
RFC 9205
Building Protocols with HTTP

Abstract
Applications often use HTTP as a substrate to create HTTP-based APIs. This document specifies
best practices for writing specifications that use HTTP to define new application protocols. It is
written primarily to guide IETF efforts to define application protocols using HTTP for deployment
on the Internet but might be applicable in other situations.

This document obsoletes RFC 3205.

Stream:
RFC:
BCP:
Obsoletes:
Category:
Published:
ISSN:
Author:

Internet Engineering Task Force (IETF)
9205
56
3205
Best Current Practice
June 2022
2070-1721

 M. Nottingham

Status of This Memo
This memo documents an Internet Best Current Practice.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on BCPs is
available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9205

Copyright Notice
Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights
reserved.

Nottingham Best Current Practice Page 1

https://www.rfc-editor.org/rfc/rfc9205
https://www.rfc-editor.org/rfc/rfc3205
https://www.rfc-editor.org/info/rfc9205

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

1.1. Notational Conventions

2. Is HTTP Being Used?

2.1. Non-HTTP Protocols

3. What's Important About HTTP

3.1. Generic Semantics

3.2. Links

3.3. Rich Functionality

4. Best Practices for Specifying the Use of HTTP

4.1. Specifying the Use of HTTP

4.2. Specifying Server Behaviour

4.3. Specifying Client Behaviour

4.4. Specifying URLs

4.4.1. Discovering an Application's URLs

4.4.2. Considering URI Schemes

4.4.3. Choosing Transport Ports

4.5. Using HTTP Methods

4.5.1. GET

4.5.2. OPTIONS

4.6. Using HTTP Status Codes

4.6.1. Redirection

4.7. Specifying HTTP Header Fields

4.8. Defining Message Content

RFC 9205 Building Protocols with HTTP June 2022

Nottingham Best Current Practice Page 2

https://trustee.ietf.org/license-info

4.9. Leveraging HTTP Caching

4.9.1. Freshness

4.9.2. Stale Responses

4.9.3. Caching and Application Semantics

4.9.4. Varying Content Based Upon the Request

4.10. Handling Application State

4.11. Making Multiple Requests

4.12. Client Authentication

4.13. Coexisting with Web Browsing

4.14. Maintaining Application Boundaries

4.15. Using Server Push

4.16. Allowing Versioning and Evolution

5. IANA Considerations

6. Security Considerations

6.1. Privacy Considerations

7. References

7.1. Normative References

7.2. Informative References

Appendix A. Changes from RFC 3205

Author's Address

1. Introduction
Applications other than Web browsing often use HTTP as a substrate, a practice
sometimes referred to as creating "HTTP-based APIs", "REST APIs", or just "HTTP APIs". This is done
for a variety of reasons, including:

familiarity by implementers, specifiers, administrators, developers, and users;
availability of a variety of client, server, and proxy implementations;
ease of use;
availability of Web browsers;
reuse of existing mechanisms like authentication and encryption;

[HTTP]

•
•
•
•
•

RFC 9205 Building Protocols with HTTP June 2022

Nottingham Best Current Practice Page 3

presence of HTTP servers and clients in target deployments; and
its ability to traverse firewalls.

These protocols are often ad hoc, intended for only deployment by one or a few servers and
consumption by a limited set of clients. As a result, a body of practices and tools has arisen
around defining HTTP-based APIs that favour these conditions.

However, when such an application has multiple, separate implementations, is deployed on
multiple uncoordinated servers, and is consumed by diverse clients (as is often the case for HTTP
APIs defined by standards efforts), tools and practices intended for limited deployment can
become unsuitable.

This mismatch is largely because the API's clients and servers will implement and evolve at
different paces, leading to a need for deployments with different features and versions to coexist.
As a result, the designers of HTTP-based APIs intended for such deployments need to more
carefully consider how extensibility of the service will be handled and how different deployment
requirements will be accommodated.

More generally, an application protocol using HTTP faces a number of design decisions,
including:

Should it define a new URI scheme? Use new ports?
Should it use standard HTTP methods and status codes or define new ones?
How can the maximum value be extracted from the use of HTTP?
How does it coexist with other uses of HTTP -- especially Web browsing?
How can interoperability problems and "protocol dead ends" be avoided?

Section 2 defines when this document applies, Section 3 surveys the properties of HTTP that are
important to preserve, and Section 4 contains best practices for the specification of applications
that use HTTP.

It is written primarily to guide IETF efforts to define application protocols using HTTP for
deployment on the Internet but might be applicable in other situations. Note that the
requirements herein do not necessarily apply to the development of generic HTTP extensions.

This document obsoletes to reflect the experience and developments regarding HTTP
in the intervening time.

•
•

•
•
•
•
•

[RFC3205]

1.1. Notational Conventions
The key words " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", and " " in this document are to be
interpreted as described in BCP 14 when, and only when, they appear in all
capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD NOT
RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

RFC 9205 Building Protocols with HTTP June 2022

Nottingham Best Current Practice Page 4

2. Is HTTP Being Used?
Different applications have different goals when using HTTP. The recommendations in this
document apply when a specification defines an application that:

uses the transport port 80 or 443, or
uses the URI scheme "http" or "https", or
uses an ALPN protocol ID that generically identifies HTTP (e.g., "http/1.1", "h2", "h3"),
or
makes registrations in or overall modifications to the IANA registries defined for HTTP.

Additionally, when a specification is using HTTP, all of the requirements of the HTTP protocol suite
are in force (in particular but also other specifications such as the specific version of
HTTP in use and any extensions in use).

Note that this document is intended to apply to applications, not generic extensions to HTTP.
Furthermore, while it is intended for IETF-specified applications, other standards organisations
are encouraged to adhere to its requirements.

•
•
• [RFC7301]

•

[HTTP]

2.1. Non-HTTP Protocols
An application can rely upon HTTP without meeting the criteria for using it as defined above. For
example, an application might wish to avoid re-specifying parts of the message format but might
change other aspects of the protocol's operation, or it might want to use application-specific
methods.

Doing so permits more freedom to modify protocol operations, but at least a portion of the
benefits outlined in Section 3 are lost as most HTTP implementations won't be easily adaptable to
these changes. The benefit of mindshare will also be lost.

Such specifications use HTTP's URI schemes, transport ports, ALPN protocol IDs, or
IANA registries; rather, they are encouraged to establish their own.

MUST NOT

3. What's Important About HTTP
This section examines the characteristics of HTTP that are important to consider when using
HTTP to define an application protocol.

3.1. Generic Semantics
Much of the value of HTTP is in its generic semantics -- that is, the protocol elements defined by
HTTP are potentially applicable to every resource and are not specific to a particular context.
Application-specific semantics are best expressed in message content and header fields, not
status codes or methods (although status codes and methods do have generic semantics that
relate to application state).

RFC 9205 Building Protocols with HTTP June 2022

Nottingham Best Current Practice Page 5

This split between generic and application-specific semantics allows an HTTP message to be
handled by common software (e.g., HTTP servers, intermediaries, client implementations, and
caches) without requiring those implementations to understand the application in use. It also
allows people to leverage their knowledge of HTTP semantics without needing specialised
knowledge of a particular application.

Therefore, applications that use HTTP redefine, refine, or overlay the semantics of
generic protocol elements such as methods, status codes, or existing header fields. Instead, they
should focus their specifications on protocol elements that are specific to that application --
namely, their HTTP resources.

When writing a specification, it's often tempting to specify exactly how HTTP is to be
implemented, supported, and used. However, this can easily lead to an unintended profile of
HTTP behaviour. For example, it's common to see specifications with language like this:

A POST request MUST result in a 201 (Created) response.

This forms an expectation in the client that the response will always be 201 (Created) when in fact
there are a number of reasons why the status code might differ in a real deployment; for example,
there might be a proxy that requires authentication, or a server-side error, or a redirection. If the
client does not anticipate this, the application's deployment is brittle.

See Section 4.2 for more details.

MUST NOT

3.2. Links
Another common practice is assuming that the HTTP server's namespace (or a portion thereof) is
exclusively for the use of a single application. This effectively overlays special, application-
specific semantics onto that space and precludes other applications from using it.

As explained in , such "squatting" on a part of the URL space by a standard usurps the
server's authority over its own resources, can cause deployment issues, and is therefore bad
practice in standards.

Instead of statically defining URI components like paths, it is that applications
using HTTP define and use links to allow flexibility in deployment.

Using runtime links in this fashion has a number of other benefits -- especially when an
application is to have multiple implementations and/or deployments (as is often the case for
those that are standardised).

For example, navigating with a link allows a request to be routed to a different server without the
overhead of a redirection, thereby supporting deployment across machines well.

[BCP190]

RECOMMENDED
[WEB-LINKING]

RFC 9205 Building Protocols with HTTP June 2022

Nottingham Best Current Practice Page 6

By using links, it also becomes possible to "mix and match" different applications on the same
server. The use of links also offers a natural mechanism for extensibility, versioning, and
capability management because the document containing the links can also contain
information about their targets.

Using links also offers a form of cache invalidation that's seen on the Web; when a resource's
state changes, the application can change the affected links so that a fresh copy is always fetched.

See Section 4.4 for more details.

