
RFC 9407

Tetrys: An On-the-Fly Network Coding Protocol

Abstract

This document describes Tetrys, which is an on-the-fly network coding protocol that can be used

to transport delay-sensitive and loss-sensitive data over a lossy network. Tetrys may recover

from erasures within an RTT-independent delay thanks to the transmission of coded packets.

This document is a record of the experience gained by the authors while developing and testing

the Tetrys protocol in real conditions.

This document is a product of the Coding for Efficient NetWork Communications Research Group

(NWCRG). It conforms to the NWCRG taxonomy described in RFC 8406.

Stream:

RFC:

Category:

Published:

ISSN:

Authors:

Internet Research Task Force (IRTF)

9407

Experimental

June 2023

2070-1721

 J. Detchart

ISAE-SUPAERO

E. Lochin

ENAC

J. Lacan

ISAE-SUPAERO

V. Roca

INRIA

Status of This Memo

This document is not an Internet Standards Track specification; it is published for examination,

experimental implementation, and evaluation.

This document defines an Experimental Protocol for the Internet community. This document is a

product of the Internet Research Task Force (IRTF). The IRTF publishes the results of Internet-

related research and development activities. These results might not be suitable for deployment.

This RFC represents the consensus of the Coding for Efficient NetWork Communications Research

Group of the Internet Research Task Force (IRTF). Documents approved for publication by the

IRSG are not candidates for any level of Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback

on it may be obtained at .https://www.rfc-editor.org/info/rfc9407

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights

reserved.

Detchart, et al. Experimental Page 1

https://www.rfc-editor.org/rfc/rfc9407
https://www.rfc-editor.org/info/rfc9407

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF

Documents () in effect on the date of publication of this

document. Please review these documents carefully, as they describe your rights and restrictions

with respect to this document.

https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. Requirements Notation

2. Definitions, Notations, and Abbreviations

3. Architecture

3.1. Use Cases

3.2. Overview

4. Tetrys Basic Functions

4.1. Encoding

4.2. The Elastic Encoding Window

4.3. Decoding

5. Packet Format

5.1. Common Header Format

5.1.1. Header Extensions

5.2. Source Packet Format

5.3. Coded Packet Format

5.3.1. The Encoding Vector

5.4. Window Update Packet Format

6. Research Issues

6.1. Interaction with Congestion Control

6.2. Adaptive Coding Rate

6.3. Using Tetrys below the IP Layer for Tunneling

7. Security Considerations

7.1. Problem Statement

7.2. Attacks against the Data Flow

7.3. Attacks against Signaling

RFC 9407 Tetrys Network Coding Protocol June 2023

Detchart, et al. Experimental Page 2

https://trustee.ietf.org/license-info

7.4. Attacks against the Network

7.5. Baseline Security Operation

8. IANA Considerations

9. References

9.1. Normative References

9.2. Informative References

Acknowledgments

Authors' Addresses

1. Introduction

This document is a product of and represents the collaborative work and consensus of the

Coding for Efficient NetWork Communications Research Group (NWCRG). It is not an IETF

product or an IETF standard.

This document describes Tetrys, which is an on-the-fly network coding protocol that can be used

to transport delay-sensitive and loss-sensitive data over a lossy network. Network codes were

introduced in the early 2000s to address the limitations of transmission over the

Internet (delay, capacity, and packet loss). While network codes have seen some deployment

fairly recently in the Internet community, the use of application-layer erasure codes in the IETF

has already been standardized in the RMT and FECFRAME

Working Groups. The protocol presented here may be seen as a network-coding extension to

standard unicast transport protocols (or even multicast or anycast with a few modifications). The

current proposal may be considered a combination of network erasure coding and feedback

mechanisms .

The main innovation of the Tetrys protocol is in the generation of coded packets from an elastic

encoding window. This window is filled by any source packets coming from an input flow and is

periodically updated with the receiver feedback. These feedback messages provide to the sender

information about the highest sequence number received or rebuilt, which can enable the

flushing the corresponding source packets stored in the encoding window. The size of this

window may be fixed or dynamically updated. If the window is full, incoming source packets

replace older source packets that are dropped. As a matter of fact, its limit should be correctly

sized. Finally, Tetrys allows dealing with losses on both the forward and return paths and is

particularly resilient to acknowledgment losses. All these operations are further detailed in

Section 4.

[AHL-00]

[RFC5052] [RFC5445] [RFC8680]

[Tetrys] [Tetrys-RT]

RFC 9407 Tetrys Network Coding Protocol June 2023

Detchart, et al. Experimental Page 3

With Tetrys, a coded packet is a linear combination over a finite field of the data source packets

belonging to the coding window. The choice of coefficients, as finite fields elements, is a trade-off

between the best erasure recovery performance (finite fields of 256 elements) and the system

constraints (finite fields of 16 elements are preferred) and is driven by the application.

Thanks to the elastic encoding window, the coded packets are built on-the-fly by using a

predefined method to choose the coefficients. The redundancy ratio may be dynamically

adjusted and the coefficients may be generated in different ways during the transmission.

Compared to Forward Error Correction (FEC) block codes, this reduces the bandwidth use and

the decoding delay.

The design description of the Tetrys protocol in this document is complemented by a record of

the experience gained by the authors while developing and testing the Tetrys protocol in realistic

conditions. In particular, several research issues are discussed in Section 6 following our own

experience and observations.

1.1. Requirements Notation

The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14 when, and only when, they appear in

all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD

NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

Source Symbol:

Coded Symbol:

Source Symbol ID:

Coded Symbol ID:

Encoding Coefficients:

Encoding Vector:

Source Packet:

Coded Packet:

Input Symbol:

2. Definitions, Notations, and Abbreviations

The notation used in this document is based on the NWCRG taxonomy .

A symbol that is transmitted between the ingress and egress of the network.

A linear combination over a finite field of a set of source symbols.

A sequence number to identify the source symbols.

A sequence number to identify the coded symbols.

Elements of the finite field characterizing the linear combination used to

generate coded symbols.

A set of the coding coefficients and input source symbol IDs.

A source packet contains a source symbol with its associated IDs.

A coded packet contains a coded symbol, the coded symbol's ID, and encoding

vector.

A symbol at the input of the Tetrys encoder.

[RFC8406]

RFC 9407 Tetrys Network Coding Protocol June 2023

Detchart, et al. Experimental Page 4

Output Symbol:

Feedback Packet:

Elastic Encoding Window:

Coding Coefficient Generator Identifier (CCGI):

Code Rate:

A symbol generated by the Tetrys encoder. For a non-systematic mode, all

output symbols are coded symbols. For a systematic mode, output symbols be the input

symbols and a number of coded symbols that are linear combinations of the input symbols

plus the encoding vectors.

A feedback packet is a packet containing information about the decoded or

received source symbols. It also contain additional information about the Packet Error

Rate or the number of various packets in the receiver decoding window.

An encoder-side buffer that stores all the unacknowledged source

packets of the input flow involved in the coding process.

A unique identifier that defines a function or an

algorithm allowing the generation of the encoding vector.

Defines the rate between the number of input symbols and the number of output

symbols.

MAY

MAY

3. Architecture

3.1. Use Cases

Tetrys is well suited, but not limited, to the use case where there is a single flow originated by a

single source with intra-stream coding at a single encoding node. Note that the input stream

be a multiplex of several upper-layer streams. Transmission be over a single path or

multiple paths. This is the simplest use case that is quite aligned with currently proposed

scenarios for end-to-end streaming.

MAY

MAY

3.2. Overview

Figure 1: Tetrys Architecture

 +----------+ +----------+

 | | | |

 | App | | App |

 | | | |

 +----------+ +----------+

 | ^

 | Source Source |

 | Symbols Symbols |

 | |

 v |

 +----------+ +----------+

 | | Output Packets | |

 | Tetrys |--------------->| Tetrys |

 | Encoder |Feedback Packets| Decoder |

 | |<---------------| |

 +----------+ +----------+

RFC 9407 Tetrys Network Coding Protocol June 2023

Detchart, et al. Experimental Page 5

The Tetrys Building Block:

The Window Management Building Block:

The Tetrys protocol features several key functionalities. The mandatory features include:

on-the-fly encoding;

decoding;

signaling, to carry in particular the symbol IDs in the encoding window and the associated

coding coefficients when meaningful;

feedback management;

elastic window management; and

Tetrys packet header creation and processing.

The optional features include:

channel estimation;

dynamic adjustment of the code rate and flow control; and

congestion control management (if appropriate). See Section 6.1 for further details.

Several building blocks provide the following functionalities:

This building block embeds both the Tetrys decoder and Tetrys

encoder; thus, it is used during encoding and decoding processes. It must be noted that Tetrys

does not mandate a specific building block. Instead, any building block compatible with the

elastic encoding window feature of Tetrys may be used.

This building block is in charge of managing the

encoding window at a Tetrys sender.

To ease the addition of future components and services, Tetrys adds a header extension

mechanism that is compatible with that of Layered Coding Transport (LCT) , NACK-

Oriented Reliable Multicast (NORM) , and FEC Framework (FECFRAME) .

•

•

•

•

•

•

•

•

•

[RFC5651]

[RFC5740] [RFC8680]

4. Tetrys Basic Functions

4.1. Encoding

At the beginning of a transmission, a Tetrys encoder choose an initial code rate that adds

redundancy as it doesn't know the packet loss rate of the channel. In the steady state, the Tetrys

encoder generate coded symbols when it receives a source symbol from the application or

some feedback from the decoding blocks depending on the code rate.

When a Tetrys encoder needs to generate a coded symbol, it considers the set of source symbols

stored in the elastic encoding window and generates an encoding vector with the coded symbol.

These source symbols are the set of source symbols that are not yet acknowledged by the

receiver. For each source symbol, a finite field coefficient is determined using a Coding

Coefficient Generator. This generator take the source symbol IDs and the coded symbol ID as

MUST

MAY

MAY

RFC 9407 Tetrys Network Coding Protocol June 2023

Detchart, et al. Experimental Page 6

an input and determine a coefficient in a deterministic way as presented in Section 5.3.

Finally, the coded symbol is the sum of the source symbols multiplied by their corresponding

coefficients.

A Tetrys encoder set a limit to the elastic encoding window maximum size. This controls

the algorithmic complexity at the encoder and decoder by limiting the size of linear

combinations. It is also needed in situations where all window update packets are lost or absent.

MAY

MUST

4.2. The Elastic Encoding Window

When an input source symbol is passed to a Tetrys encoder, it is added to the elastic encoding

window. This window have a limit set by the encoding building block. If the elastic

encoding window has reached its limit, the window slides over the symbols. The first (oldest)

symbol is removed, and the newest symbol is added. As an element of the coding window, this

symbol is included in the next linear combinations created to generate the coded symbols.

As explained below, the Tetrys decoder sends periodic feedback indicating the received or

decoded source symbols. When the sender receives the information that a source symbol was

received or decoded by the receiver, it removes this symbol from the coding window.

MUST

4.3. Decoding

A standard Gaussian elimination is sufficient to recover the erased source symbols when the

matrix rank enables it.

5. Packet Format

5.1. Common Header Format

All types of Tetrys packets share the same common header format (see Figure 2).

