one, a spline algorithm is used towli@snooth cure from the previ-
ous vert& through this one to the next verteOtherwisea draight line is drawn from the
previous verte to this one. It makes sense to SettexCurved to one only if a previous
and next verteare both defined (either explicitly in the array or through the definition of a
closed curve).

. Itis permissible forVertexDontDraw bits andVertexCurved bits both to be one. This is
useful if you want to define the previous point for the smoothedartvdo not want an
actual cure drawing to start until this point.

. If VertexStartClosed is one, then this point marks the beginning of a closedecufhis
vertex must be followed later in the array by another vewbose effectie amordinates are
identical and that has\ertexEndClosed bit of one. The points in between form a cycle
to determine predecessor and successor vertices for the spline algorithm.

This function uses these GC components: function, plane-mask, line-width, line-style, cap-style,
join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. It also uses
these GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-ori-
gin, tile-stipple-y-origin, dash-offset, and dash-list.

To achieve te effects of the X Version IRDrawTiled and XDrawFilled , use XDrawFilled .

#include <X11/X10.h>

Status XDrawFilleddisplay, d, gc, vlist, vcoun)

Display *display;
Drawabled;
GCgc;
Vertex *vlist;
int vcount
display Specifies the connection to the X server.
d Specifies the dveable.
gc Specifies the GC.
vlist Specifies a pointer to the list of vertices that indicate what te. dra
vcount Specifies hey mary vertices are in vlist.

The XDrawFilled function draws arbitrary polygons or curves and then fills them.

This function uses these GC components: function, plane-mask, line-width, line-style, cap-style,
join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. It also uses
these GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-ori-
gin, tile-stipple-y-origin, dash-offset, dash-list, fill-style, and fill-rule.

Associating User Data with a Value

These functions & keen superseded by the context management functions (see section 16.10).
It is often necessary to associate arbitrary information with resource IDs. Xlib providésghe
socTablefunctions that you can use to neakich an association. Application programs often

need to be able to easily refer to their own data structures wheerdragives. TheXAs-
socTablesystem provides users of the X library with a method for associating their own data

467

structures with X resource®imaps, Fonts, Windows, and so on).

An XAssocTablecan be used to type X resourcésr example, the user may want tovieahree

or four types of windows, each with different properties. This can be accomplished by associat-
ing each X windw ID with a pointer to a winde property data structureefined by theiser.

A generic type has been defined in the X library for resource IDs. It is called an XID.

There are a fe guidelines that shoulde observed when using &#\ssocTable
. All XIDs are relatve o the specifiedlisplay.

. Because of the hashing scheme used by the assocrairanism, the following
rules for determining the size ob&\ssocTableshould be follaved. Associationwill be
made and looked up moedficiently if the table size (number ofutkets in the hash-
ing system) is a power of twend if there are not more than 8 XIDs per bucket.

To return a pointer to a neiAssocTable use XCreateAssocTable

XAssocTable *XCreateAssoeable size)

int size
size Specifies the number of buckets in the hash systexf\e§ocTable
The size argument specifies the number of buckets in the hash systémsotTable For rea-
sons of diciengy the number of buckets should be a power . t8ome size suggestions
might be: use 3Buckets per 100 objectand a reasonable maximum number of objects per

buckets is 8.If an error allocating memory for th€AssocTableoccurs, a NULL pointer is
returned.

To aeate an entry in aygn XAssocTable use XMakeAssoc.

XMakeAssoc (lisplay, table, x_id, data)

Display *display;,
XAssocTable table;
XID x_id;
char *data;
display Specifies the connection to the X server.
table Specifies the assoc table.
X_id Specifies the X resource ID.
data Specifies the data to be associated with the X resource ID.

The XMakeAssoc function inserts data into akAssocTablekeyed on an XID. Data is inserted
into the table only once. Redundant inserts are ignored. The queue in each association bucket is
sorted from the lowest XID to the highest XID.

To dbtain data from a gen XAssocTable use XLookUpAssoc.

468

char *XLookUpAssocdisplay, table, x_id)

Display *display;,

XAssocTable table;

XID x_id;
display Specifies the connection to the X server.
table Specifies the assoc table.
X_id Specifies the X resource ID.

The XLookUpAssoc function retrieres the data stored in axAssocTableby its XID. If an
appropriately matchinXID can be found in the tabl&LookUpAssoc returns the data associ-
ated with it. If the x_id cannot be found in the table, it returns NULL.

To delete an entry from aggn XAssocTable use XDeleteAssoc

XDeleteAssocdisplay, table, x_id)

Display *display;,

XAssocTable table;

XID x_id;
display Specifies the connection to the X server.
table Specifies the assoc table.
X_id Specifies the X resource ID.

The XDeleteAssocdfunction deletes an association inJ@AssocTablekeyed on its XID. Redun-
dant deletes (and deletes of nonexistent XIDs) are ignored. Deleting associations in no way
impairs the performance of afAssocTable

To free the memory associated with @egi XAssocTable use XDestroyAssocTable

XDestroyAssoca@ble gable)
XAssocTable table;

table Specifies the assoc table.

469

Glossary

Access control list

X maintains a list of hosts from which client programs can be run. By default, only pro-
grams on the local host and hosts specified in an initial list read by the server can use the
display This access control list can be changed by clients on the local host. Some server
implementations can also implement other authorization mechanisms in addition to or in
place of this mechanism. The action of this mechanism can be conditional based on the
authorization protocol name and data reegtby the server at connection setup.

Active gab

A grab is actie when the pointer ordgboard is actually owned by the single grabbing
client.

Ancestors
If W is an inferior of A, then A is an ancestor of W.
Atom

An atom is a unique ID corresponding to a string name. Atoms are used to identify proper-
ties, types, and selections.

Background

An InputOutput window can hae a lackground, which is defined as a pixmap. When
regions of the windw havetheir contents lost or Walidated, the server automatically tiles
those regions with the background.

Backing store

When a server maintains the contents of a winduoe pixels seed off-screen are known as
a backing store.