3.3. Rich Functionality
HTTP offers a number of features to applications, such as:

Message framing
Multiplexing (in HTTP/2 and HTTP/3)
Integration with TLS
Support for intermediaries (proxies, gateways, content delivery networks (CDNs))
Client authentication
Content negotiation for format, language, and other features
Caching for server scalability, latency and bandwidth reduction, and reliability
Granularity of access control (through use of a rich space of URLs)
Partial content to selectively request part of a response
The ability to interact with the application easily using a Web browser

An application that uses HTTP is encouraged to utilise the various features that the protocol offers
so that its users receive the maximum benefit from those features and so that the application can
be deployed in a variety of situations. This document does not require specific features to be used
since the appropriate design trade-offs are highly specific to a given situation. However, following
the practices in Section 4 is a good starting point.

•
• [HTTP/2] [HTTP/3]
•
•
•
•
•
•
•
•

4. Best Practices for Specifying the Use of HTTP
This section contains best practices for specifying the use of HTTP by applications, including
practices for specific HTTP protocol elements.

4.1. Specifying the Use of HTTP
Specifications should use as the primary reference for HTTP; it is not necessary to
reference all of the specifications in the HTTP suite unless there are specific reasons to do so (e.g.,
a particular feature is called out).

[HTTP]

RFC 9205 Building Protocols with HTTP June 2022

Nottingham Best Current Practice Page 7

Because HTTP is a hop-by-hop protocol, a connection can be handled by implementations that
are not controlled by the application; for example, proxies, CDNs, firewalls, and so on. Requiring
a particular version of HTTP makes it difficult to use in these situations and harms
interoperability. Therefore, it is that applications using HTTP specify a
minimum version of HTTP to be used.

However, if an application's deployment benefits from the use of a particular version of HTTP
(for example, HTTP/2's multiplexing), this ought be noted.

Applications using HTTP specify a maximum version, to preserve the protocol's ability
to evolve.

When specifying examples of protocol interactions, applications should document both the
request and response messages with complete header sections, preferably in HTTP/1.1 format

. For example:

NOT RECOMMENDED

MUST NOT

[HTTP/1.1]

GET /thing HTTP/1.1
Host: example.com
Accept: application/things+json
User-Agent: Foo/1.0

HTTP/1.1 200 OK
Content-Type: application/things+json
Content-Length: 500
Server: Bar/2.2

[content here]

4.2. Specifying Server Behaviour
The server-side behaviours of an application are most effectively specified by defining the
following protocol elements:

Media types , often based upon a format convention such as JSON ;
HTTP header fields, per Section 4.7; and
The behaviour of resources, as identified by link relations .

An application can define its operation by composing these protocol elements to define a set of
resources that are identified by link relations and that implement specified behaviours,
including:

retrieval of resource state using GET in one or more formats identified by media type;
resource creation or update using POST or PUT, with an appropriately identified request
content format;
data processing using POST and identified request and response content format(s); and

• [RFC6838] [JSON]
•
• [WEB-LINKING]

•
•

•

RFC 9205 Building Protocols with HTTP June 2022

Nottingham Best Current Practice Page 8

Resource deletion using DELETE.

For example, an application might specify:

Resources linked to with the "example-widget" link relation type are Widgets. The state of
a Widget can be fetched in the "application/example-widget+json" format, and can be
updated by PUT to the same link. Widget resources can be deleted.

The Example-Count response header field on Widget representations indicates how
many Widgets are held by the sender.

The "application/example-widget+json" format is a JSON [RFC8259] format representing
the state of a Widget. It contains links to related information in the link indicated by the
Link header field value with the "example-other-info" link relation type.

Applications can also specify the use of URI Templates to allow clients to
generate URLs based upon runtime data.

•

[URI-TEMPLATE]

Redirect handling:

Cookies:

Certificates:

4.3. Specifying Client Behaviour
An application's expectations for client behaviour ought to be closely aligned with those of Web
browsers to avoid interoperability issues when they are used.

One way to do this is to define it in terms of since that is the abstraction that browsers
use for HTTP.

Some client behaviours (e.g., automatic redirect handling) and extensions (e.g., cookies) are not
required by HTTP but nevertheless have become very common. If their use is not explicitly
specified by applications using HTTP, there may be confusion and interoperability problems. In
particular:

Applications need to specify how redirects are expected to be handled; see
Section 4.6.1.

Applications using HTTP should explicitly reference the Cookie specification
if they are required.

Applications using HTTP should specify that TLS certificates are to be checked
according to when HTTPS is used.

Applications using HTTP should not require that clients statically support HTTP features that are
usually negotiated. For example, requiring that clients support responses with a certain content
coding () instead of negotiating for it () means that
otherwise conformant clients cannot interoperate with the application. Applications can
encourage the implementation of such features, though.

[FETCH]

[COOKIES]

Section 4.3.4 of [HTTP]

[HTTP], Section 8.4.1 [HTTP], Section 12.5.3

RFC 9205 Building Protocols with HTTP June 2022

Nottingham Best Current Practice Page 9

https://www.rfc-editor.org/rfc/rfc9110#section-4.3.4
https://www.rfc-editor.org/rfc/rfc9110#section-8.4.1
https://www.rfc-editor.org/rfc/rfc9110#section-12.5.3

4.4. Specifying URLs
In HTTP, the resources that clients interact with are identified with URLs . As
explains, parts of the URL are designed to be under the control of the owner (also known as the
"authority") of that server to give them the flexibility in deployment.

This means that in most cases, specifications for applications that use HTTP won't contain fixed
application URLs or paths; while it is common practice for a specification of a single-deployment
API to specify the path prefix "/app/v1" (for example), doing so in an IETF specification is
inappropriate.

Therefore, the specification writer needs some mechanism to allow clients to discover an
application's URLs. Additionally, they need to specify which URL scheme(s) the application should
be used with and whether to use a dedicated port or to reuse HTTP's port(s).

[URL] [BCP190]

4.4.1. Discovering an Application's URLs

Generally, a client will begin interacting with a given application server by requesting an initial
document that contains information about that particular deployment, potentially including
links to other relevant resources. Doing so ensures that the deployment is as flexible as possible
(potentially spanning multiple servers), allows evolution, and also gives the application the
opportunity to tailor the "discovery document" to the client.

There are a few common patterns for discovering that initial URL.

The most straightforward mechanism for URL discovery is to configure the client with (or
otherwise convey to it) a full URL. This might be done in a configuration document or through
another discovery mechanism.

However, if the client only knows the server's hostname and the identity of the application, there
needs to be some way to derive the initial URL from that information.

An application cannot define a fixed prefix for its URL paths; see . Instead, a
specification for such an application can use one of the following strategies:

Register a well-known URI as an entry point for that application. This
provides a fixed path on every potential server that will not collide with other applications.
Enable the server authority to convey a URI Template or similar
mechanism for generating a URL for an entry point. For example, this might be done in a
configuration document or other artefact.

Once the discovery document is located, it can be fetched, cached for later reuse (if allowed by its
metadata), and used to locate other resources that are relevant to the application using full URIs
or URL Templates.

[BCP190]

• [WELL-KNOWN-URI]

• [URI-TEMPLATE]

RFC 9205 Building Protocols with HTTP June 2022

Nottingham Best Current Practice Page 10

In some cases, an application may not wish to use such a discovery document -- for example,
when communication is very brief or when the latency concerns of doing so preclude the use of a
discovery document. These situations can be addressed by placing all of the application's
resources under a well-known location.

4.4.2. Considering URI Schemes

Applications that use HTTP will typically employ the "http" and/or "https" URI schemes. "https" is
 to provide authentication, integrity, and confidentiality, as well as to mitigate

pervasive monitoring attacks .

However, application-specific schemes can also be defined. When defining a URI scheme for an
application using HTTP, there are a number of trade-offs and caveats to keep in mind:

Unmodified Web browsers will not support the new scheme. While it is possible to register
new URI schemes with Web browsers (e.g., registerProtocolHandler() in , as well as
several proprietary approaches), support for these mechanisms is not shared by all browsers,
and their capabilities vary.
Existing non-browser clients, intermediaries, servers, and associated software will not
recognise the new scheme. For example, a client library might fail to dispatch the request, a
cache might refuse to store the response, and a proxy might fail to forward the request.
Because URLs commonly occur in HTTP artefacts and are often generated automatically
(e.g., in the Location response header field), it can be difficult to ensure that the new scheme is
used consistently.
The resources identified by the new scheme will still be available using "http" and/or "https"
URLs. Those URLs can "leak" into use, which can present security and operability issues. For
example, using a new scheme to ensure that requests don't get sent to a "normal" Web site is
likely to fail.
Features that rely upon the URL's origin , such as the Web's same-origin policy, will
be impacted by a change of scheme.
HTTP-specific features such as cookies , authentication , caching

, HTTP Strict Transport Security (HSTS) , and Cross-Origin Resource
Sharing (CORS) might or might not work correctly, depending on how they are
defined and implemented. Generally, they are designed and implemented with an
assumption that the URL will always be "http" or "https".
Web features that require a secure context will likely treat a new scheme as
insecure.

See for more information about minting new URI schemes.

RECOMMENDED
[RFC7258]

•
[HTML]

•

•

•

• [RFC6454]

• [COOKIES] [HTTP] [HTTP-
CACHING] [RFC6797]

[FETCH]

• [SECCTXT]

[RFC7595]

4.4.3. Choosing Transport Ports

Applications can use the applicable default port (80 for HTTP, 443 for HTTPS), or they can be
deployed upon other ports. This decision can be made at deployment time or might be
encouraged by the application's specification (e.g., by registering a port for that application).