Figure 2: Common Header Format

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| V | C |S| Reserved | HDR_LEN | PKT_TYPE |

+-+

| Congestion Control Information (CCI, length = 32*C bits) |

| ... |

+-+

| Transport Session Identifier (TSI, length = 32*S bits) |

+-+

| Header Extensions (if applicable) |

| ... |

+-+

RFC 9407 Tetrys Network Coding Protocol June 2023

Detchart, et al. Experimental Page 7

Tetrys version number (V):

Congestion control flag (C):

Transport Session Identifier flag (S):

Reserved (Resv):

Header length (HDR_LEN):

Tetrys packet type (PKT_TYPE):

Congestion Control Information (CCI):

Transport Session Identifier (TSI):

As noted above, this format is inspired by, and inherits from, the LCT header format

with slight modifications.

4 bits. Indicates the Tetrys version number. The Tetrys version

number for this specification is 1.

2 bits. C set to 0b00 indicates the Congestion Control Information

(CCI) field is 0 bits in length. C set to 0b01 indicates the CCI field is 32 bits in length. C set to

0b10 indicates the CCI field is 64 bits in length. C set to 0b11 indicates the CCI field is 96 bits in

length.

1 bit. This is the number of full 32-bit words in the TSI

field. The TSI field is 32*S bits in length; i.e., the length is either 0 bits or 32 bits.

9 bits. These bits are reserved. In this version of the specification, they

be set to zero by senders and be ignored by receivers.

8 bits. The total length of the Tetrys header in units of 32-bit words.

The length of the Tetrys header be a multiple of 32 bits. This field may be used to

directly access the portion of the packet beyond the Tetrys header, i.e., to the first next header

if it exists, to the packet payload if it exists and there is no other header, or to the end of the

packet if there are no other headers or packet payload.

8 bits. There are three types of packets: the PKT_TYPE_SOURCE

(0b00) defined in Section 5.2, the PKT_TYPE_CODED (0b01) defined in Section 5.3 and the

PKT_TYPE_WND_UPT (0b11) for window update packets defined in Section 5.4.

0, 32, 64, or 96 bits. Used to carry congestion control

information. For example, the congestion control information could include layer numbers,

logical channel numbers, and sequence numbers. This field is opaque for this specification.

This field be 0 bits (absent) if C is set to 0b00. This field be 32 bits if C is set to 0b01.

This field be 64 bits if C is set to 0b10. This field be 96 bits if C is set to 0b11.

0 or 32 bits. The TSI uniquely identifies a session among all

sessions from a particular Tetrys encoder. The TSI is scoped by the IP address of the sender;

thus, the IP address of the sender and the TSI together uniquely identify the session. Although

a TSI always uniquely identifies a session conjointly with the IP address of the sender,

whether the TSI is included in the Tetrys header depends on what is used as the TSI value. If

the underlying transport is UDP, then the 16-bit UDP source port number serve as the TSI

for the session. If there is no underlying TSI provided by the network, transport, or any other

layer, then the TSI be included in the Tetrys header.

[RFC5651]

MUST

MUST

MUST

MUST MUST

MUST MUST

MAY

MUST

5.1.1. Header Extensions

Header extensions are used in Tetrys to accommodate optional header fields that are not always

used or have variable sizes. The presence of header extensions be inferred by the Tetrys

header length (HDR_LEN). If HDR_LEN is larger than the length of the standard header, then the

remaining header space is taken by header extensions.

MAY

RFC 9407 Tetrys Network Coding Protocol June 2023

Detchart, et al. Experimental Page 8

Header Extension Type (HET):

Header Extension Length (HEL):

Header Extension Content (HEC):

If present, header extensions be processed to ensure that they are recognized before

performing any congestion control procedure or otherwise accepting a packet. The default action

for unrecognized header extensions is to ignore them. This allows for the future introduction of

backward-compatible enhancements to Tetrys without changing the Tetrys version number.

Header extensions that are not backward-compatible be introduced without changing

the Tetrys version number.

There are two formats for header extensions as depicted in Figure 3:

The first format is used for variable-length extensions with header extension type (HET)

values between 0 and 127.

The second format is used for fixed-length (one 32-bit word) extensions using HET values

from 128 to 255.

8 bits. The type of the header extension. This document defines

several possible types. Additional types may be defined in future versions of this specification.

HET values from 0 to 127 are used for variable-length header extensions. HET values from

128 to 255 are used for fixed-length, 32-bit header extensions.

8 bits. The length of the whole header extension field

expressed in multiples of 32-bit words. This field be present for variable-length

extensions (HETs between 0 and 127) and be present for fixed-length extensions

(HETs between 128 and 255).

Length of the variable. The content of the header extension.

The format of this subfield depends on the header extension type. For fixed-length header

extensions, the HEC is 24 bits. For variable-length header extensions, the HEC field has a

variable size as specified by the HEL field. Note that the length of each header extension

be a multiple of 32 bits. Additionally, the total size of the Tetrys header, including all header

extensions and optional header fields, cannot exceed 255 32-bit words.

MUST

MUST NOT

•

•

Figure 3: Header Extension Format

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| HET (<=127) | HEL | |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +

. .

. Header Extension Content (HEC) .

+-+

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| HET (>=128) | Header Extension Content (HEC) |

+-+

MUST

MUST NOT

MUST

RFC 9407 Tetrys Network Coding Protocol June 2023

Detchart, et al. Experimental Page 9

Common Packet Header:

Source Symbol ID:

Payload:

5.2. Source Packet Format

A source packet is a common packet header encapsulation, a source symbol ID, and a source

symbol (payload). The source symbols have variable sizes.

A common packet header (as common header format) where packet

type is set to 0b00.

The sequence number to identify a source symbol.

The payload (source symbol).

MAY

Figure 4: Source Packet Format

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| |

/ Common Packet Header /

| |

+-+

| Source Symbol ID |

+-+

| |

/ Payload /

| |

+-+

5.3. Coded Packet Format

A coded packet is the encapsulation of a common packet header, a coded symbol ID, the

associated encoding vector, and a coded symbol (payload). As the source symbols have

variable sizes, all the source symbol sizes need to be encoded. To generate this encoded payload

size as a 16-bit unsigned value, the linear combination uses the same coefficients as the coded

payload. The result be stored in the coded packet as the encoded payload size (16 bits). As it

is an optional field, the encoding vector signal the use of variable source symbol sizes with

the field V (see Section 5.3.1).

MAY

MUST

MUST

RFC 9407 Tetrys Network Coding Protocol June 2023

Detchart, et al. Experimental Page 10

Common Packet Header:

Coded Symbol ID:

Encoding Vector:

Encoded Payload Size:

Payload:

A common packet header (as common header format) where packet

type is set to 0b01.

The sequence number to identify a coded symbol.

An encoding vector to define the linear combination used (coefficients and

source symbols).

The coded payload size used if the source symbols have a variable size

(optional, Section 5.3.1).

The coded symbol.

Figure 5: Coded Packet Format

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| |

/ Common Packet Header /

| |

+-+

| Coded Symbol ID |

+-+

| |

/ Encoding Vector /

| |

+-+

| Encoded Payload Size | |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +

| |

/ Payload /

| |

+-+

5.3.1. The Encoding Vector

An encoding vector contains all the information about the linear combination used to generate a

coded symbol. The information includes the source identifiers and the coefficients used for each

source symbol. It be stored in different ways depending on the situation.MAY

RFC 9407 Tetrys Network Coding Protocol June 2023

Detchart, et al. Experimental Page 11

Encoding Vector Length (EV_LEN):

Coding Coefficient Generator Identifier (CCGI):

8 bits. The size in units of 32-bit words.

4-bit ID to identify the algorithm or function

used to generate the coefficients. As a CCGI is included in each encoded vector, it

dynamically change between the generation of two coded symbols. The CCGI builds the

coding coefficients used to generate the coded symbols. They be known by all the Tetrys

encoders or decoders. The two RLC FEC schemes specified in this document reuse the finite

fields defined in . More specifically, the elements of the field GF(2
(m)

)

are represented by polynomials with binary coefficients (i.e., over GF(2)) and with degree

lower or equal to m-1. The addition between two elements is defined as the addition of binary

polynomials in GF(2), which is equivalent to a bitwise XOR operation on the binary

representation of these elements. With GF(2
(8)

), multiplication between two elements is the

multiplication modulo a given irreducible polynomial of degree 8. The following irreducible

polynomial is used for GF(2
(8)

):

x
(8)

 + x
(4)

 + x
(3)

 + x
(2)

 + 1

With GF(2
(4)

), multiplication between two elements is the multiplication modulo a given

irreducible polynomial of degree 4. The following irreducible polynomial is used for GF(2
(4)

):

x
(4)

 + x + 1

0b00: Vandermonde-based coefficients over the finite field GF(2
(4)

) as defined below. Each

coefficient is built as alpha
((source_symbol_id*coded-symbol_id) % 16)

, with alpha the root of

the primitive polynomial.

Figure 6: Encoding Vector Format

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| EV_LEN | CCGI | I |C|V| NB_IDS | NB_COEFS |

+-+

| FIRST_SOURCE_ID |

+-+

| b_id | |

+-+-+-+-+-+-+-+-+ id_bit_vector +-+-+-+-+-+-+-+

| | Padding |

+-+

| |

+ coef_bit_vector +-+-+-+-+-+-+-+

| | Padding |

+-+

MAY

MUST

[RFC5510], Section 8.1

•

RFC 9407 Tetrys Network Coding Protocol June 2023

Detchart, et al. Experimental Page 12

https://www.rfc-editor.org/rfc/rfc5510#section-8.1

Store the Source Symbol ID Format (I) (2 bits):

Store the Encoding Coefficients (C):

Having Source Symbols with Variable Size Encoding (V):

NB_IDS:

Number of Coefficients (NB_COEFS):

The First Source Identifier (FIRST_SOURCE_ID):

Number of Bits for Each Edge Block (b_id):

Information about the Source Symbol IDs (id_bit_vector):

The Coefficients (coef_bit_vector):

Padding:

0b01: Vandermonde-based coefficients over the finite field GF(2
(8)

) as defined below. Each

coefficient is built as alpha
((source_symbol_id*coded-symbol_id) % 256)

, with alpha the root

of the primitive polynomial.

Suppose we want to generate the coded symbol 2 as a linear combination of the source

symbols 1, 2, and 4 using CCGI set to 0b01. The coefficients will be alpha
((1 * 1) % 256)

,

alpha
((1 * 2) % 256)

, and alpha
((1 * 4) % 256)

.

0b00 means there is no source symbol ID information.

0b01 means the encoding vector contains the edge blocks of the source symbol IDs

without compression.

0b10 means the encoding vector contains the compressed list of the source symbol IDs.

0b11 means the encoding vector contains the compressed edge blocks of the source

symbol IDs.

1 bit to indicate if an encoding vector contains information

about the coefficients used.

Set V to 0b01 if the combination that

refers to the encoding vector is a combination of source symbols with variable sizes. In this

case, the coded packets have the 'Encoded Payload Size' field.

The number of source IDs stored in the encoding vector (depending on I).

The number of the coefficients used to generate the

associated coded symbol.

The first source symbol ID used in the

combination.

The number of bits needed to store the edge.

If I is set to 0b01, store the edge blocks

as b_id * (NB_IDS * 2 - 1). If I is set to 0b10, store the edge blocks in a compressed way.

The coefficients stored depending on the CCGI (4 or 8 bits for

each coefficient).

Padding to have an encoding vector size that is a multiple of 32 bits (for the ID and

coefficient part).

The source symbol IDs are organized as a sorted list of 32-bit unsigned integers. Depending on

the feedback, the source symbol IDs in the list be successive or not. If they are successive,

the boundaries are stored in the encoding vector; it just needs 2*32 bits of information. If not, the

full list or the edge blocks be stored and a differential transform to reduce the number of

bits needed to represent an identifier be used.