Base font name

A font name used to select a family of fonts whose members may be encoded in various
charsets. Th€harSetRegistry and CharSetEncodingfields of an XLFD name identify

the charset of the font base font name may be a full XLFD name, with all fourteen ’-’
delimiters, or an abbreviated XLFD name containing only the first 12 fields of an XLFD
name, up to but not includingharSetRegistry, with or without the thirteenth ’-’, or a
non-XLFD name. Ag XLFD fields may contain wild cards.

When creating aiXFontSet, Xlib accepts from the client a list of one or more base font
names which select one or more farnflies. Thg are combined with charset names
obtained from the encoding of the locale to load the fonts required to render text.

Bit gravity
When a windw is resized, the contents of the windare not necessarily discarded. It is
possible to request that the server relocate the previous contents to some region of the win-

dow (though no guarantees are made). This attraction of wircdatents for some loca-
tion of a windev is known as bit gravity.

470

Bit plane

When a pixmap or windw is thought of as a stack of bitmaps, each bitmap is called a bit
plane or plane.

Bitmap
A bitmap is a pixmap of depth one.
Border

An InputOutput window can hae a lorder of equal thickness on all four sides of the win-
dow. The contents of the border are defined by a pixmap, and the server automatically
maintains the contents of the bord&xposure gents are neer generated for border
regions.

Button grabbing

Buttons on the pointer can be pashi grabbed by a client. When the button is pressed,
the pointer is then astly grabbed by the client.

Byte order

For image (pixmap/bitmap) data, the server defines the byte andeclients with different
native byte ordering must swap bytes as necessiwoy all other parts of the protocol, the
client defines the byte ordend the server swaps bytes as necessary.

Character

A member of a set of elements used for thgamization, control, or representation of text
(1ISO2022, as adapted by XPG3). Note that in ISO2022 terms, a character is not bound to a
coded value until it is identified as part of a coded character set.

Character glyph

The abstract graphical symbol for a charac@raracter glyphs may or may not map one-
to-one to font glyphs, and may be context-dependent, varying with the adjacent characters.
Multiple characters may map to a single character glyph.

Character set
A collection of characters.
Charset

An encoding with a uniform, state-independent mapping from characters to codepoints. A
coded character set.

For display in X, there can be a direct mapping from a charset to one font, if the width of

all characters in the charset is either one orliytes. Atext string encoded in an encoding
such as Shift-JIS cannot be passed directly to the X séegzuse the text imaging

requests accept only single-width charsets (either 8 or 16 bits). Charsets which meet these
restrictions can seevas ‘font charsets. Font charsets strictly speaking map font indices

to font glyphs, not characters to character glyphs.

Note that a single font charset is sometimes used as the encoding of a locale, for example,
ISO8859-1.

Children
The children of a windw are its first-level subwindows.

471

Class

Windows can be of different classes or types. See the entriggpfdOnly and
InputOutput windows for further information about valid winddypes.

Client

An application program connects to the windgystem server by some interprocess com-
munication (IPC) path, such as a TCP connection or a shared memory bhfseprogram

is referred to as a client of the widesystem serverMore preciselythe client is the IPC

path itself. A program with multiple paths open to the server is viewed as multiple clients
by the protocol. Resource lifetimes are controlled by connection lifetimes, not by program
lifetimes.

Clipping region
In a graphics context, a bitmap or list of rectangles can be specified to restrict output to a
particular region of the winde The image defined by the bitmap or rectangles is called a
clipping region.

Coded character
A character bound to a codepoint.

Coded character set

A set of unambiguous rules that establishes a character set and the one-to-one relationship
between each character of the set and its bit representation. (1ISO2022, as adapted by
XPG3) A definition of a one-to-one mapping of a set of characters to a set of codepoints.

Codepoint
The coded representation of a single character in a coded character set.
Colormap

A colormap consists of a set of entries defining cotdues. Theolormap associated with
awindow is used to display the contents of the window; each pixel valuéadee col-

ormap to produce an RGB value thavdsithe guns of a monitorDepending on hardware
limitations, one or more colormaps can be installed at one time so that windows associated
with those maps display with true colors.

Connection

The IPC path between the server and client program is known as a connAatl@mnt
program typically (but not necessarily) has one connection to the seevevioch
reguests andvents are sent.

Containment

A window contains the pointer if the windois viewable and the hotspot of the cursor is
within a visible region of the windoor a Msible region of one of its inferiors. The border
of the windav is included as part of the winddor containment. The pointer is in a win-
dow if the windav contains the pointer but no inferior contains the pointer.

Coordinate system

The coordinate system has X horizontal and Y vertical, with the origin [0, O] at the upper
left. Coordinatesre integral and coincide with pixel centers. Each winead pixmap

has its own coordinate systerRor a window, the origin is inside the border at the inside
upper-left corner.

472

Cursor

A cursor is the visible shape of the pointer on a screen. It consists of a hotspot, a source
bitmap, a shape bitmap, and a pair of colors. The cursor defined for awdodtols the
visible appearance when the pointer is in that windo

Depth

The depth of a winde or pixmap is the number of bits per pixel it has. The depth of a
graphics context is the depth of thewdahles it can be used in conjunction with graphics
output.

Device

Keyboards, mice, tablets, track-balls, button boxes, and so on are all eeldatiown as
input devices. Pointersan h&e ame or more buttons (the most common number is three).
The core protocol only deals with avdevices: the kyboard and the pointer.

DirectColor

DirectColor is a class of colormap in which a pixel value is decomposed into three sepa-
rate subfields for indeéng. Thefirst subfield indees an aray to produce red intensity val-
ues. Thesecond subfield indtes a £cond array to produce blue intensiglues. Thehird
subfield indges a hird array to produce green intensiglyves. ThdRGB (red, green, and
blue) values in the colormap entry can be changed dynamically.

Display
A server together with its screens and input devices, is called a display Xlib Display

structure contains all information about the particular display and its screens as well as the
state that Xlib needs to communicate with the displey @ particular connection.

Drawable

Both windows and pixmaps can be used as sources and destinations in graphics operations.
These windows and pixmaps are collegd{i known as dravables. Havever, an Inpu-
tOnly window cannot be used as a source or destination in a graphics operation.

Encoding

A set of unambiguous rules that establishes a character set and a relationship between the
characters and their representations. The character set doesenit e fiked to a fhite
pre-defined set of characters. The representations doveihae of wniform length.