RFC 9205 Building Protocols with HTTP June 2022

Nottingham Best Current Practice Page 11

If a non-default port is used, it needs to be reflected in the authority of all URLs for that resource;
the only mechanism for changing a default port is changing the URI scheme (see Section 4.4.2).

Using a port other than the default has privacy implications (i.e., the protocol can now be
distinguished from other traffic), as well as operability concerns (as some networks might block
or otherwise interfere with it). Privacy implications (including those stemming from this
distinguishability) should be documented in Security Considerations.

See for further guidance.[RFC7605]

4.5. Using HTTP Methods
Applications that use HTTP confine themselves to using registered HTTP methods such as
GET, POST, PUT, DELETE, and PATCH.

New HTTP methods are rare; they are required to be registered in the "HTTP Method Registry"
with IETF Review (see) and are also required to be generic. That means that they need to
be potentially applicable to all resources, not just those of one application.

While historically some applications (e.g.,) have defined application-specific methods,
 now forbids this.

When authors believe that a new method is required, they are encouraged to engage with the
HTTP community early (e.g., on the mailing list) and document
their proposal as a separate HTTP extension rather than as part of an application's specification.

MUST

[HTTP]

[RFC4791]
[HTTP]

<mailto:ietf-http-wg@w3.org>

4.5.1. GET

GET is the most common and useful HTTP method; its retrieval semantics allow caching and side-
effect free linking and underlie many of the benefits of using HTTP.

Queries can be performed with GET, often using the query component of the URL; this is a
familiar pattern from Web browsing, and the results can be cached, improving the efficiency of
an often expensive process. In some cases, however, GET might be unwieldy for expressing
queries because of the limited syntax of the URI; in particular, if binary data forms part of the
query terms, it needs to be encoded to conform to the URI syntax.

While this is not an issue for short queries, it can become one for larger query terms or those that
need to sustain a high rate of requests. Additionally, some HTTP implementations limit the size of
URLs they support, although modern HTTP software has much more generous limits than
previously (typically, considerably more than 8000 octets, as required by).

In these cases, an application using HTTP might consider using POST to express queries in the
request's content; doing so avoids encoding overhead and URL length limits in implementations.
However, in doing so, it should be noted that the benefits of GET such as caching and linking to
query results are lost. Therefore, applications using HTTP that require support for POST queries
ought to consider allowing both methods.

[HTTP]

RFC 9205 Building Protocols with HTTP June 2022

Nottingham Best Current Practice Page 12

mailto:ietf-http-wg@w3.org

Processing of GET requests should not change the application's state or have other side effects
that might be significant to the client since implementations can and do retry HTTP GET requests
that fail. Furthermore, some GET requests protected by TLS early data might be vulnerable to
replay attacks (see). Note that this does not include logging and similar functions; see

.

Finally, note that while the generic HTTP syntax allows a GET request message to contain
content, the purpose is to allow message parsers to be generic; per , content
in a GET is not recommended, has no meaning, and will be either ignored or rejected by generic
HTTP software (such as intermediaries, caches, servers, and client libraries).

[RFC8470]
[HTTP], Section 9.2.1

[HTTP], Section 9.3.1

4.5.2. OPTIONS

The OPTIONS method was defined for metadata retrieval and is used both by Web Distributed
Authoring and Versioning (WebDAV) and CORS . Because HTTP-based APIs
often need to retrieve metadata about resources, it is often considered for their use.

However, OPTIONS does have significant limitations:

It isn't possible to link to the metadata with a simple URL because OPTIONS is not the default
method.
OPTIONS responses are not cacheable because HTTP caches operate on representations of
the resource (i.e., GET and HEAD). If OPTIONS responses are cached separately, their
interactions with the HTTP cache expiry, secondary keys, and other mechanisms need to be
considered.
OPTIONS is "chatty" -- requesting metadata separately increases the number of requests
needed to interact with the application.
Implementation support for OPTIONS is not universal; some servers do not expose the ability
to respond to OPTIONS requests without significant effort.

Instead of OPTIONS, one of these alternative approaches might be more appropriate:

For server-wide metadata, create a well-known URI or use an already
existing one if appropriate (e.g., host-meta).
For metadata about a specific resource, create a separate resource and link to it using a Link
response header field or a link serialised into the response's content. See .
Note that the Link header field is available on HEAD responses, which is useful if the client
wants to discover a resource's capabilities before they interact with it.

[RFC4918] [FETCH]

•

•

•

•

• [WELL-KNOWN-URI]
[RFC6415]

•
[WEB-LINKING]

4.6. Using HTTP Status Codes
HTTP status codes convey semantics both for the benefit of generic HTTP components -- such as
caches, intermediaries, and clients -- and applications themselves. However, applications can
encounter a number of pitfalls in their use.

RFC 9205 Building Protocols with HTTP June 2022

Nottingham Best Current Practice Page 13

https://www.rfc-editor.org/rfc/rfc9110#section-9.2.1
https://www.rfc-editor.org/rfc/rfc9110#section-9.3.1

First, status codes are often generated by components other than the application itself. This can
happen, for example, when network errors are encountered; when a captive portal, proxy, or
content delivery network is present; or when a server is overloaded or thinks it is under attack.
They can even be generated by generic client software when certain error conditions are
encountered. As a result, if an application assigns specific semantics to one of these status codes,
a client can be misled about its state because the status code was generated by a generic
component, not the application itself.

Furthermore, mapping application errors to individual HTTP status codes one-to-one often leads
to a situation where the finite space of applicable HTTP status codes is exhausted. This, in turn,
leads to a number of bad practices -- including minting new, application-specific status codes or
using existing status codes even though the link between their semantics and the application's is
tenuous at best.

Instead, applications using HTTP should define their errors to use the most applicable status code,
making generous use of the general status codes (200, 400, and 500) when in doubt. Importantly,
they should not specify a one-to-one relationship between status codes and application errors,
thereby avoiding the exhaustion issue outlined above.

To distinguish between multiple error conditions that are mapped to the same status code and to
avoid the misattribution issue outlined above, applications using HTTP should convey finer-
grained error information in the response's message content and/or header fields.

 provides one way to do so.

Because the set of registered HTTP status codes can expand, applications using HTTP should
explicitly point out that clients ought to be able to handle all applicable status codes gracefully
(i.e., falling back to the generic n00 semantics of a given status code; e.g., 499 can be safely
handled as 400 (Bad Request) by clients that don't recognise it). This is preferable to creating a
"laundry list" of potential status codes since such a list won't be complete in the foreseeable
future.

Applications using HTTP re-specify the semantics of HTTP status codes, even if it is
only by copying their definition. It is they require specific reason phrases to
be used; the reason phrase has no function in HTTP, is not guaranteed to be preserved by
implementations, and is not carried at all in the HTTP/2 message format.

Applications only use registered HTTP status codes. As with methods, new HTTP status
codes are rare and required (by) to be registered with IETF Review. Similarly, HTTP status
codes are generic; they are required (by) to be potentially applicable to all resources, not
just to those of one application.

When authors believe that a new status code is required, they are encouraged to engage with the
HTTP community early (e.g., on the mailing list) and document
their proposal as a separate HTTP extension, rather than as part of an application's specification.

[PROBLEM-
DETAILS]

MUST NOT
NOT RECOMMENDED

[HTTP/2]

MUST
[HTTP]

[HTTP]

<mailto:ietf-http-wg@w3.org>

RFC 9205 Building Protocols with HTTP June 2022

Nottingham Best Current Practice Page 14

mailto:ietf-http-wg@w3.org

4.6.1. Redirection

The 3xx series of status codes specified in directs the user agent to another
resource to satisfy the request. The most common of these are 301, 302, 307, and 308, all of which
use the Location response header field to indicate where the client should resend the request.

There are two ways that the members of this group of status codes differ:

Whether they are permanent or temporary. Permanent redirects can be used to update links
stored in the client (e.g., bookmarks), whereas temporary ones cannot. Note that this has no
effect on HTTP caching; it is completely separate.
Whether they allow the redirected request to change the request method from POST to GET.
Web browsers generally do change POST to GET for 301 and 302; therefore, 308 and 307 were
created to allow redirection without changing the method.

This table summarises their relationships:

 Permanent Temporary

Allows change of the request method from POST to GET 301 302

Does not allow change of the request method 308 307

Table 1

The 303 (See Other) status code can be used to inform the client that the result of an operation is
available at a different location using GET.

As noted in , a user agent is allowed to automatically follow a 3xx redirect that has a
Location response header field, even if they don't understand the semantics of the specific status
code. However, they aren't required to do so; therefore, if an application using HTTP desires
redirects to be automatically followed, it needs to explicitly specify the circumstances when this
is required.

Redirects can be cached (when appropriate cache directives are present), but beyond that, they
are not "sticky" -- i.e., redirection of a URI will not result in the client assuming that similar URIs
(e.g., with different query parameters) will also be redirected.

Applications using HTTP are encouraged to specify that 301 and 302 responses change the
subsequent request method from POST (but no other method) to GET to be compatible with
browsers. Generally, when a redirected request is made, its header fields are copied from the
original request. However, they can be modified by various mechanisms; e.g., sent Authorization
() and Cookie () header fields will change if the origin (and
sometimes path) of the request changes. An application using HTTP should specify if any request
header fields that it defines need to be modified or removed upon a redirect; however, this
behaviour cannot be relied upon since a generic client (like a browser) will be unaware of such
requirements.