•

•

•

•

•

•

MUST

MAY

MAY

MAY

RFC 9407 Tetrys Network Coding Protocol June 2023

Detchart, et al. Experimental Page 13

For the following subsections, let's take as an example the generation of an encoding vector for a

coded symbol that is a linear combination of the source symbols with IDs 1, 2, 3, 5, 6, 8, 9, and 10

(or as edge blocks: [1..3], [5..6], [8..10]).

There are several ways to store the source symbol IDs into the encoding vector:

If no information about the source symbol IDs is needed, the field I be set to 0b00: no

b_id and no id_bit_vector field.

If the edge blocks are stored without compression, the field I be set to 0b01. In this

case, set b_id to 32 (as a Symbol ID is 32 bits), and store the list of 32-bit unsigned integers (1,

3, 4, 5, 6, 10) into id_bit_vectors.

If the source symbol IDs are stored as a list with compression, the field I be set to 0b10.

In this case, see Section 5.3.1.1, but rather than compressing the edge blocks, we compress

the full list of the source symbol IDs.

If the edge blocks are stored with compression, the field I be set to 0b11. In this case,

see Section 5.3.1.1.

• MUST

• MUST

• MUST

• MUST

5.3.1.1. Compressed List of Source Symbol IDs

Let's continue with our coded symbol defined in the previous section. The source symbol IDs

used in the linear combination are: [1..3], [5..6], [8..10].

If we want to compress and store this list into the encoding vector, we follow this

procedure:

Keep the first element in the packet as the first_source_id: 1.

Apply a differential transform to the other elements ([3, 5, 6, 8, 10]) that removes the element

i-1 to the element i, starting with the first_source_id as i0, and get the list L = [2, 2, 1, 2, 2].

Compute b, the number of bits needed to store all the elements, which is ceil(log2(max(L))),

where max(L) represents the maximum of the elements of the list L; here, it is 2 bits.

Write b in the corresponding field, and write all the b * [(2 * NB blocks) - 1] elements in a bit

vector here: 10, 10, 01, 10, 10.

MUST

1.

2.

3.

4.

5.3.1.2. Decompressing the Source Symbol IDs

When a Tetrys decoding block wants to reverse the operations, this algorithm is used:

Rebuild the list of the transmitted elements by reading the bit vector and b: [10, 10, 01, 10,

10] => [2, 2, 1, 2, 2].

Apply the reverse transform by adding successively the elements, starting with

first_source_id: [1, 1 + 2, (1 + 2) + 2, (1 + 2 + 2) + 1, ...] => [1, 3, 5, 6, 8, 10].

Rebuild the blocks using the list and first_source_id: [1..3], [5..6], [8..10].

1.

2.

3.

RFC 9407 Tetrys Network Coding Protocol June 2023

Detchart, et al. Experimental Page 14

Common Packet Header:

nb_missing_src:

nb_not_used_coded_symb:

first_src_id:

plr:

5.4. Window Update Packet Format

A Tetrys decoder send window update packets back to another building block. They contain

information about what the packets received, decoded, or dropped, and other information such

as a packet loss rate or the size of the decoding buffers. They are used to optimize the content of

the encoding window. The window update packets are ; hence, they could be omitted

or lost in transmission without impacting the protocol behavior.

A common packet header (as common header format) where packet

type is set to 0b10.

The number of missing source symbols in the receiver since the beginning of

the session.

The number of coded symbols at the receiver that have not already

been used for decoding (e.g., the linear combinations contain at least two unknown source

symbols).

ID of the first source symbol to consider in the selective acknowledgment (SACK)

vector.

Packet loss ratio expressed as a percentage normalized to an 8-bit unsigned integer. For

example, 2.5% will be stored as floor(2.5 * 256/100) = 6. Conversely, if 6 is the stored value, the

corresponding packet loss ratio expressed as a percentage is 6*100/256 = 2.34%. This value is

MAY

OPTIONAL

Figure 7: Window Update Packet Format

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| |

/ Common Packet Header /

| |

+-+

| nb_missing_src |

+-+

| nb_not_used_coded_symb |

+-+

| first_src_id |

+-+

| plr | sack_size | |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +

| |

/ SACK Vector /

| |

+-+

RFC 9407 Tetrys Network Coding Protocol June 2023

Detchart, et al. Experimental Page 15

sack_size:

SACK vector:

used in the case of dynamic code rate or for a statistical purpose. The choice of calculation is

left to the Tetrys decoder, depending on a window observation, but should be the PLR seen

before decoding.

The size of the SACK vector in 32-bit words. For instance, with a value of 2, the SACK

vector is 64 bits long.

Bit vector indicating symbols that must be removed in the encoding window from

the first source symbol ID. In most cases, these symbols were received by the receiver. The

other cases concern some events with non-recoverable packets (i.e., in the case of a burst of

losses) where it is better to drop and abandon some packets and remove them from the

encoding window to allow the recovery of the following packets. The "First Source Symbol" is

included in this bit vector. A bit equal to 1 at the i-th position means that this window update

packet removes the source symbol of the ID equal to "First Source Symbol ID" + i from the

encoding window.

6. Research Issues

The present document describes the baseline protocol, allowing communications between a

Tetrys encoder and Tetrys decoder. In practice, Tetrys can be used either as a standalone protocol

or embedded inside an existing protocol, and either above, within, or below the transport layer.

There are different research questions related to each of these scenarios that should be

investigated for future protocol improvements. We summarize them in the following

subsections.

6.1. Interaction with Congestion Control

The Tetrys and congestion control components generate two separate channels (see

):

The Tetrys channel carries source and coded packets (from the sender to the receiver) and

information from the receiver to the sender (e.g., signaling which symbols have been

recovered, loss rate before and/or after decoding, etc.).

The congestion control channel carries packets from a sender to a receiver and packets

signaling information about the network (e.g., number of packets received versus lost,

Explicit Congestion Notification (ECN) marks, etc.) from the receiver to the sender.

The following topics, which are identified and discussed by , are adapted to the

particular deployment cases of Tetrys (i.e., above, within, or below the transport layer):

Congestion-related losses may be hidden if Tetrys is deployed below the transport layer

without any precaution (i.e., Tetrys recovering packets lost because of a congested router),

which can severely impact the congestion control efficiency. An approach is suggested to

avoid hiding such signals in .

Tetrys and non-Tetrys flows sharing the same network links can raise fairness issues

between these flows. In particular, the situation depends on whether some of these flows

[RFC9265],

Section 2.1

•

•

[RFC9265]

•

[RFC9265], Section 5

•

RFC 9407 Tetrys Network Coding Protocol June 2023

Detchart, et al. Experimental Page 16

https://www.rfc-editor.org/rfc/rfc9265#section-2.1
https://www.rfc-editor.org/rfc/rfc9265#section-5

and not others are congestion controlled and which type of congestion control is used. The

details are out of scope of this document, but may have major impacts in practice.

Coding rate adaptation within Tetrys can have major impacts on congestion control if done

inappropriately. This topic is discussed more in detail in Section 6.2.

Tetrys can leverage multipath transmissions, with the Tetrys packets being sent to the same

receiver through multiple paths. Since paths can largely differ, a per-path flow control and

congestion control adaptation could be needed.

Protecting several application flows within a single Tetrys flow raises additional questions.

This topic is discussed more in detail in Section 6.3.

•

•

•

6.2. Adaptive Coding Rate

When the network conditions (e.g., delay and loss rate) strongly vary over time, an adaptive

coding rate can be used to increase or reduce the amount of coded packets among a transmission

dynamically (i.e., the added redundancy) with the help of a dedicated algorithm similar to

. Once again, the strategy differs depending on which layer Tetrys is deployed (i.e., above,

within, or below the transport layer). Basically, we can split these strategies into two distinct

classes: Tetrys deployment inside the transport layer versus outside the transport layer (i.e.,

above or below). A deployment within the transport layer means that interactions between

transport protocol mechanisms such as error recovery, congestion control, and/or flow control

are envisioned. Otherwise, deploying Tetrys within a transport protocol that is not congestion

controlled, like UDP, would not bring out any other advantage than deploying it below or above

the transport layer.

The impact deploying a FEC mechanism within the transport layer is further discussed in

, where considerations concerning the interactions between congestion control

and coding rates, or the impact of fairness, are investigated. This adaptation may be done jointly

with the congestion control mechanism of a transport layer protocol as proposed by . This

allows the use of monitored congestion control metrics (e.g., RTT, congestion events, or current

congestion window size) to adapt the coding rate conjointly with the computed transport sending

rate. The rationale is to compute an amount of repair traffic that does not lead to congestion. This

joint optimization is mandatory to prevent flows from consuming the whole available capacity as

discussed in , where the authors point out that an increase in the repair

ratio should be done conjointly with a decrease in the source sending rate.

Finally, adapting a coding rate can also be done outside the transport layer without considering

transport-layer metrics. In particular, this adaptation may be done jointly with the network as

proposed in . In this paper, the authors propose a Random Early Detection FEC

mechanism in the context of video transmission over wireless networks. Briefly, the idea is to

add more redundancy packets if the queue at the access point is less occupied and vice versa. A

first theoretical attempt for video delivery with Tetrys has been proposed . This approach

is interesting as it illustrates a joint collaboration between the application requirements and the

network conditions and combines both signals coming from the application needs and the

network state (i.e., signals below or above the transport layer).

[A-

FEC]

Section

4 of [RFC9265]

[CTCP]

[RMCAT-ADAPTIVE-FEC]

[RED-FEC]

[THAI]

RFC 9407 Tetrys Network Coding Protocol June 2023

Detchart, et al. Experimental Page 17

https://www.rfc-editor.org/rfc/rfc9265#section-4
https://www.rfc-editor.org/rfc/rfc9265#section-4

To conclude, there are multiple ways to enable an adaptive coding rate. However, all of them

depend on:

the signal metrics that can be monitored and used to adapt the coding rate;

the transport layer used, whether it is congestion controlled or not; and

the objective sought (e.g., to minimize congestion or to fit application requirements).

•

•

•

6.3. Using Tetrys below the IP Layer for Tunneling

The use of Tetrys to protect an aggregate of flows raises research questions when Tetrys is used

to recover from IP datagram losses while tunneling. Applying redundancy without flow

differentiation may contradict the service requirements of individual flows: some flows may be

penalized more by high latency and jitter than by partial reliability, while other flows may be

penalized more by partial reliability. In practice, head-of-line blocking impacts all flows in a

similar manner despite their different needs, which indicates that more elaborate strategies

inside Tetrys are needed.

7. Security Considerations

First of all, it must be clear that the use of FEC protection on a data stream does not provide any

kind of security per se. On the contrary, the use of FEC protection on a data stream raises security

risks. The situation with Tetrys is mostly similar to that of other content delivery protocols

making use of FEC protection; this is well described in FECFRAME . This section builds

on this reference, adding new considerations to comply with Tetrys specificities when

meaningful.

[RFC6363]

7.1. Problem Statement

An attacker can either target the content, protocol, or network. The consequences will largely

differ reflecting various types of goals, like gaining access to confidential content, corrupting the

content, compromising the Tetrys encoder and/or Tetrys decoder, or compromising the network

behavior. In particular, several of these attacks aim at creating a Denial-of-Service (DoS) with

consequences that may be limited to a single node (e.g., the Tetrys decoder), or that may impact

all the nodes attached to the targeted network (e.g., by making flows unresponsive to congestion

signals).