Examples are an 1SO2022 graphic set, a state-independent or state-dependent combination
of graphic sets, possibly including control sets, and the X Compam@ncoding.

In X, encodings are identified by a string which appears a€ltheSetRegistry and
CharSetEncoding components of an XLFD name; the name of a charset of the locale for
which a font could not be found; or an atom which identifies the encoding of a text property
or which names an encoding for a text selection target type. Encoding names should be
composed of characters from the X Portable Character Set.

Escapement

The escapement of a string is the distance in pixels in the primavydidestion from the
drawing origin to the origin of the next character (that is, the one following\tbe gjiing)
to be drawn.

473

Event

Clients are informed of information asynchronously by meanseanft® Thes@vents can

be either asynchronously generated from devices or generated as side effects of client
requests. Eents are grouped into types. The serveensends anent to a client unless
the client has specifically asked to be informed of that typeeot.e Hovever, dients can
force events to be sent to other clients. Events are typically reportedvestati window.

Event mask

Events are requested relatito a window. The set of eent types a client requests relati
to a windav is described by using arvent mask.

Event propagation

Device-related wents propagate from the source windm ancestor windows until some
client has expressed interest in handling that typsesit®r until the gent is discarded

explicitly.
Event source

The deepest weable windawv that the pointer is in is called the source of a device-related
event.

Event synchronization

There are certain race conditions possible when demultiplexing deeits & clients (in
particular deciding where pointer andeiboard @ents should be sent when in the middle
of window management operations). Theeat synchronization mechanism allows syn-
chronous processing of deviceents.

Exposure event

Servers do not guarantee to presdhe contents of windows when windows are obscured
or reconfigured. Exposure@ents are sent to clients to inform them when contents of
regions of windows he been lost.

Extension

Named extensions to the core protocol can be defined to extend the system. Extensions to
output requests, resources, amenetypes are all possible and expected.

Font

Afontis an array of glyphs (typically characters). The protocol does no translation or
interpretation of character sets. The client simply indicates values usedxahadgyph
array A font contains additional metric information to determine interglyph and interline
spacing.

Font glyph

The abstract graphical symbol for an irdeto a font.
Frozen esents

Clients can freezevent processing duringgyboard and pointer grabs.
GC

GC is an abbreviation for graphics cotteSeeGraphics context
Glyph

An identified abstract graphical symbol independent gfaatual image. (ISO/IEC/DIS
9541-1) An abstract visual representation of a graphic chgrastdround to a codepoint.

474

Glyph image
An image of a glyph, as obtained from a glyph representation displayed on a presentation
surface. (ISO/IEC/DI®541-1)

Grab

Keyboard leys, the leyboard, pointer buttons, the pointand the server can be grabbed for
exclusive wse by a client. In general, these facilities are not intended to be used by normal
applications but are intended for various input and winghanagers to implement various
styles of user interfaces.

Graphics context

Various information for graphics output is stored in a graphics context (GC), such as fore-
ground pixel, background pixel, line width, clipping region, and scfographics context

can only be used with drables that hee the same root and the same depth as the graphics
context.

Gravity

The contents of windows and windows themselve® laagavity, which determines how
the contents me when a windw is resized. Se8it gravity andWindow gravity .

GrayScale

GrayScale can be viewed as a degenerate cagesefidoColor, in which the red, green,
and blue values in grgiven colormap entry are equal and thus, produce shades of gray.
The gray values can be changed dynamically.

Host Portable Character Encoding

The encoding of the X Portable Character Set on the host. The encoding itself is not
defined by this standard, but the encoding must be the same in all locales supported by Xlib
on the host. If a string is said to be in the Host Portable Character Encoding, then it only
contains characters from the X Portable Character Set, in the host encoding.

Hotspot

A cursor has an associated hotspot, which defines the point in the cursor corresponding to
the coordinates reported for the pointer.

Identifier

An identifier is a unique value associated with a resource that clients use to name that
resource. Th&entifier can be usedrer any connection to name the resource.

Inferiors

The inferiors of a windw are all of the subwindows nested b&ld: the children, the chil-
dren’s dildren, and so on.

Input focus

The input focus is usually a windalefining the scope for processing @fykoard input. If
a generated &yboard ent usually would be reported to this windor one of its inferiors,
the event is reported as usual. Otherwise, thengis reported with respect to the focus
window. The input focus also can be set such thatealb&ard @ents are discarded and
such that the focus windois dynamically taken to be the root winsl@f whateser screen
the pointer is on at eacleyboard @ent.

475

Input manager

Control orer keyboard input is typically provided by an input manager client, which usually
is part of a winder manager.

InputOnly window

An InputOnly window is a window that cannot be used for graphics requebiputOnly
windows are invisible and are used to control such things as cursors Mapuugeneration,
and grabbing.InputOnly windows cannot heae InputOutput windows as inferiors.

InputOutput window

An InputOutput window is the normal kind of windw that is used for both input and out-
put. InputOutput windows can hae oth InputOutput and InputOnly windows as
inferiors.

Internationalization

The process of making software adaptable to the requirements of differgatlarati
guages, local customs, and character string encodings. Making a computer program adapt-
able to different locales without program source modifications or recompilation.

1SO2022
ISO standard for code extension techniques for 7-bit and 8-bit coded character sets.
Key grabbing

Keys on he lkeyboard can be pasgly grabbed by a client. When theis pressed, the
keyboard is then aatély grabbed by the client.

Keyboard grabbing

A client can actiely grab control of the éyboard, and &y events will be sent to that client
rather than the client theents would normally hae been sent to.

Keysym

An encoding of a symbol on &ycap on a &yboard.
Latin-1

The coded character set defined by the ISO8859-1 standard.
Latin Portable Character Encoding

The encoding of the X Portable Character Set using the Latin-1 codepoints plus ASCII con-
trol characters. If a string is said to be in the Latin Portable Character Encoding, then it
only contains characters from the X Portable Character Set, not all of Latin-1.