Section 15.4 of [HTTP]

•

•

[HTTP]

[HTTP], Section 11 [COOKIES]

RFC 9205 Building Protocols with HTTP June 2022

Nottingham Best Current Practice Page 15

https://www.rfc-editor.org/rfc/rfc9110#section-15.4
https://www.rfc-editor.org/rfc/rfc9110#section-11

4.7. Specifying HTTP Header Fields
Applications often define new HTTP header fields. Typically, using HTTP header fields is
appropriate in a few different situations:

The field is useful to intermediaries (who often wish to avoid parsing message content), and/
or
The field is useful to generic HTTP software (e.g., clients, servers), and/or
It is not possible to include their values in the message content (usually because a format
does not allow it).

When the conditions above are not met, it is usually better to convey application-specific
information in other places -- e.g., the message content or the URL query string.

New header fields be registered, per .

See for guidelines to consider when minting new header fields.
 provides a common structure for new header fields and avoids many

issues in their parsing and handling; it is that new header fields use it.

It is that header field names be short (even when field compression is used, there
is an overhead) but appropriately specific. In particular, if a header field is specific to an
application, an identifier for that application can form a prefix to the header field name,
separated by a hyphen.

For example, if the "example" application needs to create three header fields, they might be called
"example-foo", "example-bar", and "example-baz". Note that the primary motivation here is to
avoid consuming more generic field names, not to reserve a portion of the namespace for the
application; see for related considerations.

The semantics of existing HTTP header fields be redefined without updating their
registration or defining an extension to them (if allowed). For example, an application using
HTTP cannot specify that the Location header field has a special meaning in a certain context.

See Section 4.9 for the interaction between header fields and HTTP caching; in particular, request
header fields that are used to choose (per) a response have impact
there and need to be carefully considered.

See Section 4.10 for considerations regarding header fields that carry application state (e.g.,
Cookie).

•

•
•

MUST Section 16.3 of [HTTP]

Section 16.3.2 of [HTTP]
[STRUCTURED-FIELDS]

RECOMMENDED

RECOMMENDED

[RFC6648]

MUST NOT

Section 4.1 of [HTTP-CACHING]

4.8. Defining Message Content
Common syntactic conventions for message contents include JSON , XML , and
Concise Binary Object Representation (CBOR) . Best practices for their use are out of
scope for this document.

[JSON] [XML]
[RFC8949]

RFC 9205 Building Protocols with HTTP June 2022

Nottingham Best Current Practice Page 16

https://www.rfc-editor.org/rfc/rfc9110#section-16.3
https://www.rfc-editor.org/rfc/rfc9110#section-16.3.2
https://www.rfc-editor.org/rfc/rfc9111#section-4.1

Applications should register distinct media types for each format they define; this makes it
possible to identify them unambiguously and negotiate for their use. See for more
information.

[RFC6838]

4.9. Leveraging HTTP Caching
HTTP caching is one of the primary benefits of using HTTP for applications; it
provides scalability, reduces latency, and improves reliability. Furthermore, HTTP caches are
readily available in browsers and other clients, networks as forward and reverse proxies, content
delivery networks, and as part of server software.

Even when an application using HTTP isn't designed to take advantage of caching, it needs to
consider how caches will handle its responses to preserve correct behaviour when one is
interposed (whether in the network, server, client, or intervening infrastructure).

[HTTP-CACHING]

4.9.1. Freshness

Assigning even a short freshness lifetime () -- e.g., 5 seconds -- allows
a response to be reused to satisfy multiple clients and/or a single client making the same request
repeatedly. In general, if it is safe to reuse something, consider assigning a freshness lifetime.

The most common method for specifying freshness is the max-age response directive (
). The Expires header field () can also be

used, but it is not necessary; all modern cache implementations support the Cache-Control
header field, and specifying freshness as a delta is usually more convenient and less error-prone.

It is not necessary to add the public response directive () to cache
most responses; it is only necessary when it's desirable to store an authenticated response, or
when the status code isn't understood by the cache and there isn't explicit freshness information
available.

In some situations, responses without explicit cache freshness directives will be stored and served
using a heuristic freshness lifetime; see . As the heuristic is not
under the control of the application, it is generally preferable to set an explicit freshness lifetime
or make the response explicitly uncacheable.

If caching of a response is not desired, the appropriate cache response directive is no-store. Other
directives are not necessary, and no-store only needs to be sent in situations where the response
might be cached; see . Note that the no-cache directive allows a
response to be stored, just not reused by a cache without validation; it does not prevent caching
(despite its name).

For example, this response cannot be stored or reused by a cache:

[HTTP-CACHING], Section 4.2

[HTTP-
CACHING], Section 5.2.2.1 [HTTP-CACHING], Section 5.3

[HTTP-CACHING], Section 5.2.2.9

[HTTP-CACHING], Section 4.2.2

[HTTP-CACHING], Section 3

RFC 9205 Building Protocols with HTTP June 2022

Nottingham Best Current Practice Page 17

https://www.rfc-editor.org/rfc/rfc9111#section-4.2
https://www.rfc-editor.org/rfc/rfc9111#section-5.2.2.1
https://www.rfc-editor.org/rfc/rfc9111#section-5.3
https://www.rfc-editor.org/rfc/rfc9111#section-5.2.2.9
https://www.rfc-editor.org/rfc/rfc9111#section-4.2.2
https://www.rfc-editor.org/rfc/rfc9111#section-3

HTTP/1.1 200 OK
Content-Type: application/example+xml
Cache-Control: no-store

[content]

4.9.2. Stale Responses

Authors should understand that stale responses (e.g., with Cache-Control: max-age=0) can be
reused by caches when disconnected from the origin server; this can be useful for handling
network issues.

If doing so is not suitable for a given response, the origin should send the must-revalidate cache
directive. See and also for additional controls over
stale content.

Stale responses can be refreshed by assigning a validator, saving both transfer bandwidth and
latency for large responses; see .

Section 4.2.4 of [HTTP-CACHING] [RFC5861]

Section 13 of [HTTP]

4.9.3. Caching and Application Semantics

When an application has a need to express a lifetime that's separate from the freshness lifetime,
this should be conveyed separately, either in the response's content or in a separate header field.
When this happens, the relationship between HTTP caching and that lifetime needs to be
carefully considered since the response will be used as long as it is considered fresh.

In particular, application authors need to consider how responses that are not freshly obtained
from the origin server should be handled; if they have a concept like a validity period, this will
need to be calculated considering the age of the response (see).

One way to address this is to explicitly specify that responses need to be fresh upon use.

[HTTP-CACHING], Section 4.2.3

4.9.4. Varying Content Based Upon the Request

If an application uses a request header field to change the response's header fields or content,
authors should point out that this has implications for caching; in general, such resources need to
either make their responses uncacheable (e.g., with the no-store cache directive defined in

) or send the Vary response header field () on all
responses from that resource (including the "default" response).

For example, this response:

[HTTP-
CACHING], Section 5.2.2.5 [HTTP], Section 12.5.5

HTTP/1.1 200 OK
Content-Type: application/example+xml
Cache-Control: max-age=60
ETag: "sa0f8wf20fs0f"
Vary: Accept-Encoding

[content]

RFC 9205 Building Protocols with HTTP June 2022

Nottingham Best Current Practice Page 18

https://www.rfc-editor.org/rfc/rfc9111#section-4.2.4
https://www.rfc-editor.org/rfc/rfc9110#section-13
https://www.rfc-editor.org/rfc/rfc9111#section-4.2.3
https://www.rfc-editor.org/rfc/rfc9111#section-5.2.2.5
https://www.rfc-editor.org/rfc/rfc9110#section-12.5.5

can be stored for 60 seconds by both private and shared caches, can be revalidated with If-None-
Match, and varies on the Accept-Encoding request header field.

4.10. Handling Application State
Applications can use stateful cookies to identify a client and/or store client-specific
data to contextualise requests.

When used, it is important to carefully specify the scoping and use of cookies; if the application
exposes sensitive data or capabilities (e.g., by acting as an ambient authority), exploits are
possible. Mitigations include using a request-specific token to ensure the intent of the client.

[COOKIES]

4.11. Making Multiple Requests
Clients often need to send multiple requests to perform a task.

In HTTP/1 , parallel requests are most often supported by opening multiple
connections. Application performance can be impacted when too many simultaneous
connections are used because connections' congestion control will not be coordinated.
Furthermore, it can be difficult for applications to decide when to issue and which connection to
use for a given request, further impacting performance.

HTTP/2 and HTTP/3 offer multiplexing to applications, removing the need to
use multiple connections. However, application performance can still be significantly affected by
how the server chooses to prioritize responses. Depending on the application, it might be best for
the server to determine the priority of responses or for the client to hint its priorities to the server
(see, e.g.,).

In all versions of HTTP, requests are made independently -- you can't rely on the relative order of
two requests to guarantee their processing order. This is because they might be sent over a
multiplexed protocol by an intermediary or sent to different origin servers, or the server might
even perform processing in a different order. If two requests need strict ordering, the only reliable
way to ensure the outcome is to issue the second request when the final response to the first has
begun.