In the following sections, we discuss these attacks, according to the component targeted by the

attacker.

7.2. Attacks against the Data Flow

An attacker may want to access confidential content by eavesdropping the traffic between the

Tetrys encoder/decoder. Traffic encryption is the usual approach to mitigate this risk, and this

encryption can be applied to the source flow upstream of the Tetrys encoder or to the output

RFC 9407 Tetrys Network Coding Protocol June 2023

Detchart, et al. Experimental Page 18

packets downstream of the Tetrys encoder. The choice on where to apply encryption depends on

various criteria, in particular the attacker model (e.g., when encryption happens below Tetrys,

the security risk is assumed to be on the interconnection network).

An attacker may also want to corrupt the content (e.g., by injecting forged or modified source and

coded packets to prevent the Tetrys decoder from recovering the original source flow). Content

integrity and source authentication services at the packet level are then needed to mitigate this

risk. Here, these services need to be provided below Tetrys in order to enable the receiver to

drop undesired packets and only transfer legitimate packets to the Tetrys decoder. It should be

noted that forging or modifying feedback packets will not corrupt the content, although it will

certainly compromise Tetrys operation (see Section 7.3).

7.3. Attacks against Signaling

Attacks on signaling information (e.g., by forging or modifying feedback packets to falsify the

good reception or recovery of source content) can easily prevent the Tetrys decoder from

recovering the source flow, thereby creating a DoS. In order to prevent this type of attack,

content integrity and source authentication services at the packet level are needed for the

feedback flow from the Tetrys decoder to the Tetrys encoder as well. These services need to be

provided below Tetrys in order to drop undesired packets and only transfer legitimate feedback

packets to the Tetrys encoder.

Conversely, an attacker in position to selectively drop feedback packets (instead of modifying

them) will not severely impact the function of Tetrys since it is naturally robust when challenged

with such losses. However, it will have side impacts, such as the use of bigger linear systems

(since the Tetrys encoder cannot remove well-received or decoded source packets from its linear

system), which mechanically increases computational costs on both sides (encoder and decoder).

7.4. Attacks against the Network

Tetrys can react to congestion signals (Section 6.1) in order to provide a certain level of fairness

with other flows on a shared network. This ability could be exploited by an attacker to create or

reinforce congestion events (e.g., by forging or modifying feedback packets) that can potentially

impact a significant number of nodes attached to the network. In order to mitigate the risk,

content integrity and source authentication services at the packet level are needed to enable the

receiver to drop undesired packets and only transfer legitimate packets to the Tetrys encoder and

decoder.

7.5. Baseline Security Operation

Tetrys can benefit from an IPsec / Encapsulating Security Payload (IPsec/ESP) that

provides confidentiality, origin authentication, integrity, and anti-replay services in particular.

IPsec/ESP can be used to protect the Tetrys data flows (both directions) against attackers located

within the interconnection network or attackers in position to eavesdrop traffic, inject forged

traffic, or replay legitimate traffic.

[RFC4303]

RFC 9407 Tetrys Network Coding Protocol June 2023

Detchart, et al. Experimental Page 19

[RFC2119]

[RFC4303]

[RFC5052]

[RFC5445]

[RFC5510]

[RFC5651]

[RFC5740]

[RFC6363]

[RFC8174]

9. References

9.1. Normative References

, , ,

, , March 1997,

.

, , ,

, December 2005, .

, , and ,

, , , August 2007,

.

, , ,

, March 2009, .

, , , and ,

, , , April 2009,

.

, , and ,

, , , October 2009,

.

, , , and ,

, , ,

November 2009, .

, , and ,

, , , October 2011,

.

, ,

, , , May 2017,

.

8. IANA Considerations

This document has no IANA actions.

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14

RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/

rfc2119>

Kent, S. "IP Encapsulating Security Payload (ESP)" RFC 4303 DOI 10.17487/

RFC4303 <https://www.rfc-editor.org/info/rfc4303>

Watson, M. Luby, M. L. Vicisano "Forward Error Correction (FEC) Building

Block" RFC 5052 DOI 10.17487/RFC5052 <https://www.rfc-

editor.org/info/rfc5052>

Watson, M. "Basic Forward Error Correction (FEC) Schemes" RFC 5445 DOI

10.17487/RFC5445 <https://www.rfc-editor.org/info/rfc5445>

Lacan, J. Roca, V. Peltotalo, J. S. Peltotalo "Reed-Solomon Forward Error

Correction (FEC) Schemes" RFC 5510 DOI 10.17487/RFC5510

<https://www.rfc-editor.org/info/rfc5510>

Luby, M. Watson, M. L. Vicisano "Layered Coding Transport (LCT) Building

Block" RFC 5651 DOI 10.17487/RFC5651 <https://www.rfc-

editor.org/info/rfc5651>

Adamson, B. Bormann, C. Handley, M. J. Macker "NACK-Oriented Reliable

Multicast (NORM) Transport Protocol" RFC 5740 DOI 10.17487/RFC5740

<https://www.rfc-editor.org/info/rfc5740>

Watson, M. Begen, A. V. Roca "Forward Error Correction (FEC)

Framework" RFC 6363 DOI 10.17487/RFC6363 <https://www.rfc-

editor.org/info/rfc6363>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP

14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/

rfc8174>

RFC 9407 Tetrys Network Coding Protocol June 2023

Detchart, et al. Experimental Page 20

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc4303
https://www.rfc-editor.org/info/rfc5052
https://www.rfc-editor.org/info/rfc5052
https://www.rfc-editor.org/info/rfc5445
https://www.rfc-editor.org/info/rfc5510
https://www.rfc-editor.org/info/rfc5651
https://www.rfc-editor.org/info/rfc5651
https://www.rfc-editor.org/info/rfc5740
https://www.rfc-editor.org/info/rfc6363
https://www.rfc-editor.org/info/rfc6363
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174

[RFC8406]

[RFC8680]

[RFC9265]

[A-FEC]

[AHL-00]

[CTCP]

[RED-FEC]

[RMCAT-ADAPTIVE-FEC]

[Tetrys]

[Tetrys-RT]

, , , , , , ,

, , , , , , and

,

, , , June 2018,

.

 and ,

, , , January 2020,

.

, , , and ,

, , ,

July 2022, .

9.2. Informative References

, , and ,

,

,

, March 1999, .

, , , and , ,

,

, July 2000, .

, , , , , , and

, , , April 2013,

.

, , , , and ,

,

, , September 2008,

.

, , , and ,

, ,

, 20 March 2016,

.

 and , ,

, , October 2008,

.

, , , , and ,

,

, , August

2011, .

Adamson, B. Adjih, C. Bilbao, J. Firoiu, V. Fitzek, F. Ghanem, S. Lochin, E.

Masucci, A. Montpetit, M. Pedersen, M. Peralta, G. Roca, V., Ed. Saxena, P.

S. Sivakumar "Taxonomy of Coding Techniques for Efficient Network

Communications" RFC 8406 DOI 10.17487/RFC8406 <https://

www.rfc-editor.org/info/rfc8406>

Roca, V. A. Begen "Forward Error Correction (FEC) Framework Extension to

Sliding Window Codes" RFC 8680 DOI 10.17487/RFC8680 <https://

www.rfc-editor.org/info/rfc8680>

Kuhn, N. Lochin, E. Michel, F. M. Welzl "Forward Erasure Correction (FEC)

Coding and Congestion Control in Transport" RFC 9265 DOI 10.17487/RFC9265

<https://www.rfc-editor.org/info/rfc9265>

Bolot, J. Fosse-Parisis, S. D. Towsley "Adaptive FEC-based error control for

Internet telephony" IEEE INFOCOM '99, Conference on Computer

Communications, New York, NY, USA, Vol. 3, pp. 1453-1460 DOI 10.1109/INFCOM.

1999.752166 <https://doi.org/10.1109/INFCOM.1999.752166>

Ahlswede, R. Cai, N. Li, S. R. Yeung "Network information flow" IEEE

Transactions on Information Theory, Vol. 46, Issue 4, pp. 1204-1216 DOI

10.1109/18.850663 <https://doi.org/10.1109/18.850663>

Kim, M. Cloud, J. ParandehGheibi, A. Urbina, L. Fouli, K. Leith, D. M.

Medard "Network Coded TCP (CTCP)" arXiv 1212.2291v3 <https://

arxiv.org/abs/1212.2291>

Lin, C. Shieh, C. Chilamkurti, N. Ke, C. W. Hwang "A RED-FEC Mechanism

for Video Transmission Over WLANs" IEEE Transactions on Broadcasting, Vol.

54, Issue 3, pp. 517-524 DOI 10.1109/TBC.2008.2001713 <https://

doi.org/10.1109/TBC.2008.2001713>

Singh, V. Nagy, M. Ott, J. L. Eggert "Congestion Control Using

FEC for Conversational Media" Work in Progress Internet-Draft, draft-singh-

rmcat-adaptive-fec-03 <https://datatracker.ietf.org/doc/html/

draft-singh-rmcat-adaptive-fec-03>

Lacan, J. E. Lochin "Rethinking reliability for long-delay networks"

International Workshop on Satellite and Space Communications, Toulouse,

France, pp. 90-94 DOI 10.1109/IWSSC.2008.4656755 <https://

doi.org/10.1109/IWSSC.2008.4656755>

Tournoux, P. Lochin, E. Lacan, J. Bouabdallah, A. V. Roca "On-the-Fly

Erasure Coding for Real-Time Video Applications" IEEE Transactions on

Multimedia, Vol. 13, Issue 4, pp. 797-812 DOI 10.1109/TMM.2011.2126564

<http://dx.doi.org/10.1109/TMM.2011.2126564>

RFC 9407 Tetrys Network Coding Protocol June 2023

Detchart, et al. Experimental Page 21

https://www.rfc-editor.org/info/rfc8406
https://www.rfc-editor.org/info/rfc8406
https://www.rfc-editor.org/info/rfc8680
https://www.rfc-editor.org/info/rfc8680
https://www.rfc-editor.org/info/rfc9265
https://doi.org/10.1109/INFCOM.1999.752166
https://doi.org/10.1109/18.850663
https://arxiv.org/abs/1212.2291
https://arxiv.org/abs/1212.2291
https://doi.org/10.1109/TBC.2008.2001713
https://doi.org/10.1109/TBC.2008.2001713
https://datatracker.ietf.org/doc/html/draft-singh-rmcat-adaptive-fec-03
https://datatracker.ietf.org/doc/html/draft-singh-rmcat-adaptive-fec-03
https://doi.org/10.1109/IWSSC.2008.4656755
https://doi.org/10.1109/IWSSC.2008.4656755
http://dx.doi.org/10.1109/TMM.2011.2126564

[THAI] , , and ,

,

, ,

April 2014, .

Tran Thai, T. Lacan, J. E. Lochin "Joint on-the-fly network coding/video

quality adaptation for real-time delivery" Signal Processing: Image

Communication, Vol. 29 Issue 4, pp. 449-461 DOI 10.1016/j.image.2014.02.003

<https://doi.org/10.1016/j.image.2014.02.003>

Acknowledgments

First, the authors want sincerely to thank for continuous help and support

on Tetrys. Marie-Jo, many thanks!

The authors also wish to thank NWCRG group members for numerous discussions on on-the-fly

coding that helped finalize this document.

Finally, the authors would like to thank for providing comments and feedback on

the document.