476

Locale

The international environment of a computer program defining the “locdllzeldavior of

that program at run-time. This information can be established from one or more sets of
localization data. ANSI C defines locale-specific processing by C system library calls. See
ANSI C and the X/Open Portability Guide specifications for more details. In this specifica-
tion, on implementations that conform to the ANSI C libr#rg “current localé’is the

current setting of the LC_CTYPg&etlocalecategory Associated with each locale is a text
encoding. Whetext is processed in the context of a locale, the text must be in the encod-
ing of the locale. The current locale affects Xlib in its:

. Encoding and processing of input method text

. Encoding of resource files and values

. Encoding and imaging of text strings

. Encoding and decoding for inter-client text communication
Locale name

The identifier used to select the desired locale for the host C library and X library functions.
On ANSI C library compliant systems, the locale argument tadlecalefunction.

Localization

The process of establishing information within a computer system specific to the operation
of particular natie languages, local customs and coded character sets. (XPG3)

Mapped

A window is said to be mapped if a map call has been performed on it. Unmapped win-
dows and their inferiors are vee viewable or visible.

Modifier keys

Shift, Control, Meta, SupgeHyper, Alt, Compose, Apple, CapsLock, ShiftLock, and simi-
lar keys ae called modifier &ys.

Monochrome
Monochrome is a special caseSthticGray in which there are only twoolormap entries.

Multibyte
A character whose codepoint is stored in more than one byteneading which can con-
tain multibyte characters; text in a multibyte encoding. The “charufl-terminated
string datatype in ANSI C. Note that references in this document to multibyte strings
imply only that the stringmaycontain multibyte characters.

Obscure
A window is obscured if some other windoobscures it.A window can be partially
obscured and so still i@ isible regions. Wndow A obscures windw B if both are view-
able InputOutput windows, if A is higher in the global stacking ordard if the rectangle
defined by the outside edges of A intersects the rectangle defined by the outside edges of B.

Note the distinction between obscures and occludes. Also note thaiwbodders are
included in the calculation.

ar7

Occlude

A window is occluded if some other wingdooccludes it. Windown A occludes windw B if

both are mapped, if A is higher in the global stacking owmher if the rectangle defined by

the outside edges of A intersects the rectangle defined by the outside edges of B. Note the
distinction between occludes and obscures. Also note that wibdi@ers are included in

the calculation and thanputOnly windows neer obscure other windows but can occlude
other windows.

Padding

Some padding bytes are inserted in the data stream to maintain alignment of the protocol
requests on natural boundaries. This increases ease of portability to some machine archi-
tectures.

Parent window
If C is a child of Pthen P is the parent of C.
Passive gab

Grabbing a Ry a button is a pasge gah The grab actiates when theéy a button is
actually pressed.

Pixel value

A pixel is an N-bit value, where N is the number of bit planes used in a particular window
or pixmap (that is, is the depth of the wimdor pixmap). Apixel in a windev indexes a
colormap to devie an actual color to be displayed.

Pixmap

A pixmap is a three-dimensional array of bifspixmap is normally thought of as a two-
dimensional array of pixels, where each pixel can be a value from"6-tq and where N
is the depth (z axis) of the pixmap. pixmap can also be thought of as a stack of N
bitmaps. Apixmap can only be used on the screen that it was created in.

Plane

When a pixmap or windw is thought of as a stack of bitmaps, each bitmap is called a
plane or bit plane.

Plane mask

Graphics operations can be restricted to only affect a subset of bit planes of a destination.
A plane mask is a bit mask describing which planes are to be modified. The plane mask is
stored in a graphics context.

Painter

The pointer is the pointing device currently attached to the cursor and tracked on the
screens.

Pointer grabbing

A client can actiely grab control of the pointefThen button and motiorvents will be
sent to that client rather than the client tiienés would normally hae been sent to.

Pointing device

A pointing device is typically a mouse, tablet, or some other device with effebtien-
sional motion. The core protocol defines only one visible cuwguch tracks whateer
pointing device is attached as the pointer.

478

POSIX
Portable Operating System Interface, ISO/IEC 9945-1 (IEEE Std 1003.1).
POSIX Portable Filename Character Set

The set of 65 characters which can be used in naming files on a POSIX-compliant host that
are correctly processed in all locales. The set is:

a.zA.Z0.9._-

Property

Windows can hae associated properties that consist of a name, a type, a data format, and
some data. The protocol places no interpretation on propertiey.afhimtended as a
general-purpose naming mechanism for clief. example, clients might use properties

to share information such as resize hints, program names, and icon formats with a window
manager.

Property list

The property list of a winde is the list of properties that i@ been defined for the win-
dow.

PseudoColor

PseudoColoris a class of colormap in which a pixel value xedsthe colormap entry to
produce an independent RGB value; that is, the colormap is viewed as an array of triples
(RGB walues). TheRGB values can be changed dynamically.

Rectangle

A rectangle specified by [x,y,w,h] has an infinitely thin outline path with corners at [X,y],
[x+w,y], [x+w,y+h], and [x, y+h]. When a rectangle is filled, the lower-right edges are not
drawn. For example, if w=h=0, nothing would be dna. For w=h=1, a single pixel would

be drawn.

Redirecting control

Window managers (or client programs) may enforce wiméyout poliy in various ways.

When a client attempts to change the size or position of a wjrde operation may be

redirected to a specified client rather than the operation actually being performed.
Reply

Information requested by a client program using the X protocol is sent back to the client
with a reply Both events and replies are multipled on he same connection. Most
requests do not generate replies, but some requests generate multiple replies.

Request

A command to the server is called a request. It is a single block of dataveeatonnec-
tion.

Resource

Windows, pixmaps, cursors, fonts, graphics contexts, and colormaps are known as
resources. Theal have wique identifiers associated with them for naming purposes. The
lifetime of a resource usually is bounded by the lifetime of the conneatenvbich the
resource was created.

479

RGB values

RGB values are the red, green, and blue intensity values that are used to define a color.
These values arevedys represented as 16-bit, unsigned numbers, with 0 the minimum
intensity and 65535 the maximum intensifyhe X server scales these values to match the
display hardware.

Root

The root of a pixmap or graphics context is the same as the root oivertdresvable was
used when the pixmap or GC was created. The root of a wiisdthe root windav under
which the windav was created.