Applications make assumptions about the relationship between separate requests on a
single transport connection; doing so breaks many of the assumptions of HTTP as a stateless
protocol and will cause problems in interoperability, security, operability, and evolution.

[HTTP/1.1]

[HTTP/2] [HTTP/3]

[HTTP-PRIORITY]

MUST NOT

4.12. Client Authentication
Applications can use HTTP authentication () to identify clients. Per

, the Basic authentication scheme is not suitable for protecting sensitive or valuable
information unless the channel is secure (e.g., using the "https" URI scheme). Likewise,
requires the Digest authentication scheme to be used over a secure channel.

Section 11 of [HTTP]
[RFC7617]

[RFC7616]

RFC 9205 Building Protocols with HTTP June 2022

Nottingham Best Current Practice Page 19

https://www.rfc-editor.org/rfc/rfc9110#section-11

With HTTPS, clients might also be authenticated using certificates , but note that such
authentication is intrinsically scoped to the underlying transport connection. As a result, a client
has no way of knowing whether the authenticated status was used in preparing the response
(though Vary: * and/or the private cache directive can provide a partial indication), and the only
way to obtain a specifically unauthenticated response is to open a new connection.

When used, it is important to carefully specify the scoping and use of authentication; if the
application exposes sensitive data or capabilities (e.g., by acting as an ambient authority; see

), exploits are possible. Mitigations include using a request-specific token
to ensure the intent of the client.

[RFC8446]

Section 8.3 of [RFC6454]

4.13. Coexisting with Web Browsing
Even if there is not an intent for an application to be used with a Web browser, its resources will
remain available to browsers and other HTTP clients. This means that all such applications that
use HTTP need to consider how browsers will interact with them, particularly regarding security.

For example, if an application's state can be changed using a POST request, a Web browser can
easily be coaxed into cross-site request forgery (CSRF) from arbitrary Web sites.

Or, if an attacker gains control of content returned from the application's resources (for example,
part of the request is reflected in the response, or the response contains external information that
the attacker can change), they can inject code into the browser and access data and capabilities
as if they were the origin -- a technique known as a cross-site scripting (XSS) attack.

This is only a small sample of the kinds of issues that applications using HTTP must consider.
Generally, the best approach is to actually consider the application as a Web application, and to
follow best practices for their secure development.

A complete enumeration of such practices is out of scope for this document, but some
considerations include:

Using an application-specific media type in the Content-Type header field, and requiring
clients to fail if it is not used.
Using X-Content-Type-Options: nosniff to ensure that content under attacker
control can't be coaxed into a form that is interpreted as active content by a Web browser.
Using Content-Security-Policy to constrain the capabilities of active content (i.e., that
which can execute scripts, such as HTML and PDF), thereby mitigating XSS attacks.
Using Referrer-Policy to prevent sensitive data in URLs from being
leaked in the Referer request header field.
Using the 'HttpOnly' flag on Cookies to ensure that cookies are not exposed to browser
scripting languages .
Avoiding use of compression on any sensitive information (e.g., authentication tokens,
passwords), as the scripting environment offered by Web browsers allows an attacker to
repeatedly probe the compression space; if the attacker has access to the network path of the
communication, they can use this capability to recover that information.

•

• [FETCH]

• [CSP]
[HTML]

• [REFERRER-POLICY]

•
[COOKIES]

•

RFC 9205 Building Protocols with HTTP June 2022

Nottingham Best Current Practice Page 20

https://www.rfc-editor.org/rfc/rfc6454#section-8.3

Depending on how they are intended to be deployed, specifications for applications using HTTP
might require the use of these mechanisms in specific ways or might merely point them out in
Security Considerations.

An example of an HTTP response from an application that does not intend for its content to be
treated as active by browsers might look like this:

If an application has browser compatibility as a goal, client interaction ought to be defined in
terms of since that is the abstraction that browsers use for HTTP; it enforces many of
these best practices.

HTTP/1.1 200 OK
Content-Type: application/example+json
X-Content-Type-Options: nosniff
Content-Security-Policy: default-src 'none'
Cache-Control: max-age=3600
Referrer-Policy: no-referrer

[content]

[FETCH]

4.14. Maintaining Application Boundaries
Because many HTTP capabilities are scoped to the origin , applications also need to
consider how deployments might interact with other applications (including Web browsing) that
use the same origin server.

For example, if cookies are used to carry application state, they will be sent with all
requests to the origin by default (unless scoped by path), and the application might receive
cookies from other applications on the origin server. This can lead to security issues as well as
collision in cookie names.

One solution to these issues is to require a dedicated hostname for the application so that it has a
unique origin. However, it is often desirable to allow multiple applications to be deployed on a
single hostname; doing so provides the most deployment flexibility and enables them to be
"mixed" together (see for details).

Therefore, applications using HTTP should strive to allow multiple applications on an origin.
Specifically, when specifying the use of cookies, HTTP authentication realms , or other
origin-wide HTTP mechanisms, applications using HTTP should not mandate the use of a
particular name but instead let deployments configure them. Consideration should be given to
scoping them to part of the origin, using their specified mechanisms for doing so.

Modern Web browsers constrain the ability of content from one origin to access resources from
another to avoid leaking private information. As a result, applications that wish to expose cross-
origin data to browsers will need to implement the CORS protocol; see .

[RFC6454]

[COOKIES]

[BCP190]

[HTTP]

[FETCH]

RFC 9205 Building Protocols with HTTP June 2022

Nottingham Best Current Practice Page 21

4.15. Using Server Push
HTTP/2 added the ability for servers to "push" request/response pairs to clients in

. While server push seems like a natural fit for many common application semantics
(e.g., "fanout" and publish/subscribe), a few caveats should be noted:

Server push is hop by hop; that is, it is not automatically forwarded by intermediaries. As a
result, it might not work easily (or at all) with proxies, reverse proxies, and content delivery
networks.
Server push can have a negative performance impact on HTTP when used incorrectly,
particularly if there is contention with resources that have actually been requested by the
client.
Server push is implemented differently in different clients, especially regarding interaction
with HTTP caching, and capabilities might vary.
APIs for server push are currently unavailable in some implementations and vary widely in
others. In particular, there is no current browser API for it.
Server push is not supported in HTTP/1.1 or HTTP/1.0.
Server push does not form part of the "core" semantics of HTTP and therefore might not be
supported by future versions of the protocol.

Applications wishing to optimise cases where the client can perform work related to requests
before the full response is available (e.g., fetching links for things likely to be contained within)
might benefit from using the 103 (Early Hints) status code; see .

Applications using server push directly need to enforce the requirements regarding authority in
 to avoid cross-origin push attacks.

[HTTP/2],
Section 8.4

•

•

•

•

•
•

[RFC8297]

[HTTP/2], Section 8.4

4.16. Allowing Versioning and Evolution
It's often necessary to introduce new features into application protocols and change existing
ones.

In HTTP, backwards-incompatible changes can be made using mechanisms such as:

Using a distinct link relation type to identify a URL for a resource that
implements the new functionality.
Using a distinct media type to identify formats that enable the new functionality.
Using a distinct HTTP header field to implement new functionality outside the message
content.

• [WEB-LINKING]

• [RFC6838]
•

5. IANA Considerations
This document has no IANA actions.

RFC 9205 Building Protocols with HTTP June 2022

Nottingham Best Current Practice Page 22

https://www.rfc-editor.org/rfc/rfc9113#section-8.4
https://www.rfc-editor.org/rfc/rfc9113#section-8.4

6. Security Considerations
Applications using HTTP are subject to the security considerations of HTTP itself and any
extensions used; , , and are often relevant, amongst
others.

Section 4.4.2 recommends support for "https" URLs and discourages the use of "http" URLs to
provide authentication, integrity, and confidentiality, as well as to mitigate pervasive monitoring
attacks. Many applications using HTTP perform authentication and authorization with bearer
tokens (e.g., in session cookies). If the transport is unencrypted, an attacker that can eavesdrop
upon or modify HTTP communications can often escalate their privilege to perform operations
on resources.

Section 4.9.3 highlights the potential for mismatch between HTTP caching and application-
specific storage of responses or information therein.

Section 4.10 discusses the impact of using stateful mechanisms in the protocol as ambient
authority and suggests a mitigation.

Section 4.13 highlights the implications of Web browsers' capabilities on applications that use
HTTP.

Section 4.14 discusses the issues that arise when applications are deployed on the same origin as
websites (and other applications).

Section 4.15 highlights risks of using HTTP/2 server push in a manner other than that specified.

Applications that use HTTP in a manner that involves modification of implementations -- for
example, requiring support for a new URI scheme or a non-standard method -- risk having those
implementations "fork" from their parent HTTP implementations, with the possible result that
they do not benefit from patches and other security improvements incorporated upstream.

[HTTP] [HTTP-CACHING] [WEB-LINKING]

6.1. Privacy Considerations
HTTP clients can expose a variety of information to servers. Besides information that's explicitly
sent as part of an application's operation (for example, names and other user-entered data) and
"on the wire" (which is one of the reasons "https" is recommended in Section 4.4.2), other
information can be gathered through less obvious means -- often by connecting activities of a
user over time.

This includes session information, tracking the client through fingerprinting, and code execution.