Marie-Jose Montpetit

Colin Perkins

Authors' Addresses

Jonathan Detchart

ISAE-SUPAERO

BP 54032

10, avenue Edouard Belin

 31055 Toulouse CEDEX 4

France

 jonathan.detchart@isae-supaero.fr Email:

Emmanuel Lochin

ENAC

7, avenue Edouard Belin

 31400 Toulouse

France

 emmanuel.lochin@enac.fr Email:

Jerome Lacan

ISAE-SUPAERO

BP 54032

10, avenue Edouard Belin

 31055 Toulouse CEDEX 4

France

 jerome.lacan@isae-supaero.fr Email:

RFC 9407 Tetrys Network Coding Protocol June 2023

Detchart, et al. Experimental Page 22

https://doi.org/10.1016/j.image.2014.02.003
mailto:jonathan.detchart@isae-supaero.fr
mailto:emmanuel.lochin@enac.fr
mailto:jerome.lacan@isae-supaero.fr

Vincent Roca

INRIA

Inovallee; Montbonnot

655, avenue de l'Europe

 38334 St Ismier CEDEX

France

 vincent.roca@inria.fr Email:

RFC 9407 Tetrys Network Coding Protocol June 2023

Detchart, et al. Experimental Page 23

mailto:vincent.roca@inria.fr

	RFC 9407
	Tetrys: An On-the-Fly Network Coding Protocol
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Notation

	2. Definitions, Notations, and Abbreviations
	3. Architecture
	3.1. Use Cases
	3.2. Overview

	4. Tetrys Basic Functions
	4.1. Encoding
	4.2. The Elastic Encoding Window
	4.3. Decoding

	5. Packet Format
	5.1. Common Header Format
	5.1.1. Header Extensions

	5.2. Source Packet Format
	5.3. Coded Packet Format
	5.3.1. The Encoding Vector
	5.3.1.1. Compressed List of Source Symbol IDs
	5.3.1.2. Decompressing the Source Symbol IDs

	5.4. Window Update Packet Format

	6. Research Issues
	6.1. Interaction with Congestion Control
	6.2. Adaptive Coding Rate
	6.3. Using Tetrys below the IP Layer for Tunneling

	7. Security Considerations
	7.1. Problem Statement
	7.2. Attacks against the Data Flow
	7.3. Attacks against Signaling
	7.4. Attacks against the Network
	7.5. Baseline Security Operation

	8. IANA Considerations
	9. References
	9.1. Normative References
	9.2. Informative References

	Acknowledgments
	Authors' Addresses

 Tetrys: An On-the-Fly Network Coding Protocol

 ISAE-SUPAERO

 10, avenue Edouard Belin
 BP 54032
 Toulouse CEDEX 4
 31055
 France

 jonathan.detchart@isae-supaero.fr

 ENAC

 7, avenue Edouard Belin
 Toulouse
 31400
 France

 emmanuel.lochin@enac.fr

 ISAE-SUPAERO

 10, avenue Edouard Belin
 BP 54032
 Toulouse CEDEX 4
 31055
 France

 jerome.lacan@isae-supaero.fr

 INRIA

 655, avenue de l'Europe
 Inovallee; Montbonnot
 St Ismier CEDEX
 38334
 France

 vincent.roca@inria.fr

 Coding for Efficient NetWork Communications
 Network Coding

 This document describes Tetrys, which is an on-the-fly network coding protocol that can be used to transport delay-sensitive and loss-sensitive data over a lossy network. Tetrys may recover from erasures within an RTT-independent delay thanks to the transmission of coded packets.
This document is a record of the experience gained by the authors while developing and testing the Tetrys protocol in real conditions.

 This document is a product of the Coding for Efficient NetWork Communications Research Group (NWCRG).
It conforms to the NWCRG taxonomy described in RFC 8406.

 Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for examination, experimental implementation, and
 evaluation.

 This document defines an Experimental Protocol for the Internet
 community. This document is a product of the Internet Research
 Task Force (IRTF). The IRTF publishes the results of Internet-related
 research and development activities. These results might not be
 suitable for deployment. This RFC represents the consensus of the
 Coding for Efficient NetWork Communications Research Group of the Internet Research Task Force
 (IRTF). Documents approved for publication by the IRSG are not
 candidates for any level of Internet Standard; see Section 2 of RFC
 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document.

 Table of Contents

 . Introduction

 . Requirements Notation

 . Definitions, Notations, and Abbreviations

 . Architecture

 . Use Cases

 . Overview

 . Tetrys Basic Functions

 . Encoding

 . The Elastic Encoding Window

 . Decoding

 . Packet Format

 . Common Header Format

 . Header Extensions

 . Source Packet Format

 . Coded Packet Format

 . The Encoding Vector

 . Window Update Packet Format

 . Research Issues

 . Interaction with Congestion Control

 . Adaptive Coding Rate

 . Using Tetrys below the IP Layer for Tunneling

 . Security Considerations

 . Problem Statement

 . Attacks against the Data Flow

 . Attacks against Signaling

 . Attacks against the Network

 . Baseline Security Operation

 . IANA Considerations

 . References

 . Normative References

 . Informative References

 Acknowledgments

 Authors' Addresses

 Introduction
 This document is a product of and represents the collaborative work
	 and consensus of the Coding for Efficient NetWork Communications
	 Research Group (NWCRG). It is not an IETF product or an IETF standard.
 This document describes Tetrys, which is an on-the-fly network coding
 protocol that can be used to transport delay-sensitive and
 loss-sensitive data over a lossy network.
 Network codes were introduced in the early 2000s to address the limitations of
 transmission over the Internet (delay, capacity, and packet
 loss). While network codes have seen some deployment fairly
 recently in the Internet community, the use of application-layer
 erasure codes in the IETF has already been standardized in the RMT

 and FECFRAME

 Working Groups. The protocol presented here may be seen as a network-coding extension to standard unicast transport protocols (or even multicast or anycast with a few modifications). The current proposal may be considered a combination of network erasure coding and feedback mechanisms
 .

 The main innovation of the Tetrys protocol is in the generation of coded packets from an elastic encoding window. This window is filled by any source packets coming from an input flow and is periodically updated with the receiver feedback.
These feedback messages provide to the sender information about the
highest sequence number received or rebuilt, which can enable the flushing the
corresponding source packets stored in the encoding window. The size of this
window may be fixed or dynamically updated. If the window is full, incoming
source packets replace older source packets that are dropped. As a matter of
fact, its limit should be correctly sized.

Finally, Tetrys allows dealing with losses on both the forward and return paths and is particularly resilient to acknowledgment losses. All these operations are further detailed in .
 With Tetrys, a coded packet is a linear combination over a finite field of the data source packets belonging to the coding window.

The choice of coefficients, as finite fields elements, is a trade-off between the best erasure recovery performance (finite fields of 256 elements) and the system constraints (finite fields of 16 elements are preferred) and is driven by the application.
 Thanks to the elastic encoding window, the coded packets are built on-the-fly by using a predefined method to choose the coefficients. The redundancy ratio may be dynamically adjusted and the coefficients may be generated in different ways during the transmission. Compared to Forward Error Correction (FEC) block codes, this reduces the bandwidth use and the decoding delay.
 The design description of the Tetrys protocol in this document is complemented by a record of the experience gained by the authors while developing and testing the Tetrys protocol in realistic conditions. In particular, several research issues are discussed in following our own experience and observations.

 Requirements Notation

 The key words " MUST", " MUST NOT", " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT", " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be interpreted as
 described in BCP 14
 when, and only when, they appear in all capitals, as shown here.

 Definitions, Notations, and Abbreviations

 The notation used in this document is based on the NWCRG taxonomy
 .

 Source Symbol:
 A symbol that is transmitted between the ingress and egress of the network.
 Coded Symbol:
 A linear combination over a finite field of a set of source symbols.
 Source Symbol ID:
 A sequence number to identify the source symbols.
 Coded Symbol ID:
 A sequence number to identify the coded symbols.
 Encoding Coefficients:
 Elements of the finite field characterizing the linear combination used to generate coded symbols.
 Encoding Vector:
 A set of the coding coefficients and input source symbol IDs.
 Source Packet:
 A source packet contains a source symbol with its associated IDs.
 Coded Packet:
 A coded packet contains a coded symbol, the coded symbol's ID, and encoding vector.
 Input Symbol:
 A symbol at the input of the Tetrys encoder.
 Output Symbol:
 A symbol generated by the Tetrys encoder. For a non-systematic mode, all output symbols are coded symbols. For a systematic mode, output symbols MAY be the input symbols and a number of coded symbols that are linear combinations of the input symbols plus the encoding vectors.
 Feedback Packet:
 A feedback packet is a packet containing information about the decoded or received source symbols. It MAY also contain additional information about the Packet Error Rate or the number of various packets in the receiver decoding window.
 Elastic Encoding Window:
 An encoder-side buffer that stores all the unacknowledged source packets of the input flow involved in the coding process.
 Coding Coefficient Generator Identifier (CCGI):
 A unique identifier that
defines a function or an algorithm allowing the generation of the encoding
vector.
 Code Rate:
 Defines the rate between the number of input symbols and the number of output symbols.

 Architecture

 Use Cases
 Tetrys is well suited, but not limited, to the use case where
 there is a single flow originated by a single source with intra-stream
 coding at a single encoding node. Note that the input
 stream MAY be a multiplex of several upper-layer
 streams. Transmission MAY be over a single path or
 multiple paths.
This is the simplest use case that is quite
 aligned with currently proposed scenarios for end-to-end
 streaming.

 Overview

 Tetrys Architecture

 +----------+ +----------+
App		App
 +----------+ +----------+
 | ^
 | Source Source |
 | Symbols Symbols |
 | |
 v |
 +----------+ +----------+
	Output Packets	
Tetrys	--------------->	Tetrys
Encoder	Feedback Packets	Decoder
	<---------------	
 +----------+ +----------+

 The Tetrys protocol features several key functionalities. The mandatory features include:

 on-the-fly encoding;
 decoding;
 signaling, to carry in particular the symbol IDs in the encoding window and the associated coding coefficients when meaningful;
 feedback management;
 elastic window management; and
 Tetrys packet header creation and processing.

 The optional features include:

 channel estimation;
 dynamic adjustment of the code rate and flow control; and

 congestion control management (if appropriate). See for further
 details.

 Several building blocks provide the following functionalities:

 The Tetrys Building Block:
 This building block embeds
 both the Tetrys decoder and Tetrys encoder; thus, it is used during
 encoding and decoding processes. It must be noted that Tetrys does
 not mandate a specific building block. Instead, any building block
 compatible with the elastic encoding window feature of Tetrys may be
 used.
 The Window Management Building Block:
 This building block
 is in charge of managing the encoding window at a Tetrys
 sender.

 To ease the addition of future components and services, Tetrys adds a header extension mechanism that is compatible with that of Layered Coding Transport (LCT)
 , NACK-Oriented Reliable Multicast (NORM)
 , and FEC Framework (FECFRAME)
 .

 Tetrys Basic Functions

 Encoding
 At the beginning of a transmission, a Tetrys encoder MUST choose an initial code rate that adds redundancy as it doesn't know the packet loss rate of the channel.
In the steady state, the Tetrys encoder MAY generate coded symbols when it receives a source symbol from the application or some feedback from the decoding blocks depending on the code rate.
 When a Tetrys encoder needs to generate a coded symbol, it considers the set of source symbols stored in the elastic encoding window and generates an encoding vector with the coded symbol. These source symbols are the set of source symbols that are not yet acknowledged by the receiver. For each source symbol, a finite field coefficient is determined using a Coding Coefficient Generator.
This generator MAY take the source symbol IDs and the coded symbol ID as an input and MAY determine a coefficient in a deterministic way as presented in . Finally, the coded symbol is the sum of the source symbols multiplied by their corresponding coefficients.
 A Tetrys encoder MUST set a limit to the elastic encoding window maximum size. This controls the algorithmic complexity at the encoder and decoder by limiting the size of linear combinations. It is also needed in situations where all window update packets are lost or absent.