Root window

Each screen has a root windoovering it. The root windw cannot be reconfigured or
unmapped, but otherwise it acts as a full-fledged windd root windav has no parent.

Save £t

The sae =t of a client is a list of other clients’ windows that, ifyttaee inferiors of one of
the clients windows at connection close, should not be destroyed and that should be
remapped if currently unmapped. vBagets are typically used by windamanagers to
avad lost windows if the manager should terminate abnormally.

Scanline

A scanline is a list of pixel or bit values viewed as a horizontal(edl values having the
same y coordinate) of an image, with the values ordered by increasing the x coordinate.

Scanline order

An image represented in scanline order contains scanlines ordered by increasing the y coor-

dinate.
Screen

A server can provide seral independent screens, which typicallydahysically indepen-

dent monitors. This would be the expected configuration when there is only a single

keyboard and pointer shared among the screenScr@enstructure contains the informa-
tion about that screen and is linked to Bisplay structure.

Selection

A selection can be thought of as an indirect property with dynamic type. That is, rather
than having the property stored in the X serités maintained by some client (the owner).
A selection is global and is thought of as belonging to the user and being maintained by
clients, rather than being paie to a particular winde subhierarcly or a particular set of
clients. Whera dient asks for the contents of a selection, it specifies a selection target
type, which can be used to control the transmitted representation of the coRtents.
example, if the selection is “the last thing the user clicked @and that is currently an

image, then the target type might specify whether the contents of the image should be sent

in XY format or Z format.

The target type can also be used to control the class of contents transmitted; for example,
asking for the “looks’(fonts, line spacing, indentation, and so forth) of a paragraph selec-
tion, rather than the text of the paragraph. The target type can also be used for other pur-
poses. Therotocol does not constrain the semantics.

480

Server

The serverwhich is also referred to as the X sengeovides the basic windowing mecha-
nism. Ithandles IPC connections from clients, multigiegaphics requests onto the
screens, and demultipdes input back to the appropriate clients.

Selwver grabbing

The server can be grabbed by a single client for exeluse. Thisprevents processing of
ary requests from other client connections until the grab is completed. This is typically
only a transient state for such things as rubber-banding, pop-up menxes;uting

requests indivisibly.

Shift sequence

ISO2022 defines control characters and escape sequences which temporarily (single shift)
or permanently (locking shift) cause a different character set to be in effaaltig” a
character set).

Sibling
Children of the same parent windare known as sibling windows.
Stacking order

Sibling windows, similar to sheets of paper on a desk, can stack on top of eactéther
dows abwe loth obscure and occlude lower wingd Therelationship between sibling
windows is known as the stacking order.

State-dependent encoding

An encoding in which an wocation of a charset can apply to multiple characters in
sequence. Atate-dependent encoding begins in an “initial stated enters other “shift
states’when specific “shift sequencéare encountered in the byte sequence. In 1ISO2022
terms, this means use of locking shifts, not single shifts.

State-independent encoding

Any encoding in which the wocations of the charsets are fixed, or span only a single char-
acter In 1S0O2022 terms, this means use of at most single shifts, not locking shifts.

StaticColor

StaticColor can be viewed as a degenerate cagesefidoColorin which the RGB values
are predefined and read-only.

StaticGray

StaticGray can be viewed as a degenerate cageraf/Scalein which the gray values are
predefined and read-onlyfhe values are typically linear or near-linear increasing ramps.

Status

Many Xlib functions return a success status. If the function does not succeetiehdawe
arguments are not disturbed.

Stipple

A stipple pattern is a bitmap that is used to tile a region teses\an dditional clip mask
for a fill operation with the foreground color.

481

STRING encoding
Latin-1, plus tab and newline.
String Equivalence

Two ISO Latin-1 STRINGS8 values are considered equal if tne the same length and if
corresponding bytes are either equal or arevelguit as follevs: decimalalues 65 to 90
inclusive (charactersA” to “Z”) are pairwise equalent to decimal values 97 to 122
inclusive (characters “d'to *‘z”), decimal values 192 to 214 incluw& (CharactersA
grave” to “O diaeresis”) are pairwise equent to decimal values 224 to 246 inclesi
(characters “a gn&e” t 0 “o diaeresis”), and decimal values 216 to 222 inclegtharac-
ters “O oblique’to ““THORN?") are pairwise equidlent to decimal values 246 to 254
inclusive (characters “o obliquéto ‘‘thorn”).

Tile

A pixmap can be replicated in twimensions to tile a ggon. Thepixmap itself is also
known as a tile.

Timestamp

A timestamp is a time value expressed in milliseconds. It is typically the time since the last
server resetTimestamp values wrap around (after about 49.7 days). The,sgvearits

current time is represented by timestamplWays interprets timestamps from clients by
treating half of the timestamp space as being earlier in time than T and half of the times-
tamp space as being later in time tharOhe timestamp value, represented by the constant
CurrentTime , is neve generated by the serverhis value is reserved for use in requests

to represent the current server time.

TrueColor
TrueColor can be viewed as a degenerate cadairgfctColor in which the subfields in
the pixel value directly encode the corresponding R@Bes. Thats, the colormap has
predefined read-only RGBalues. Thevalues are typically linear or near-linear increasing
ramps.

Type
A type is an arbitrary atom used to identify the interpretation of property tigbas are

completely uninterpreted by the setv@&hey are solely for the benefit of clientX prede-
fines type atoms for mgrirequently used types, and clients also can defiweypes.

Viewable

A window is viewable if it and all of its ancestors are mapped. This does not imply that
ary portion of the winduw is actually visible. Graphics requests can be performed on a
window when it is not vievable, but output will not be retained unless the server is main-
taining backing store.

Visible
A regon of a windav is visible if someone looking at the screen can actually see it; that is,
the windav is viewable and the region is not occluded by ather windav.

Whitespace

Any spacing characterOn implementations that conform to the ANSI C librampites-
pace is ap character for whichisspacereturns true.

482

Window gravity

When windows are resized, subwindows may be repositioned automaticallyerelati
some position in the windo This attraction of a subwingoto some part of its parent is
known as windw gravity.

Window manager

Manipulation of windows on the screen and much of the user interface (policy) is typically
provided by a winde manager client.