Session information includes things like the IP address of the client, TLS session tickets, Cookies,
ETags stored in the client's cache, and other stateful mechanisms. Applications are advised to
avoid using session mechanisms unless they are unavoidable or necessary for operation, in
which case these risks need to be documented. When they are used, implementations should be
encouraged to allow clearing such state.

RFC 9205 Building Protocols with HTTP June 2022

Nottingham Best Current Practice Page 23

[BCP190]

[HTTP]

[HTTP-CACHING]

[RFC2119]

[RFC6454]

[RFC6648]

[RFC6838]

[RFC8174]

7. References

7.1. Normative References

, , , ,
, June 2020, .

, , and , ,
, , , June 2022,

.

, , and , ,
, , , June 2022,

.

, , ,
, , March 1997,
.

, , , , December
2011, .

, , and ,
, , ,

, June 2012, .

, , and ,
, , , , January 2013,

.

, , ,
, , May 2017,
.

Fingerprinting uses unique aspects of a client's messages and behaviours to connect disparate
requests and connections. For example, the User-Agent request header field conveys specific
information about the implementation; the Accept-Language request header field conveys the
users' preferred language. In combination, a number of these markers can be used to uniquely
identify a client, impacting its control over its data. As a result, applications are advised to specify
that clients should only emit the information they need to function in requests.

Finally, if an application exposes the ability to execute code, great care needs to be taken since
any ability to observe its environment can be used as an opportunity to both fingerprint the
client and to obtain and manipulate private data (including session information). For example,
access to high-resolution timers (even indirectly) can be used to profile the underlying hardware,
creating a unique identifier for the system. Applications are advised to avoid allowing the use of
mobile code where possible; when it cannot be avoided, the resulting system's security properties
need be carefully scrutinised.

Nottingham, M. "URI Design and Ownership" BCP 190 RFC 8820 DOI 10.17487/
RFC8820 <https://www.rfc-editor.org/rfc/rfc8820>

Fielding, R., Ed. Nottingham, M., Ed. J. Reschke, Ed. "HTTP Semantics" STD
97 RFC 9110 DOI 10.17487/RFC9110 <https://www.rfc-editor.org/info/
rfc9110>

Fielding, R., Ed. Nottingham, M., Ed. J. Reschke, Ed. "HTTP Caching" STD
98 RFC 9111 DOI 10.17487/RFC9111 <https://www.rfc-editor.org/info/
rfc9111>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Barth, A. "The Web Origin Concept" RFC 6454 DOI 10.17487/RFC6454
<https://www.rfc-editor.org/info/rfc6454>

Saint-Andre, P. Crocker, D. M. Nottingham "Deprecating the "X-" Prefix and
Similar Constructs in Application Protocols" BCP 178 RFC 6648 DOI 10.17487/
RFC6648 <https://www.rfc-editor.org/info/rfc6648>

Freed, N. Klensin, J. T. Hansen "Media Type Specifications and Registration
Procedures" BCP 13 RFC 6838 DOI 10.17487/RFC6838 <https://
www.rfc-editor.org/info/rfc6838>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP 14
RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

RFC 9205 Building Protocols with HTTP June 2022

Nottingham Best Current Practice Page 24

https://www.rfc-editor.org/rfc/rfc8820
https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9111
https://www.rfc-editor.org/info/rfc9111
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc6454
https://www.rfc-editor.org/info/rfc6648
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174

[STRUCTURED-FIELDS]

[URL]

[WEB-LINKING]

[WELL-KNOWN-URI]

[COOKIES]

[CSP]

[FETCH]

[HTML]

[HTTP-PRIORITY]

[HTTP/1.1]

[HTTP/2]

[HTTP/3]

[JSON]

[PROBLEM-DETAILS]

[REFERRER-POLICY]

 and , ,
, , February 2021,
.

, , and ,
, , , , January 2005,

.

, , , , October 2017,
.

, ,
, , May 2019, .

7.2. Informative References

, , ,
, April 2011, .

, , , June 2021,
.

, , .

, , .

 and , ,
, , June 2022,
.

, , and , , ,
, , June 2022, .

 and , , , ,
June 2022, .

, , , , June 2022,
.

, ,
, , , December 2017,

.

 and , , ,
, March 2016, .

 and , ,
, January 2017,

.

Nottingham, M. P-H. Kamp "Structured Field Values for HTTP"
RFC 8941 DOI 10.17487/RFC8941 <https://www.rfc-editor.org/info/
rfc8941>

Berners-Lee, T. Fielding, R. L. Masinter "Uniform Resource Identifier (URI):
Generic Syntax" STD 66 RFC 3986 DOI 10.17487/RFC3986 <https://
www.rfc-editor.org/info/rfc3986>

Nottingham, M. "Web Linking" RFC 8288 DOI 10.17487/RFC8288
<https://www.rfc-editor.org/info/rfc8288>

Nottingham, M. "Well-Known Uniform Resource Identifiers (URIs)" RFC
8615 DOI 10.17487/RFC8615 <https://www.rfc-editor.org/info/rfc8615>

Barth, A. "HTTP State Management Mechanism" RFC 6265 DOI 10.17487/
RFC6265 <https://www.rfc-editor.org/info/rfc6265>

West, M. "Content Security Policy Level 3" W3C Working Draft
<https://www.w3.org/TR/2021/WD-CSP3-20210629>

WHATWG "Fetch - Living Standard" <https://fetch.spec.whatwg.org>

WHATWG "HTML - Living Standard" <https://html.spec.whatwg.org>

 ()奥 一穂 Oku, K. L. Pardue "Extensible Prioritization Scheme for HTTP"
RFC 9218 DOI 10.17487/RFC9218 <https://www.rfc-editor.org/info/
rfc9218>

Fielding, R., Ed. Nottingham, M., Ed. J. Reschke, Ed. "HTTP/1.1" STD 99 RFC
9112 DOI 10.17487/RFC9112 <https://www.rfc-editor.org/info/rfc9112>

Thomson, M., Ed. C. Benfield, Ed. "HTTP/2" RFC 9113 DOI 10.17487/RFC9113
<https://www.rfc-editor.org/info/rfc9113>

Bishop, M., Ed. "HTTP/3" RFC 9114 DOI 10.17487/RFC9114 <https://
www.rfc-editor.org/info/rfc9114>

Bray, T., Ed. "The JavaScript Object Notation (JSON) Data Interchange Format"
STD 90 RFC 8259 DOI 10.17487/RFC8259 <https://www.rfc-
editor.org/info/rfc8259>

Nottingham, M. E. Wilde "Problem Details for HTTP APIs" RFC 7807
DOI 10.17487/RFC7807 <https://www.rfc-editor.org/info/rfc7807>

Eisinger, J. E. Stark "Referrer Policy" W3C Candidate
Recommendation CR-referrer-policy-20170126 <https://
www.w3.org/TR/2017/CR-referrer-policy-20170126>

RFC 9205 Building Protocols with HTTP June 2022

Nottingham Best Current Practice Page 25

https://www.rfc-editor.org/info/rfc8941
https://www.rfc-editor.org/info/rfc8941
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc8288
https://www.rfc-editor.org/info/rfc8615
https://www.rfc-editor.org/info/rfc6265
https://www.w3.org/TR/2021/WD-CSP3-20210629
https://fetch.spec.whatwg.org
https://html.spec.whatwg.org
https://www.rfc-editor.org/info/rfc9218
https://www.rfc-editor.org/info/rfc9218
https://www.rfc-editor.org/info/rfc9112
https://www.rfc-editor.org/info/rfc9113
https://www.rfc-editor.org/info/rfc9114
https://www.rfc-editor.org/info/rfc9114
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc7807
https://www.w3.org/TR/2017/CR-referrer-policy-20170126
https://www.w3.org/TR/2017/CR-referrer-policy-20170126

[RFC3205]

[RFC4791]

[RFC4918]

[RFC5861]

[RFC6415]

[RFC6797]

[RFC7258]

[RFC7301]

[RFC7595]

[RFC7605]

[RFC7616]

[RFC7617]

[RFC8297]

[RFC8446]

, , , ,
, February 2002, .

, , and ,
, , , March 2007,

.

,
, , , June 2007,

.

, , ,
, May 2010, .

 and , , ,
, October 2011, .

, , and , ,
, , November 2012,

.

 and , , ,
, , May 2014, .

, , , and ,
, ,

, July 2014, .

, , and ,
, , , , June 2015,

.

, ,
, , , August 2015,

.

, , and ,
, , , September 2015,

.

, , ,
, September 2015, .

, , ,
, December 2017, .

, , ,
, August 2018, .