 The Elastic Encoding Window
 When an input source symbol is passed to a Tetrys encoder, it is added to the elastic encoding window. This window MUST have a limit set by the encoding building block.
If the elastic encoding window has reached its limit, the window slides over the symbols. The first (oldest) symbol is removed, and the newest symbol is added. As an element of the coding window, this symbol is included in the next linear combinations created to generate the coded symbols.
 As explained below, the Tetrys decoder sends periodic feedback indicating the received or decoded source symbols. When the sender receives the information that a source symbol was received or decoded by the receiver, it removes this symbol from the coding window.

 Decoding
 A standard Gaussian elimination is sufficient to recover the erased source symbols when the matrix rank enables it.

 Packet Format

 Common Header Format

 All types of Tetrys packets share the same common header format (see).

 Common Header Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| V | C |S| Reserved | HDR_LEN | PKT_TYPE |
+-+
| Congestion Control Information (CCI, length = 32*C bits) |
| ... |
+-+
| Transport Session Identifier (TSI, length = 32*S bits) |
+-+
| Header Extensions (if applicable) |
| ... |
+-+

 As noted above, this format is inspired by, and inherits from, the LCT header format with slight modifications.

 Tetrys version number (V):
 4 bits.
			 Indicates the Tetrys version number. The Tetrys version number for this specification is 1.
 Congestion control flag (C):
 2 bits. C set to 0b00
 indicates the Congestion Control Information (CCI) field
 is 0 bits in length. C set to 0b01 indicates the CCI field is 32
 bits in length. C set to 0b10 indicates the CCI field is 64 bits in
 length. C set to 0b11 indicates the CCI field is 96 bits in
 length.

 Transport Session Identifier flag (S):
 1 bit.
 			 This is the number of full 32-bit words in the TSI field. The TSI field is 32*S bits in length; i.e., the length is either 0 bits or 32 bits.
 Reserved (Resv):
 9 bits. These bits are reserved. In this version of the specification, they MUST be set to zero by senders and MUST be ignored by receivers.
 Header length (HDR_LEN):
 8 bits. The total length of
 the Tetrys header in units of 32-bit words. The length of the Tetrys
 header MUST be a multiple of 32 bits. This field may
 be used to directly access the portion of the packet beyond the
 Tetrys header, i.e., to the first next header if it exists, to the
 packet payload if it exists and there is no other header, or to the
 end of the packet if there are no other headers or packet
 payload.
 Tetrys packet type (PKT_TYPE):
 8 bits.
				There are three types of packets: the PKT_TYPE_SOURCE (0b00) defined in , the PKT_TYPE_CODED (0b01) defined in and the PKT_TYPE_WND_UPT (0b11) for window update packets defined in .
 Congestion Control Information (CCI):
 0, 32, 64, or 96 bits.
			 Used to carry congestion control information. For example, the
			 congestion control information could include layer numbers,
			 logical channel numbers, and sequence numbers. This field is
			 opaque for this specification.
			 This field MUST be 0 bits (absent) if C is set to 0b00.
			 This field MUST be 32 bits if C is set to 0b01.
			 This field MUST be 64 bits if C is set to 0b10.
			 This field MUST be 96 bits if C is set to 0b11.
 Transport Session Identifier (TSI):
 0 or 32 bits.
			 The TSI uniquely identifies a session among all sessions from a
			 particular Tetrys encoder. The TSI is scoped by the IP address of the
			 sender; thus, the IP address of the sender and the TSI together
			 uniquely identify the session.
Although a TSI always uniquely identifies a session conjointly with
			 the IP address of the sender, whether the TSI is included in the Tetrys header depends on
			 what is used as the TSI value. If the underlying transport is
			 UDP, then the 16-bit UDP source port number MAY serve as the TSI
			 for the session.
 If there is
			 no underlying TSI provided by the network, transport, or any other
			 layer, then the TSI MUST be included in the Tetrys header.

 Header Extensions
 Header extensions are used in Tetrys to accommodate optional header fields that are not always used or have variable sizes.
				The presence of header extensions MAY be inferred by the Tetrys header length (HDR_LEN).
				If HDR_LEN is larger than the length of the standard header, then the remaining header space is taken by header extensions.
 If present, header extensions MUST be processed to ensure that they are recognized before performing any congestion control procedure or otherwise accepting a packet.
				The default action for unrecognized header extensions is to ignore them.
				This allows for the future introduction of backward-compatible enhancements to Tetrys without changing the Tetrys version number.
				Header extensions that are not backward-compatible MUST NOT be introduced without changing the Tetrys version number.

 There are two formats for header extensions as depicted in :

 The first format is used for variable-length extensions with header extension type (HET) values between 0 and 127.
 The second format is used for fixed-length (one 32-bit word) extensions using HET values from 128 to 255.

 Header Extension Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| HET (<=127) | HEL | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
. .
. Header Extension Content (HEC) .
+-+

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| HET (>=128) | Header Extension Content (HEC) |
+-+

 Header Extension Type (HET):
 8 bits. The type of the header extension. This document defines several possible types.
				Additional types may be defined in future versions of this specification.
				HET values from 0 to 127 are used for variable-length header extensions.
				HET values from 128 to 255 are used for fixed-length, 32-bit header extensions.
 Header Extension Length (HEL):
 8 bits. The length of the whole header extension field expressed in multiples of 32-bit words.
				This field MUST be present for variable-length extensions (HETs between 0 and 127) and MUST NOT be present for fixed-length extensions (HETs between 128 and 255).
 Header Extension Content (HEC):
 Length of the variable. The content of the header extension.
				The format of this subfield depends on the header extension type.
				For fixed-length header extensions, the HEC is 24 bits.
				For variable-length header extensions, the HEC field has a variable size as specified by the HEL field.
				Note that the length of each header extension MUST be a multiple of 32 bits.
				Additionally, the total size of the Tetrys header, including all header extensions and optional header fields, cannot exceed 255 32-bit words.

 Source Packet Format
 A source packet is a common packet header encapsulation, a source symbol ID, and a source symbol (payload). The source symbols MAY have variable sizes.

 Source Packet Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| |
/ Common Packet Header /
| |
+-+
| Source Symbol ID |
+-+
| |
/ Payload /
| |
+-+

 Common Packet Header:
 A common packet header (as common header format) where packet type is set to 0b00.
 Source Symbol ID:
 The sequence number to identify a source symbol.
 Payload:
 The payload (source symbol).

 Coded Packet Format

 A coded packet is the encapsulation of a common packet header, a coded symbol ID, the associated encoding vector, and a coded symbol (payload).
 As the source symbols MAY have variable sizes, all the source symbol sizes need to be encoded. To generate this encoded payload size as a 16-bit unsigned value, the linear combination uses the same coefficients as the coded payload. The result MUST be stored in the coded packet as the encoded payload size (16 bits). As it is an optional field, the encoding vector MUST signal the use of variable source symbol sizes with the field V (see).

 Coded Packet Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| |
/ Common Packet Header /
| |
+-+
| Coded Symbol ID |
+-+
| |
/ Encoding Vector /
| |
+-+
| Encoded Payload Size | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
| |
/ Payload /
| |
+-+

 Common Packet Header:
 A common packet header (as common header format) where packet type is set to 0b01.
 Coded Symbol ID:
 The sequence number to identify a coded symbol.
 Encoding Vector:
 An encoding vector to define the linear combination used (coefficients and source symbols).
 Encoded Payload Size:
 The coded payload size used if the source symbols have a variable size (optional,).
 Payload:
 The coded symbol.

 The Encoding Vector
 An encoding vector contains all the information about the linear combination used to generate a coded symbol. The information includes the source identifiers and the coefficients used for each source symbol. It MAY be stored in different ways depending on the situation.

 Encoding Vector Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| EV_LEN | CCGI | I |C|V| NB_IDS | NB_COEFS |
+-+
| FIRST_SOURCE_ID |
+-+
| b_id | |
+-+-+-+-+-+-+-+-+ id_bit_vector +-+-+-+-+-+-+-+
| | Padding |
+-+
| |
+ coef_bit_vector +-+-+-+-+-+-+-+
| | Padding |
+-+

 Encoding Vector Length (EV_LEN):
 8 bits. The size in
 units of 32-bit words.
 Coding Coefficient Generator Identifier (CCGI):

 4-bit ID to identify the algorithm or function used to generate the coefficients. As a CCGI is included in each encoded vector, it MAY dynamically change between the generation of two coded symbols.
 The CCGI builds the coding coefficients used to generate the coded symbols. They MUST be known by all the Tetrys encoders or decoders.
 The two RLC FEC schemes specified in this document reuse the finite fields defined in .
More specifically, the elements of the field GF(2 (m)) are represented by polynomials with binary coefficients (i.e., over GF(2)) and with degree lower or equal to m-1. The addition between two elements is defined as the addition of binary polynomials in GF(2), which is equivalent to a bitwise XOR operation on the binary representation of these elements.
 With GF(2 (8)), multiplication between two elements is the multiplication modulo a given irreducible polynomial of degree 8. The following irreducible polynomial is used for GF(2 (8)):
 x (8) + x (4) + x (3) + x (2) + 1
 With GF(2 (4)), multiplication between two elements is the multiplication modulo a given irreducible polynomial of degree 4. The following irreducible polynomial is used for GF(2 (4)):
 x (4) + x + 1

 0b00: Vandermonde-based coefficients over the finite field GF(2 (4)) as defined below. Each coefficient is built as alpha ((source_symbol_id*coded-symbol_id) % 16), with alpha the root of the primitive polynomial.
 0b01: Vandermonde-based coefficients over the finite field GF(2 (8)) as defined below. Each coefficient is built as alpha ((source_symbol_id*coded-symbol_id) % 256), with alpha the root of the primitive polynomial.
 Suppose we want to generate the coded symbol 2 as a linear combination of the source symbols 1, 2, and 4 using CCGI set to 0b01. The coefficients will be alpha ((1 * 1) % 256), alpha ((1 * 2) % 256), and alpha ((1 * 4) % 256).

 Store the Source Symbol ID Format (I) (2 bits):

 0b00 means there is no source symbol ID information.
 0b01 means the encoding vector contains the edge blocks of the source symbol IDs without compression.
 0b10 means the encoding vector contains the compressed list of the source symbol IDs.
 0b11 means the encoding vector contains the compressed edge blocks of the source symbol IDs.

 Store the Encoding Coefficients (C):
 1 bit to indicate if an encoding vector contains information about the coefficients used.
 Having Source Symbols with Variable Size Encoding (V):
 Set V to 0b01 if the combination that refers to the encoding vector is a combination of source symbols with variable sizes. In this case, the coded packets MUST have the 'Encoded Payload Size' field.
 NB_IDS:
 The number of source IDs stored in the encoding vector (depending on I).
 Number of Coefficients (NB_COEFS):
 The number of the coefficients used to generate the associated coded symbol.
 The First Source Identifier (FIRST_SOURCE_ID):
 The first source symbol ID used in the combination.

 Number of Bits for Each Edge Block (b_id):
 The number of bits needed to store the edge.