X Portable Character Set

A basic set of 97 characters which are assumed to exist in all locales supported by Xlib.
This set contains the following characters:

a..z A.Z 0.9 "#$%& ()*+,-./;;<=>?@[\]"_Y{|} <space>, <tab>, and <newline>

This is the left/lower half (also called the GO set) of the graphic character set of ISO8859-1
plus <space>, <tab>, and svlne>. Itis also the set of graphic characters in 7-bit ASCII

plus the same three control characters. The actual encoding of these characters on the host
is system dependent; see the Host Portable Character Encoding.

XLFD

The X Logical Font Description Cgentions that define a standard syntax for structured
font names.

XY format

The data for a pixmap is said to be in XY format if it iganized as a set of bitmaps repre-
senting individual bit planes with the planes appearing from most-significant to least-signif-
icant bit order.

Z format

The data for a pixmap is said to be in Z format if it ganized as a set of pixel values in
scanline order.

References
ANSI Programming Language - C: ANSI X3.159-1989, December 14, 1989.

Draft Proposed Multibyte Extension of ANSI C, Draft 1.1 vistmber 30, 1989, SC22/C
WG/SWG IPSJ/ITSCJ Japan.

1ISO2022: Information processing - ISO 7-bit and 8-bit coded character sets - Code extension
techniques.

1ISO8859-1: Information processing - 8-bit single-byte coded graphic character sets - Part 1: Latin
alphabet No. 1.

POSIX: Information Technology - Portable Operating System Interface (POSIX) - Part 1: System
Application Program Interface (API) [C Language], ISO/IEC 9945-1.

Text of ISO/IEC/DIS 9541-1, Information Processing - Font Information Interchange - Part 1:
Architecture.

X/Open Portability Guide, Issue 3, December 1988 (XPG3), X/Open Catrigdn Prentice-
Hall, Inc. 1989. ISBN 0-13-685835-8. (See especially Volume 3: XSI Supplementary Defini-
tions.)

483

484

Table of Contents

Table of Contents.

Acknowledgments .

Chapter 1: Introduction to XI|b Coe

1.1. Overviev of the X Windav System . .

1.2. Errorso

1.3. Standard Header Frles

1.4. Generic Values ang/pes . . : .
1.5. Naming and Argument Ceoantions wrthrn XI|b .
1.6. Programming Considerations .

1.7. Character Sets and Encodings

1.8. Formatting Corentions

Chapter 2: Display Functions.

2.1. Opening the Display .

2.2. Obtaining Information about the Dlsplayuage Formats or Screens

2.2.1. Display Macros .

2.2.2. Image Format Functions and Macros
2.2.3. Screen Information Macras .

2.3. Generating a NoOperation Protocol Request
2.4. Freeing Client-Created Data

2.5. Closing the Display.

2.6. Using X Server Connection Close Operatlons
2.7. Using Xlib with Threads .

2.8. Using Internal Connections.

Chapter 3: Winde Functions

3.1. Visual Ypes

3.2. Windav Attributes

3.2.1. Background Attrilte .

3.2.2. Border Attrinte

3.2.3. Gravity Attrilutes . .

3.2.4. Backing Store Attrilde

3.25. See UnderFlag . . .

3.2.6. Backing Planes and Backrng Prxel Atltebs

3.2.7. Event Mask and Do Not Propagate Mask Attgb

3.2.8. Override Redirect Flag.

3.2.9. Colormap Attribte

3.2.10. Cursor Attribte .

3.3. Creating Windws

3.4. Destroying Windes

3.5. Mapping Windwas

3.6. Unmapping Windes

3.7. Configuring Windas . .

3.8. Changing Winde Stacking Order
3.9. Changing Windw Attributes . .
Chapter 4: Winde Information Functions.
4.1. Obtaining Winde Information

4.2. Translating Screen Coordinates .

OO PANWR R

CHNAWAEANDNROOWROBI PN W ROND ORI E B

4.3. Properties and Atoms. .

4.4. Obtaining and Changing Wlnchropertles

4.5. Selections. :
Chapter 5: Pixmap and Cursor Functlons

5.1. Creating and Freeing Pixmaps .

5.2. Creating, Recoloring, and Freeing Cursors
Chapter 6: Color Management Functions

6.1. Color Structures.

6.2. Color Strings. .

6.2.1. RGB Device String SpeC|f|cat|on .

6.2.2. RGB Intensity String Specification. .
6.2.3. Device-Independent String Specifications .
6.3. Color Cowersion Contexts and Gamut Mapping .
6.4. Creating, Copying, and Destroying Colormaps .
6.5. Mapping Color Names taales . .

6.6. Allocating and Freeing Color Cells . . .

6.7. Modifying and Querying Colormap Cells .

6.8. Color Cowersion Context Functions .

6.8.1. Getting and Setting the Color @ension Context of a Colormap
6.8.2. Obtaining the Default Color Gansion Conte&t
6.8.3. Color Coversion Context Macros .
6.8.4. Modifying Attributes of a Color Ceersion Contozt
6.8.5. Creating and Freeing a Color €asion Contat .
6.9. Cowerting between Color Spaces.

6.10. Callback Functions .

6.10.1. Prototype Gamut Compressmn Procedure
6.10.2. Supplied Gamut Compression Procedures .
6.10.3. Prototype White Point Adjustment Procedure
6.10.4. Supplied White Point Adjustment Procedures
6.11. Gamut Querying Functions Coe
6.11.1. Red, Green, and Blue Queries

6.11.2. CIELab Queries .o

6.11.3. CIELuv Queries.

6.11.4. TekHVC Queries .

6.12. Color Management Extensmns

6.12.1. Color Spaces . . .

6.12.2. Adding Device- Independent Color Spaces
6.12.3. Querying Color Space Format and Prefix .
6.12.4. Creating Additional Color Spaces

6.12.5. Parse String Callback oo

6.12.6. Color Specification Ceersion Callback
6.12.7. Function Sets . .

6.12.8. Adding Function Sets.

6.12.9. Creating Additional Function Sets

Chapter 7: Graphics Context Functions .