Moore, K. "On the use of HTTP as a Substrate" BCP 56 RFC 3205 DOI 10.17487/
RFC3205 <https://www.rfc-editor.org/info/rfc3205>

Daboo, C. Desruisseaux, B. L. Dusseault "Calendaring Extensions to
WebDAV (CalDAV)" RFC 4791 DOI 10.17487/RFC4791 <https://
www.rfc-editor.org/info/rfc4791>

Dusseault, L., Ed. "HTTP Extensions for Web Distributed Authoring and
Versioning (WebDAV)" RFC 4918 DOI 10.17487/RFC4918 <https://
www.rfc-editor.org/info/rfc4918>

Nottingham, M. "HTTP Cache-Control Extensions for Stale Content" RFC 5861
DOI 10.17487/RFC5861 <https://www.rfc-editor.org/info/rfc5861>

Hammer-Lahav, E., Ed. B. Cook "Web Host Metadata" RFC 6415 DOI
10.17487/RFC6415 <https://www.rfc-editor.org/info/rfc6415>

Hodges, J. Jackson, C. A. Barth "HTTP Strict Transport Security (HSTS)" RFC
6797 DOI 10.17487/RFC6797 <https://www.rfc-editor.org/info/
rfc6797>

Farrell, S. H. Tschofenig "Pervasive Monitoring Is an Attack" BCP 188 RFC
7258 DOI 10.17487/RFC7258 <https://www.rfc-editor.org/info/rfc7258>

Friedl, S. Popov, A. Langley, A. E. Stephan "Transport Layer Security (TLS)
Application-Layer Protocol Negotiation Extension" RFC 7301 DOI 10.17487/
RFC7301 <https://www.rfc-editor.org/info/rfc7301>

Thaler, D., Ed. Hansen, T. T. Hardie "Guidelines and Registration Procedures
for URI Schemes" BCP 35 RFC 7595 DOI 10.17487/RFC7595 <https://
www.rfc-editor.org/info/rfc7595>

Touch, J. "Recommendations on Using Assigned Transport Port Numbers" BCP
165 RFC 7605 DOI 10.17487/RFC7605 <https://www.rfc-editor.org/
info/rfc7605>

Shekh-Yusef, R., Ed. Ahrens, D. S. Bremer "HTTP Digest Access
Authentication" RFC 7616 DOI 10.17487/RFC7616 <https://
www.rfc-editor.org/info/rfc7616>

Reschke, J. "The 'Basic' HTTP Authentication Scheme" RFC 7617 DOI 10.17487/
RFC7617 <https://www.rfc-editor.org/info/rfc7617>

Oku, K. "An HTTP Status Code for Indicating Hints" RFC 8297 DOI 10.17487/
RFC8297 <https://www.rfc-editor.org/info/rfc8297>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446
DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

RFC 9205 Building Protocols with HTTP June 2022

Nottingham Best Current Practice Page 26

https://www.rfc-editor.org/info/rfc3205
https://www.rfc-editor.org/info/rfc4791
https://www.rfc-editor.org/info/rfc4791
https://www.rfc-editor.org/info/rfc4918
https://www.rfc-editor.org/info/rfc4918
https://www.rfc-editor.org/info/rfc5861
https://www.rfc-editor.org/info/rfc6415
https://www.rfc-editor.org/info/rfc6797
https://www.rfc-editor.org/info/rfc6797
https://www.rfc-editor.org/info/rfc7258
https://www.rfc-editor.org/info/rfc7301
https://www.rfc-editor.org/info/rfc7595
https://www.rfc-editor.org/info/rfc7595
https://www.rfc-editor.org/info/rfc7605
https://www.rfc-editor.org/info/rfc7605
https://www.rfc-editor.org/info/rfc7616
https://www.rfc-editor.org/info/rfc7616
https://www.rfc-editor.org/info/rfc7617
https://www.rfc-editor.org/info/rfc8297
https://www.rfc-editor.org/info/rfc8446

[RFC8470]

[RFC8949]

[SECCTXT]

[URI-TEMPLATE]

[XML]

, , and , ,
, , September 2018,

.

 and , ,
, , , December 2020,

.

, , , September 2021,
.

, , , , and ,
, , , March 2012,

.

, , , , and ,
,

, November 2008, .

Thomson, M. Nottingham, M. W. Tarreau "Using Early Data in HTTP" RFC
8470 DOI 10.17487/RFC8470 <https://www.rfc-editor.org/info/
rfc8470>

Bormann, C. P. Hoffman "Concise Binary Object Representation (CBOR)"
STD 94 RFC 8949 DOI 10.17487/RFC8949 <https://www.rfc-
editor.org/info/rfc8949>

West, M. "Secure Contexts" W3C Candidate Recommendation
<https://www.w3.org/TR/2021/CRD-secure-contexts-20210918>

Gregorio, J. Fielding, R. Hadley, M. Nottingham, M. D. Orchard "URI
Template" RFC 6570 DOI 10.17487/RFC6570 <https://www.rfc-
editor.org/info/rfc6570>

Bray, T. Paoli, J. Sperberg-McQueen, M. Maler, E. F. Yergeau "Extensible
Markup Language (XML) 1.0 (Fifth Edition)" W3C Recommendation REC-
xml-20081126 <https://www.w3.org/TR/2008/REC-xml-20081126>

Appendix A. Changes from RFC 3205
 captured the Best Current Practice in the early 2000s based on the concerns facing

protocol designers at the time. Use of HTTP has changed considerably since then; as a result, this
document is substantially different. Consequently, the changes are too numerous to list
individually.

[RFC3205]

Author's Address
Mark Nottingham
Prahran
Australia

 mnot@mnot.net Email:
 https://www.mnot.net/ URI:

RFC 9205 Building Protocols with HTTP June 2022

Nottingham Best Current Practice Page 27

https://www.rfc-editor.org/info/rfc8470
https://www.rfc-editor.org/info/rfc8470
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8949
https://www.w3.org/TR/2021/CRD-secure-contexts-20210918
https://www.rfc-editor.org/info/rfc6570
https://www.rfc-editor.org/info/rfc6570
https://www.w3.org/TR/2008/REC-xml-20081126
mailto:mnot@mnot.net
https://www.mnot.net/

	RFC 9205
	Building Protocols with HTTP
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Notational Conventions

	2. Is HTTP Being Used?
	2.1. Non-HTTP Protocols

	3. What's Important About HTTP
	3.1. Generic Semantics
	3.2. Links
	3.3. Rich Functionality

	4. Best Practices for Specifying the Use of HTTP
	4.1. Specifying the Use of HTTP
	4.2. Specifying Server Behaviour
	4.3. Specifying Client Behaviour
	4.4. Specifying URLs
	4.4.1. Discovering an Application's URLs
	4.4.2. Considering URI Schemes
	4.4.3. Choosing Transport Ports

	4.5. Using HTTP Methods
	4.5.1. GET
	4.5.2. OPTIONS

	4.6. Using HTTP Status Codes
	4.6.1. Redirection

	4.7. Specifying HTTP Header Fields
	4.8. Defining Message Content
	4.9. Leveraging HTTP Caching
	4.9.1. Freshness
	4.9.2. Stale Responses
	4.9.3. Caching and Application Semantics
	4.9.4. Varying Content Based Upon the Request

	4.10. Handling Application State
	4.11. Making Multiple Requests
	4.12. Client Authentication
	4.13. Coexisting with Web Browsing
	4.14. Maintaining Application Boundaries
	4.15. Using Server Push
	4.16. Allowing Versioning and Evolution

	5. IANA Considerations
	6. Security Considerations
	6.1. Privacy Considerations

	7. References
	7.1. Normative References
	7.2. Informative References

	Appendix A. Changes from RFC 3205
	Author's Address

 Building Protocols with HTTP

 Prahran
 Australia

 mnot@mnot.net
 https://www.mnot.net/

 Applications and Real-Time
 HTTP
 HTTP API

 Applications often use HTTP as a substrate to create HTTP-based APIs. This document specifies best practices for writing specifications that use HTTP to define new application protocols. It is written primarily to guide IETF efforts to define application protocols using HTTP for deployment on the Internet but might be applicable in other situations.
 This document obsoletes RFC 3205.

 Status of This Memo

 This memo documents an Internet Best Current Practice.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further information
 on BCPs is available in Section 2 of RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Notational Conventions

 . Is HTTP Being Used?

 . Non-HTTP Protocols

 . What's Important About HTTP

 . Generic Semantics

 . Links

 . Rich Functionality

 . Best Practices for Specifying the Use of HTTP

 . Specifying the Use of HTTP

 . Specifying Server Behaviour

 . Specifying Client Behaviour

 . Specifying URLs

 . Discovering an Application's URLs

 . Considering URI Schemes

 . Choosing Transport Ports

 . Using HTTP Methods

 . GET

 . OPTIONS

 . Using HTTP Status Codes

 . Redirection

 . Specifying HTTP Header Fields

 . Defining Message Content

 . Leveraging HTTP Caching

 . Freshness

 . Stale Responses

 . Caching and Application Semantics

 . Varying Content Based Upon the Request

 . Handling Application State

 . Making Multiple Requests

 . Client Authentication

 . Coexisting with Web Browsing

 . Maintaining Application Boundaries

 . Using Server Push

 . Allowing Versioning and Evolution

 . IANA Considerations

 . Security Considerations

 . Privacy Considerations

 . References

 . Normative References

 . Informative References

 . Changes from RFC 3205

 Author's Address

 Introduction
 Applications other than Web browsing often use HTTP as a substrate, a practice sometimes referred to as creating "HTTP-based APIs", "REST APIs", or just "HTTP APIs". This is done for a variety of reasons, including:

 familiarity by implementers, specifiers, administrators, developers, and users;
 availability of a variety of client, server, and proxy implementations;
 ease of use;
 availability of Web browsers;
 reuse of existing mechanisms like authentication and encryption;
 presence of HTTP servers and clients in target deployments; and
 its ability to traverse firewalls.