 Information about the Source Symbol IDs (id_bit_vector):
 If I is set to 0b01, store the edge blocks as b_id * (NB_IDS * 2 - 1).
If I is set to 0b10, store the edge blocks in a compressed way.
 The Coefficients (coef_bit_vector):
 The coefficients stored depending on the CCGI (4 or 8 bits for each coefficient).
 Padding:
 Padding to have an encoding vector size that is a multiple of 32 bits (for the ID and coefficient part).

 The source symbol IDs are organized as a sorted list of 32-bit unsigned integers. Depending on the feedback, the source symbol IDs in the list MAY be successive or not. If they are successive, the boundaries are stored in the encoding vector; it just needs 2*32 bits of information. If not, the full list or the edge blocks MAY be stored and a differential transform to reduce the number of bits needed to represent an identifier MAY be used.
 For the following subsections, let's take as an example the generation of an encoding vector for a coded symbol that is a linear combination of the source symbols with IDs 1, 2, 3, 5, 6, 8, 9, and 10 (or as edge blocks: [1..3], [5..6], [8..10]).
 There are several ways to store the source symbol IDs into the encoding vector:

 If no information about the source symbol IDs is needed, the field I MUST be set to 0b00: no b_id and no id_bit_vector field.
 If the edge blocks are stored without compression, the field I MUST be set to 0b01.
In this case, set b_id to 32 (as a Symbol ID is 32 bits), and store the list of 32-bit unsigned integers (1, 3, 4, 5, 6, 10) into id_bit_vectors.
 If the source symbol IDs are stored as a list with compression, the field I MUST be set to 0b10. In this case, see , but rather than compressing the edge blocks, we compress the full list of the source symbol IDs.
 If the edge blocks are stored with compression, the field I MUST be set to 0b11. In this case, see .

 Compressed List of Source Symbol IDs
 Let's continue with our coded symbol defined in the previous section. The source symbol IDs used in the linear combination are: [1..3], [5..6], [8..10].
 If we want to compress and store this list into the encoding vector, we MUST follow this procedure:

 Keep the first element in the packet as the first_source_id: 1.
 Apply a differential transform to the other elements
 ([3, 5, 6, 8, 10]) that removes the element i-1 to the element i,
 starting with the first_source_id as i0, and get the list L =
 [2, 2, 1, 2, 2].
 Compute b, the number of bits needed to
 store all the elements, which is ceil(log2(max(L))), where
 max(L) represents the maximum of the elements of the list L;
 here, it is 2 bits.
 Write b in the corresponding field, and write all the b * [(2 * NB blocks) - 1] elements in a bit vector here: 10, 10, 01, 10, 10.

 Decompressing the Source Symbol IDs
 When a Tetrys decoding block wants to reverse the operations, this algorithm is used:
 Rebuild the list of the transmitted elements by reading the bit vector and b: [10, 10, 01, 10, 10] => [2, 2, 1, 2, 2].
 Apply the reverse transform by adding successively the elements, starting with first_source_id: [1, 1 + 2, (1 + 2) + 2, (1 + 2 + 2) + 1, ...] => [1, 3, 5, 6, 8, 10].
 Rebuild the blocks using the list and first_source_id: [1..3], [5..6], [8..10].

 Window Update Packet Format
 A Tetrys decoder MAY send window update packets back to another building block. They contain information about what the packets received, decoded, or dropped, and other information such as a packet loss rate or the size of the decoding buffers. They are used to optimize the content of the encoding window. The window update packets are OPTIONAL; hence, they could be omitted or lost in transmission without impacting the protocol behavior.

 Window Update Packet Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| |
/ Common Packet Header /
| |
+-+
| nb_missing_src |
+-+
| nb_not_used_coded_symb |
+-+
| first_src_id |
+-+
| plr | sack_size | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
| |
/ SACK Vector /
| |
+-+

 Common Packet Header:
 A common packet header (as common header format) where packet type is set to 0b10.
 nb_missing_src:
 The number of missing source symbols in the receiver since the beginning of the session.
 nb_not_used_coded_symb:
 The number of coded symbols at the receiver that have not already been used for decoding (e.g., the linear combinations contain at least two unknown source symbols).
 first_src_id:
 ID of the first source symbol to consider in the selective acknowledgment (SACK) vector.
 plr:
 Packet loss ratio expressed as a percentage normalized to an 8-bit unsigned integer. For example, 2.5% will be stored as floor(2.5 * 256/100) = 6. Conversely, if 6 is the stored value, the corresponding packet loss ratio expressed as a percentage is 6*100/256 = 2.34%. This value is used in the case of dynamic code rate or for a statistical purpose. The choice of calculation is left to the Tetrys decoder, depending on a window observation, but should be the PLR seen before decoding.
 sack_size:
 The size of the SACK vector in 32-bit words. For instance, with a value of 2, the SACK vector is 64 bits long.
 SACK vector:
 Bit vector indicating symbols that must be removed in the encoding window from the first source symbol ID. In most cases, these symbols were received by the receiver. The other cases concern some events with non-recoverable packets (i.e., in the case of a burst of losses) where it is better to drop and abandon some packets and remove them from the encoding window to allow the recovery of the following packets.
				The "First Source Symbol" is included in this bit vector.
A bit equal to 1 at the i-th position means that this window update packet removes the source symbol of the ID equal to "First Source Symbol ID" + i from the encoding window.

 Research Issues
 The present document describes the baseline protocol, allowing communications between a Tetrys encoder and Tetrys decoder. In practice, Tetrys can be used either as a standalone protocol or embedded inside an existing protocol, and either above, within, or below the transport layer. There are different research questions related to each of these scenarios that should be investigated for future protocol improvements. We summarize them in the following subsections.

 Interaction with Congestion Control

The Tetrys and congestion control components generate two separate channels (see):

 The Tetrys channel carries source and coded packets (from the sender to the receiver) and information from the receiver to the sender (e.g., signaling which symbols have been recovered, loss rate before and/or after decoding, etc.).
 The congestion control channel carries packets from a sender to a receiver and packets signaling information about the network (e.g., number of packets received versus lost, Explicit Congestion Notification (ECN) marks, etc.) from the receiver to the sender.

The following topics, which are identified and discussed by , are adapted to the particular deployment cases of Tetrys (i.e., above, within, or below the transport layer):

 Congestion-related losses may be hidden if Tetrys is deployed below the transport layer without any precaution (i.e., Tetrys recovering packets lost because of a congested router), which can severely impact the congestion control efficiency. An approach is suggested to avoid hiding such signals in .
 Tetrys and non-Tetrys flows sharing the same network links can raise fairness issues between these flows. In particular, the situation depends on whether some of these flows and not others are congestion controlled and which type of congestion control is used. The details are out of scope of this document, but may have major impacts in practice.
 Coding rate adaptation within Tetrys can have major impacts on congestion control if done inappropriately. This topic is discussed more in detail in .
 Tetrys can leverage multipath transmissions, with the Tetrys packets being sent to the same receiver through multiple paths. Since paths can largely differ, a per-path flow control and congestion control adaptation could be needed.
 Protecting several application flows within a single Tetrys flow raises additional questions. This topic is discussed more in detail in .

 Adaptive Coding Rate

When the network conditions (e.g., delay and loss rate) strongly vary over time, an adaptive coding rate can be used to increase or reduce the amount of coded packets among a transmission dynamically (i.e., the added redundancy) with the help of a dedicated algorithm similar to . Once again, the strategy differs depending on which layer Tetrys is deployed (i.e., above, within, or below the transport layer). Basically, we can split these strategies into two distinct classes: Tetrys deployment inside the transport layer versus outside the transport layer (i.e., above or below). A deployment within the transport layer means
that interactions between transport protocol mechanisms such as error recovery, congestion control, and/or flow control are envisioned. Otherwise, deploying Tetrys within a transport protocol that is not congestion controlled, like UDP, would not bring out any other advantage than deploying it below or above the transport layer.

 The impact deploying a FEC mechanism within the transport layer is further discussed in , where considerations concerning the interactions between congestion control and coding rates, or the impact of fairness, are investigated. This adaptation may be done jointly with the congestion control mechanism of a transport layer protocol as proposed by . This allows the use of monitored congestion control metrics (e.g., RTT, congestion events, or current congestion window size) to adapt the coding rate conjointly with the computed transport sending rate. The rationale is to compute an amount of repair traffic that does not lead to congestion. This joint optimization is mandatory to prevent flows from consuming the whole available capacity as discussed in , where the authors point out that an increase in the repair ratio should be done conjointly with a decrease in the source sending rate.

	 Finally, adapting a coding rate can also be done outside the transport layer without considering transport-layer metrics. In particular, this adaptation may be done jointly with the network as proposed in . In this paper, the authors propose a Random Early Detection FEC mechanism in the context of video transmission over wireless networks. Briefly, the idea is to add more redundancy packets if the queue at the access point is less occupied and vice versa. A first theoretical attempt for video delivery with Tetrys has been proposed . This approach is interesting as it illustrates a joint collaboration between the application requirements and the network conditions and combines both signals coming from the application needs and the network state (i.e., signals below or above the transport layer).

	 To conclude, there are multiple ways to enable an adaptive coding rate. However, all of them depend on:

 the signal metrics that can be monitored and used to adapt the coding rate;
 the transport layer used, whether it is congestion controlled or not; and
 the objective sought (e.g., to minimize congestion or to fit application requirements).

 Using Tetrys below the IP Layer for Tunneling

 The use of Tetrys to protect an aggregate of flows raises research questions when Tetrys is used to recover from IP datagram losses while tunneling. Applying redundancy without flow differentiation may contradict the service requirements of individual flows: some flows may be penalized more by high latency and jitter than by partial reliability, while other flows may be penalized more by partial reliability. In practice, head-of-line blocking impacts all flows in a similar manner despite their different needs, which indicates that more elaborate strategies inside Tetrys are needed.

 Security Considerations

 First of all, it must be clear that the use of FEC protection on a data stream does not provide any kind of security per se. On the contrary, the use of FEC protection on a data stream raises security risks.
 The situation with Tetrys is mostly similar to that of other content delivery protocols making use of FEC protection; this is well described in FECFRAME .
 This section builds on this reference, adding new considerations to comply with Tetrys specificities when meaningful.

 Problem Statement

 An attacker can either target the content, protocol, or network.
 The consequences will largely differ reflecting various types of goals, like gaining access to confidential content, corrupting the content, compromising the Tetrys encoder and/or Tetrys decoder, or compromising the network behavior.
 In particular, several of these attacks aim at creating a Denial-of-Service (DoS) with consequences that may be limited to a single node (e.g., the Tetrys decoder), or that may impact all the nodes attached to the targeted network (e.g., by making flows unresponsive to congestion signals).

 In the following sections, we discuss these attacks, according to the component targeted by the attacker.

 Attacks against the Data Flow

 An attacker may want to access confidential content by eavesdropping the traffic between the Tetrys encoder/decoder.
 Traffic encryption is the usual approach to mitigate this risk, and this encryption can be applied to the source flow upstream of the Tetrys encoder or to the output packets downstream of the Tetrys encoder.
 The choice on where to apply encryption depends on various criteria,
 in particular the attacker model (e.g., when encryption happens
 below Tetrys, the security risk is assumed to be on the
 interconnection network).