7.1. Manipulating Graphics Conxté#State .
7.2. Using Graphics Context Gamience Routines.

7.2.1. Setting the Foreground, Background, Function, or Plane Mask.

7.2.2. Setting the Line Attributes and Dashes .
7.2.3. Setting the Fill Style and Fill Rule .

awwwwwwwmwmwwr@gwgaan—\Hldbeecebbebtﬁe
ooo~NO~N~NOPMPDPWDNPEPPRERO o~ P FRPOOOO~NOOPMNWERLREFLROO

7.2.4. Setting the Fill Tile and Stipple .
7.2.5. Setting the Currenbht .
7.2.6. Setting the Clip Rgon

7.2.7. Setting the Arc Mode, Subwmdtb/lode and Graphlcs Exposure

Chapter 8: Graphics Functions .

8.1. Clearing Areas .

8.2. Copying Areas .

8.3. Drawing Points, Lines, Rectangles and Arcs
8.3.1. Drawing Single and Multiple Points
8.3.2. Drawing Single and Multiple Lines.
8.3.3. Drawing Single and Multiple Rectangles
8.3.4. Drawing Single and Multiple Arcs .

8.4. Filling Areas .

8.4.1. Filling Single and Multlple Rectangles
8.4.2. Filling a Single Polygon .o
8.4.3. Filling Single and Multiple Arcs.

8.5. Font Metricso

8.5.1. Loading and Freemg)ﬁts -

8.5.2. Obtaining and Freeing Font Names and Informatlon

8.5.3. Computing Character String Sizes.

8.5.4. Computing Logical Extents .

8.5.5. Querying Character String Sizes .

8.6. Drawing €xt . . Coe

8.6.1. Drawing CompteText

8.6.2. Drawing &xt Characters .

8.6.3. Drawing Imageékt Characters .
8.7. Transferring Images between Client and eerv .
Chapter 9: Winde and Session Manager Functions .
9.1. Changing the Parent of a Windo .

9.2. Controlling the Lifetime of a Windo .

9.3. Managing Installed Colormaps

9.4. Setting and Retrieving the Font SearathP

9.5. Grabbing the Seev . .o

9.6. Killing Clients

9.7. Controlling the Screenm :

9.8. Controlling Host Access .

9.8.1. Adding, Getting, or Removing Hosts .
9.8.2. Changing, Enabling, or Dlsabllng Access Control
Chapter 10: Eents .o .o

10.1. Event §pes . .

10.2. Event Structures .

10.3. Event Masks .

10.4. Event Processing Over\xme

10.5. Keyboard and Pointer [Ewnts

10.5.1. Pointer Button Ents

10.5.2. keyboard and Pointer Eents . .

10.6. Windav Entry/Exit Events

10.6.1. Normal Entry/Exit Eants . . .

10.6.2. Grab and Ungrab Entry/Exiténts . .

10.7. Input Focus Eents . . .o

40
43
43

45

47
47

50
b1
52
54
56
g7
58
39
60

®4
b7
69
®9
T1

72
.73

15
¥6
8
84
B84

86
B8
a9

. 90

2
93
b6
97
97

. 0@

P2
Q2
P3
a7
Q9
20
20

10.7.1. Normal Focus Events and Focus Events While Grabbed

10.7.2. Focus Events Generated by Grabs .
10.8. key Map State Notification Ents . .
10.9. Exposure Eents .o
10.9.1. Expose Ents

10.9.2. GraphicsExpose and NoExposerEs
10.10. Windev State Change Eants . .
10.10.1. CirculateNotify Eants
10.10.2. ConfigureNotify Eants
10.10.3. CreateNotify Eants

10.10.4. DestroyNotify Eants . .
10.10.5. GravityNotify Eents . .
10.10.6. MapNotify Egnts . .
10.10.7. MappingNotify Eents

10.10.8. ReparentNotify Ewnts

10.10.9. UnmapNotify Eants .
10.10.10. VisibilityNotify Eents

10.11. Structure Control Ewnts

10.11.1. CirculateRequest &us . .
10.11.2. ConfigureRequesténts . .
10.11.3. MapRequest Ents

10.11.4. ResizeRequestdnis . . .
10.12. Colormap State Changeelats
10.13. Client Communication Euts . .
10.13.1. ClientMessage Ents . .
10.13.2. PropertyNotify Eants . .
10.13.3. SelectionClear Ents . .
10.13.4. SelectionRequestdnts . .
10.13.5. SelectionNotify Eants
Chapter 11: Event Handling Functions
11.1. Selectingbants
11.2. Handling the Output Bfgir .

11.3. Event Queue Management
11.4. Manipulating the Event Queue .
11.4.1. Returning the Next Emt

11.4.2. Selecting Events Using a Predicate Procedure .

11.4.3. Selecting Events Using a Wimdor Event Mask
11.5. Putting an Event Back into the Queue.

11.6. Sending Events to Other Applicatians.

11.7. Getting Pointer Motion History .

11.8. Handling Protocol Errors .

11.8.1. Enabling or Disabling Synchronlzatlon
11.8.2. Using the Default Error Handlers.

Chapter 12: Input Device Functions

12.1. Pointer Grabbing . .

12.2. Keyboard Grabbing . .

12.3. Resuming Event Processing .

12.4. Moving the Pointer .

12.5. Controlling Input &cus

12.6. Manipulating the &board and Pomter Settlngs

a1
24
24
5
5
16
27
27
28
29
29
20
20
21
22
22
23
24
24
25
25
26
26
27
27
28
29
29
320
31
21
32
23
33
33
34
36
39
39
21
22
42
a2
28

23
36

29
yoxi

12.7. Manipulating the &board Encoding

Chapter 13: Locales and Internat|onallzedt'Funct|ons

13.1. X Locale Management . .
13.2. Locale and Modifier Dependenmes
13.3. Variable Argument Lists

13.4. Output Methods .

13.4.1. Output Method Over\wa
13.4.2. Output Method Functions .
13.4.3. X Output Methodalues
13.4.3.1. Required Char Set .
13.4.3.2. Query Orientation

13.4.3.3. Directional Dependent EAnalg
13.4.3.4. Context Dependent Biiag
13.4.4. Output Context Functions .
13.4.5. Output Contextalues . .
13.4.5.1. Base Font Name.