 An attacker may also want to corrupt the content (e.g., by injecting forged or modified source and coded packets to prevent the Tetrys decoder from recovering the original source flow).
 Content integrity and source authentication services at the packet level are then needed to mitigate this risk.
 Here, these services need to be provided below Tetrys in order to enable the receiver to drop undesired packets and only transfer legitimate packets to the Tetrys decoder.
 It should be noted that forging or modifying feedback packets will not corrupt the content, although it will certainly compromise Tetrys operation (see).

 Attacks against Signaling

 Attacks on signaling information (e.g., by forging or modifying feedback packets to falsify the good reception or recovery of source content) can easily prevent the Tetrys decoder from recovering the source flow, thereby creating a DoS.
 In order to prevent this type of attack, content integrity and source authentication services at the packet level are needed for the feedback flow from the Tetrys decoder to the Tetrys encoder as well.
 These services need to be provided below Tetrys in order to drop undesired packets and only transfer legitimate feedback packets to the Tetrys encoder.

 Conversely, an attacker in position to selectively drop feedback packets (instead of modifying them) will not severely impact the function of Tetrys since it is naturally robust when challenged with such losses.
 However, it will have side impacts, such as the use of bigger linear systems (since the Tetrys encoder cannot remove well-received or decoded source packets from its linear system), which mechanically increases computational costs on both sides (encoder and decoder).

 Attacks against the Network

 Tetrys can react to congestion signals () in order to provide a certain level of fairness with other flows on a shared network.
 This ability could be exploited by an attacker to create or reinforce congestion events (e.g., by forging or modifying feedback packets) that can potentially impact a significant number of nodes attached to the network.
 In order to mitigate the risk, content integrity and source authentication services at the packet level are needed to enable the receiver to drop undesired packets and only transfer legitimate packets to the Tetrys encoder and decoder.

 Baseline Security Operation

 Tetrys can benefit from an IPsec / Encapsulating Security Payload (IPsec/ESP) that provides confidentiality, origin authentication, integrity, and anti-replay services in particular.
 	IPsec/ESP can be used to protect the Tetrys data flows (both directions) against attackers located within the interconnection network or attackers in position to eavesdrop traffic, inject forged traffic, or replay legitimate traffic.

 IANA Considerations
 This document has no IANA actions.

 References

 Normative References

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 IP Encapsulating Security Payload (ESP)

 This document describes an updated version of the Encapsulating Security Payload (ESP) protocol, which is designed to provide a mix of security services in IPv4 and IPv6. ESP is used to provide confidentiality, data origin authentication, connectionless integrity, an anti-replay service (a form of partial sequence integrity), and limited traffic flow confidentiality. This document obsoletes RFC 2406 (November 1998). [STANDARDS-TRACK]

 Forward Error Correction (FEC) Building Block

 This document describes how to use Forward Error Correction (FEC) codes to efficiently provide and/or augment reliability for bulk data transfer over IP multicast. This document defines a framework for the definition of the information that needs to be communicated in order to use an FEC code for bulk data transfer, in addition to the encoded data itself, and for definition of formats and codes for communication of that information. Both information communicated with the encoded data itself and information that needs to be communicated 'out-of-band' are considered. The procedures for specifying new FEC codes, defining the information communication requirements associated with those codes and registering them with the Internet Assigned Numbers Authority (IANA) are also described. The requirements on Content Delivery Protocols that wish to use FEC codes defined within this framework are also defined. The companion document titled "The Use of Forward Error Correction (FEC) in Reliable Multicast" describes some applications of FEC codes for delivering content. This document obsoletes RFC 3452. [STANDARDS-TRACK]

 Basic Forward Error Correction (FEC) Schemes

 This document provides Forward Error Correction (FEC) Scheme specifications according to the Reliable Multicast Transport (RMT) FEC building block for the Compact No-Code FEC Scheme, the Small Block, Large Block, and Expandable FEC Scheme, the Small Block Systematic FEC Scheme, and the Compact FEC Scheme. This document obsoletes RFC 3695 and assumes responsibility for the FEC Schemes defined in RFC 3452. [STANDARDS-TRACK]

 Reed-Solomon Forward Error Correction (FEC) Schemes

 This document describes a Fully-Specified Forward Error Correction (FEC) Scheme for the Reed-Solomon FEC codes over GF(2^^m), where m is in {2..16}, and its application to the reliable delivery of data objects on the packet erasure channel (i.e., a communication path where packets are either received without any corruption or discarded during transmission). This document also describes a Fully-Specified FEC Scheme for the special case of Reed-Solomon codes over GF(2^^8) when there is no encoding symbol group. Finally, in the context of the Under-Specified Small Block Systematic FEC Scheme (FEC Encoding ID 129), this document assigns an FEC Instance ID to the special case of Reed-Solomon codes over GF(2^^8).
 Reed-Solomon codes belong to the class of Maximum Distance Separable (MDS) codes, i.e., they enable a receiver to recover the k source symbols from any set of k received symbols. The schemes described here are compatible with the implementation from Luigi Rizzo. [STANDARDS-TRACK]

 Layered Coding Transport (LCT) Building Block

 The Layered Coding Transport (LCT) Building Block provides transport level support for reliable content delivery and stream delivery protocols. LCT is specifically designed to support protocols using IP multicast, but it also provides support to protocols that use unicast. LCT is compatible with congestion control that provides multiple rate delivery to receivers and is also compatible with coding techniques that provide reliable delivery of content. This document obsoletes RFC 3451. [STANDARDS-TRACK]

 NACK-Oriented Reliable Multicast (NORM) Transport Protocol

 This document describes the messages and procedures of the Negative- ACKnowledgment (NACK) Oriented Reliable Multicast (NORM) protocol. This protocol can provide end-to-end reliable transport of bulk data objects or streams over generic IP multicast routing and forwarding services. NORM uses a selective, negative acknowledgment mechanism for transport reliability and offers additional protocol mechanisms to allow for operation with minimal a priori coordination among senders and receivers. A congestion control scheme is specified to allow the NORM protocol to fairly share available network bandwidth with other transport protocols such as Transmission Control Protocol (TCP). It is capable of operating with both reciprocal multicast routing among senders and receivers and with asymmetric connectivity (possibly a unicast return path) between the senders and receivers. The protocol offers a number of features to allow different types of applications or possibly other higher-level transport protocols to utilize its service in different ways. The protocol leverages the use of FEC-based (forward error correction) repair and other IETF Reliable Multicast Transport (RMT) building blocks in its design. This document obsoletes RFC 3940. [STANDARDS-TRACK]

 Forward Error Correction (FEC) Framework

 This document describes a framework for using Forward Error Correction (FEC) codes with applications in public and private IP networks to provide protection against packet loss. The framework supports applying FEC to arbitrary packet flows over unreliable transport and is primarily intended for real-time, or streaming, media. This framework can be used to define Content Delivery Protocols that provide FEC for streaming media delivery or other packet flows. Content Delivery Protocols defined using this framework can support any FEC scheme (and associated FEC codes) that is compliant with various requirements defined in this document. Thus, Content Delivery Protocols can be defined that are not specific to a particular FEC scheme, and FEC schemes can be defined that are not specific to a particular Content Delivery Protocol. [STANDARDS-TRACK]

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 Taxonomy of Coding Techniques for Efficient Network Communications

 This document summarizes recommended terminology for Network Coding concepts and constructs. It provides a comprehensive set of terms in order to avoid ambiguities in future IRTF and IETF documents on Network Coding. This document is the product of the Coding for Efficient Network Communications Research Group (NWCRG), and it is in line with the terminology used by the RFCs produced by the Reliable Multicast Transport (RMT) and FEC Framework (FECFRAME) IETF working groups.

 Forward Error Correction (FEC) Framework Extension to Sliding Window Codes

 RFC 6363 describes a framework for using Forward Error Correction (FEC) codes to provide protection against packet loss. The framework supports applying FEC to arbitrary packet flows over unreliable transport and is primarily intended for real-time, or streaming, media. However, FECFRAME as per RFC 6363 is restricted to block FEC codes. This document updates RFC 6363 to support FEC codes based on a sliding encoding window, in addition to block FEC codes, in a backward-compatible way. During multicast/broadcast real-time content delivery, the use of sliding window codes significantly improves robustness in harsh environments, with less repair traffic and lower FEC-related added latency.

 Forward Erasure Correction (FEC) Coding and Congestion Control in Transport

 Forward Erasure Correction (FEC) is a reliability mechanism that is distinct and separate from the retransmission logic in reliable transfer protocols such as TCP. FEC coding can help deal with losses at the end of transfers or with networks having non-congestion losses. However, FEC coding mechanisms should not hide congestion signals. This memo offers a discussion of how FEC coding and congestion control can coexist. Another objective is to encourage the research community to also consider congestion control aspects when proposing and comparing FEC coding solutions in communication systems.
 This document is the product of the Coding for Efficient Network Communications Research Group (NWCRG). The scope of the document is end-to-end communications; FEC coding for tunnels is out of the scope of the document.

 Informative References

 Adaptive FEC-based error control for Internet telephony

 IEEE INFOCOM '99, Conference on Computer Communications, New York, NY, USA, Vol. 3, pp. 1453-1460

 Network information flow

 IEEE Transactions on Information Theory, Vol. 46, Issue 4, pp. 1204-1216

 Network Coded TCP (CTCP)

	

	

	

	

	

	

 A RED-FEC Mechanism for Video Transmission Over WLANs

 IEEE Transactions on Broadcasting, Vol. 54, Issue 3, pp. 517-524

 Congestion Control Using FEC for Conversational Media

 callstats.io

 Aalto University

 Aalto University

 NetApp

 This document describes a new mechanism for conversational multimedia
 flows. The proposed mechanism uses Forward Error Correction (FEC)
 encoded RTP packets (redundant packets) along side the media packets
 to probe for available network capacity. A straightforward
 interpretation is, the sending endpoint increases the transmission
 rate by keeping the media rate constant but increases the amount of
 FEC. If no losses and discards occur, the endpoint can then increase
 the media rate. If losses occur, the redundant FEC packets help in
 recovering the lost packets. Consequently, the endpoint can vary the
 FEC bit rate to conservatively (by a small amount) or aggressively
 (by a large amount) probe for available network capacity.

 Work in Progress

 Rethinking reliability for long-delay networks

 International Workshop on Satellite and Space Communications, Toulouse, France, pp. 90-94

 On-the-Fly Erasure Coding for Real-Time Video Applications

 IEEE Transactions on Multimedia, Vol. 13, Issue 4, pp. 797-812

 Joint on-the-fly network coding/video quality adaptation for real-time delivery

 Signal Processing: Image Communication, Vol. 29 Issue 4, pp. 449-461

 Acknowledgments
 First, the authors want sincerely to thank for continuous help and support on Tetrys. Marie-Jo, many thanks!
 The authors also wish to thank NWCRG group members for numerous discussions on
on-the-fly coding that helped finalize this document.
 Finally, the authors would like to thank for
providing comments and feedback on the document.

 Authors' Addresses

 ISAE-SUPAERO

 10, avenue Edouard Belin
 BP 54032
 Toulouse CEDEX 4
 31055
 France

 jonathan.detchart@isae-supaero.fr

 ENAC

 7, avenue Edouard Belin
 Toulouse
 31400
 France

 emmanuel.lochin@enac.fr

 ISAE-SUPAERO

 10, avenue Edouard Belin
 BP 54032
 Toulouse CEDEX 4
 31055
 France

 jerome.lacan@isae-supaero.fr

 INRIA

 655, avenue de l'Europe
 Inovallee; Montbonnot
 St Ismier CEDEX
 38334
 France

 vincent.roca@inria.fr