13.4.5.2. Missing CharSet.

13.4.5.3. Default String.

13.4.5.4. Orientation. . .
13.4.5.5. Resource Name and Class :
13.45.6. FontInfo . .

13.4.5.7. OM Automatic

13.4.6. Creating and Freeing a Font Set
13.4.7. Obtaining Font Set Metrics.
13.4.8. Drawing &xt Using Font Sets .
13.5. Input Methods . .o
13.5.1. Input Method Overvie
13.5.1.1. Input Method Architecture
13.5.1.2. Input Consds
13.5.1.3. Getting Kyboard Input
13.5.1.4. Focus Management
13.5.1.5. Geometry Management .
13.5.1.6. Event Filtering

13.5.1.7. Callbacks .

13.5.1.8. Visible Position Feedback Masks .

13.5.1.9. Preedit String Management .
13.5.2. Input Method Management.
13.5.2.1. Hot keys. . . .
13.5.2.2. Preedit State Operatlon .
13.5.3. Input Method Functions .
13.5.4. Input Method &ues

13.5.4.1. Query Input Style :
13.5.4.2. Resource Name and Class .
13.5.4.3. DestpCallback
13.5.4.4. Query IM/IC Values List .
13.5.4.5. Visible Position . . .
13.5.4.6. Preedit Callback Bahar
13.5.5. Input Context Functions.
13.5.6. Input Contextaues

13.5.6.1. Input Style.

13.5.6.2. Client Winde .

13.5.6.3. Focus Windw . .

13.5.6.4. Resource Name and Class :

13.5.6.5. Geometry Callback.

13.5.6.6. Filter Egnts .

13.5.6.7. DestipCallback . . .

13.5.6.8. String Carersion Callback

13.5.6.9. String Corersion .

13.5.6.10. Reset State .

13.5.6.11. Hot €ys . :

13.5.6.12. Hot Ky Sate . . :

13.5.6.13. Preedit and Status Attrues

13.5.6.13.1. Area. . .

13.5.6.13.2. Area Needed

13.5.6.13.3. Spot Location

13.5.6.13.4. Colormap . . .

13.5.6.13.5. Foreground and Background

13.5.6.13.6. Background Pixmap

13.5.6.13.7. Font Set .

13.5.6.13.8. Line Spacing.

13.5.6.13.9. Cursor . . .

13.5.6.13.10. Preedit State . . . :
13.5.6.13.11. Preedit State Notify Callback.
13.5.6.13.12. Preedit and Status Callbacks.

13.5.7. Input Method Callback Semantics

13.5.7.1. Geometry Callback.

13.5.7.2. DestipCallback . . .

13.5.7.3. String Comrsion Callback

13.5.7.4. Preedit State Callbacks .

13.5.7.5. Preedit DvaCallback

13.5.7.6. Preedit Caret Callback

13.5.7.7. Status Callbacks.

13.5.8. Event Filtering . . .

13.5.9. Getting Kyboard Input

13.5.10. Input Method Cemsntions

13.5.10.1. Client Carentions

13.5.10.2. Synchronization Ommtlons .

13.6. String Constants . .
Chapter 14: Inter-Client Commumcatron Funct|ons .
14.1. Client to Windew Manager Communication .
14.1.1. Manipulating Top-hel Windows

14.1.2. Cowmerting String Lists. .

14.1.3. Setting and ReadlngXl“Propertles .o

14.1.4. Setting and Reading the WM_NAME Property
14.1.5. Setting and Reading the WM_ICON_NAME Property.
14.1.6. Setting and Reading the WM_HINTS Property .
14.1.7. Setting and Reading the WM_NORMAL_HINTS Property
14.1.8. Setting and Reading the WM_CLASS Property.
14.1.9. Setting and Reading the WM_TRANSIENT_FOR Property
14.1.10. Setting and Reading the WM GAROCOLS Property

BRRBES BRI

@&@H@ﬂ&%bﬁmamw@ammmwggwwwwwwwmw
B ONNOOWONEFRPOOUODRDRWROOOO OONPFPOOO0NN

14.1.11. Setting and Reading the WM_COLORMAP_WINDOWS Property .
14.1.12. Setting and Reading the WM_ICON_SIZE Property.
14.1.13. Using Winde Manager Cavenience Functions .

14.2. Client to Session Manager Communication.

14.2.1. Setting and Reading the WM_COMMAND Property :
14.2.2. Setting and Reading the WM_CLIENT_MACHINE Property .

14.3. Standard Colormaps. .
14.3.1. Standard Colormap Propertles and Atoms

14.3.2. Setting and Obtaining Standard Colormaps .

Chapter 15: Resource Manager Functions .
15.1. Resource File Syntax

15.2. Resource Manager Matching Rules
15.3. Quarks .

15.4. Creating and Storlng Databases

15.5. Merging Resource Databases

15.6. Looking Up Resources.

15.7. Storing into a Resource Database

15.8. Enumerating Database Entries .

15.9. Parsing Command Line Options.
Chapter 16: Application Utility Functions.

16.1. Using Keyboard Utility Functions.

16.1.1. kySym Classification Macros . .
16.2. Using Latin-1 kyboard Event Functions .
16.3. Allocating Permanent Storage

16.4. Parsing the WindoGeometry . .

16.5. Manipulating Rgions .

16.5.1. Creating, Copying, or Destroylngngs
16.5.2. Moving or Shrinking Rgons . .
16.5.3. Computing with Rgons

16.5.4. Determining if Regions Are Empty or Equal .

16.5.5. Locating a Point or a Rectangle in giBe
16.6. Using Cut Bdérs . .
16.7. Determining the Approprlate \fsuqlp'é
16.8. Manipulating Images .
16.9. Manipulating Bitmaps .

16.10. Using the Context Manager

Appendix A: Xlib Functions and Protocol Requests .

Appendix B: X Font Cursors .
Appendix C: Extensions . .
Appendix D: Compatrbrlrty Functrons .
Glossary . .o

Index .

5
B7
58
31
F1
2

35
36
38
39
80

83
86
88
90
92
93
96
96
98
40
a1
21
a3
D4
85
a5
Q97
97

40
1

48
21
a3

89

.854