 These protocols are often ad hoc, intended for only deployment by one or a few servers and consumption by a limited set of clients. As a result, a body of practices and tools has arisen around defining HTTP-based APIs that favour these conditions.
 However, when such an application has multiple, separate implementations, is deployed on multiple uncoordinated servers, and is consumed by diverse clients (as is often the case for HTTP APIs defined by standards efforts), tools and practices intended for limited deployment can become unsuitable.
 This mismatch is largely because the API's clients and servers will implement and evolve at different paces, leading to a need for deployments with different features and versions to coexist. As a result, the designers of HTTP-based APIs intended for such deployments need to more carefully consider how extensibility of the service will be handled and how different deployment requirements will be accommodated.
 More generally, an application protocol using HTTP faces a number of design decisions, including:

 Should it define a new URI scheme? Use new ports?
 Should it use standard HTTP methods and status codes or define new ones?
 How can the maximum value be extracted from the use of HTTP?
 How does it coexist with other uses of HTTP -- especially Web browsing?
 How can interoperability problems and "protocol dead ends" be avoided?

 defines when this document applies, surveys the properties of HTTP that are important to preserve, and contains best practices for the specification of applications that use HTTP.
 It is written primarily to guide IETF efforts to define application protocols using HTTP for deployment on the Internet but might be applicable in other situations. Note that the requirements herein do not necessarily apply to the development of generic HTTP extensions.
 This document obsoletes to reflect the experience and developments regarding HTTP in the intervening time.

 Notational Conventions

 The key words " MUST", " MUST NOT", " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT", " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be interpreted as
 described in BCP 14
 when, and only when, they appear in all capitals, as shown here.

 Is HTTP Being Used?
 Different applications have different goals when using HTTP. The recommendations in this document apply when a specification defines an application that:

 uses the transport port 80 or 443, or
 uses the URI scheme "http" or "https", or
 uses an ALPN protocol ID that generically identifies HTTP (e.g., "http/1.1", "h2", "h3"), or
 makes registrations in or overall modifications to the IANA registries defined for HTTP.

 Additionally, when a specification is using HTTP, all of the requirements of the HTTP protocol suite are in force (in particular but also other specifications such as the specific version of HTTP in use and any extensions in use).
 Note that this document is intended to apply to applications, not generic extensions to HTTP. Furthermore, while it is intended for IETF-specified applications, other standards organisations are encouraged to adhere to its requirements.

 Non-HTTP Protocols
 An application can rely upon HTTP without meeting the criteria for using it as defined above.
	For example, an application might wish to avoid re-specifying parts of the message format but might change other aspects of the protocol's operation, or it might want to use application-specific methods.
 Doing so permits more freedom to modify protocol operations, but at least a portion of the benefits outlined in are lost as most HTTP implementations won't be easily adaptable to these changes. The benefit of mindshare will also be lost.
 Such specifications MUST NOT use HTTP's URI schemes, transport ports, ALPN protocol IDs, or IANA registries; rather, they are encouraged to establish their own.

 What's Important About HTTP
 This section examines the characteristics of HTTP that are important to consider when using HTTP to define an application protocol.

 Generic Semantics
 Much of the value of HTTP is in its generic semantics -- that is, the protocol elements defined by HTTP are potentially applicable to every resource and are not specific to a particular context. Application-specific semantics are best expressed in message content and header fields, not status codes or methods (although status codes and methods do have generic semantics that relate to application state).
 This split between generic and application-specific semantics allows an HTTP message to be handled by common software (e.g., HTTP servers, intermediaries, client implementations, and caches) without requiring those implementations to understand the application in use. It also allows people to leverage their knowledge of HTTP semantics without needing specialised knowledge of a particular application.
 Therefore, applications that use HTTP MUST NOT redefine, refine, or overlay the semantics of generic protocol elements such as methods, status codes, or existing header fields. Instead, they should focus their specifications on protocol elements that are specific to that application -- namely, their HTTP resources.
 When writing a specification, it's often tempting to specify exactly how HTTP is to be implemented, supported, and used. However, this can easily lead to an unintended profile of HTTP behaviour. For example, it's common to see specifications with language like this:

 A POST request MUST result in a 201 (Created) response.

 This forms an expectation in the client that the response will always be 201 (Created) when in fact there are a number of reasons why the status code might differ in a real deployment; for example, there might be a proxy that requires authentication, or a server-side error, or a redirection. If the client does not anticipate this, the application's deployment is brittle.
 See for more details.

 Links
 Another common practice is assuming that the HTTP server's namespace (or a portion thereof) is exclusively for the use of a single application. This effectively overlays special, application-specific semantics onto that space and precludes other applications from using it.
 As explained in , such "squatting" on a part of the URL space by a standard usurps the server's authority over its own resources, can cause deployment issues, and is therefore bad practice in standards.
 Instead of statically defining URI components like paths, it is RECOMMENDED that applications using HTTP define and use links to allow flexibility in deployment.
 Using runtime links in this fashion has a number of other benefits -- especially when an application is to have multiple implementations and/or deployments (as is often the case for those that are standardised).
 For example, navigating with a link allows a request to be routed to a different server without the overhead of a redirection, thereby supporting deployment across machines well.
 By using links, it also becomes possible to "mix and match" different applications on the same server. The use of links also offers a natural mechanism for extensibility, versioning, and capability management because the document containing the links can also contain information about their targets.
 Using links also offers a form of cache invalidation that's seen on the Web; when a resource's state changes, the application can change the affected links so that a fresh copy is always fetched.
 See for more details.

 Rich Functionality
 HTTP offers a number of features to applications, such as:

 Message framing
 Multiplexing (in HTTP/2 and HTTP/3)
 Integration with TLS
 Support for intermediaries (proxies, gateways, content delivery networks (CDNs))
 Client authentication
 Content negotiation for format, language, and other features
 Caching for server scalability, latency and bandwidth reduction, and reliability
 Granularity of access control (through use of a rich space of URLs)
 Partial content to selectively request part of a response
 The ability to interact with the application easily using a Web browser

 An application that uses HTTP is encouraged to utilise the various features that the protocol offers so that its users receive the maximum benefit from those features and so that the application can be deployed in a variety of situations. This document does not require specific features to be used since the appropriate design trade-offs are highly specific to a given situation. However, following the practices in is a good starting point.

 Best Practices for Specifying the Use of HTTP
 This section contains best practices for specifying the use of HTTP by applications, including practices for specific HTTP protocol elements.

 Specifying the Use of HTTP
 Specifications should use as the primary reference for HTTP; it is not necessary to reference all of the specifications in the HTTP suite unless there are specific reasons to do so (e.g., a particular feature is called out).
 Because HTTP is a hop-by-hop protocol, a connection can be handled by implementations that are not controlled by the application; for example, proxies, CDNs, firewalls, and so on. Requiring a particular version of HTTP makes it difficult to use in these situations and harms interoperability. Therefore, it is NOT RECOMMENDED that applications using HTTP specify a minimum version of HTTP to be used.
 However, if an application's deployment benefits from the use of a particular version of HTTP (for example, HTTP/2's multiplexing), this ought be noted.
 Applications using HTTP MUST NOT specify a maximum version, to preserve the protocol's ability to evolve.
 When specifying examples of protocol interactions, applications should document both the request and response messages with complete header sections, preferably in HTTP/1.1 format . For example:

GET /thing HTTP/1.1
Host: example.com
Accept: application/things+json
User-Agent: Foo/1.0

HTTP/1.1 200 OK
Content-Type: application/things+json
Content-Length: 500
Server: Bar/2.2

[content here]

 Specifying Server Behaviour
 The server-side behaviours of an application are most effectively specified by defining the following protocol elements:

 Media types , often based upon a format convention such as JSON ;
 HTTP header fields, per ; and
 The behaviour of resources, as identified by link relations .

 An application can define its operation by composing these protocol elements to define a set of resources that are identified by link relations and that implement specified behaviours, including:

 retrieval of resource state using GET in one or more formats identified by media type;
 resource creation or update using POST or PUT, with an appropriately identified request content format;
 data processing using POST and identified request and response content format(s); and
 Resource deletion using DELETE.

 For example, an application might specify:

 Resources linked to with the "example-widget" link relation type are
Widgets. The state of a Widget can be fetched in the
"application/example-widget+json" format, and can be updated by PUT
to the same link. Widget resources can be deleted.
 The Example-Count response header field on Widget representations
indicates how many Widgets are held by the sender.
 The "application/example-widget+json" format is a JSON [RFC8259]
format representing the state of a Widget. It contains links to
related information in the link indicated by the Link header field
value with the "example-other-info" link relation type.

 Applications can also specify the use of URI Templates to allow clients to generate URLs based upon runtime data.

 Specifying Client Behaviour
 An application's expectations for client behaviour ought to be closely aligned with those of Web browsers to avoid interoperability issues when they are used.
 One way to do this is to define it in terms of since that is the abstraction that browsers use for HTTP.
 Some client behaviours (e.g., automatic redirect handling) and extensions (e.g., cookies) are not required by HTTP but nevertheless have become very common. If their use is not explicitly specified by applications using HTTP, there may be confusion and interoperability problems. In particular:

 Redirect handling:
 Applications need to specify how redirects are expected to be handled; see .
 Cookies:
 Applications using HTTP should explicitly reference the Cookie specification if they are required.
 Certificates:
 Applications using HTTP should specify that TLS certificates are to be checked according to when HTTPS is used.

 Applications using HTTP should not require that clients statically support HTTP features that are usually negotiated. For example, requiring that clients support responses with a certain content coding () instead of negotiating for it () means that otherwise conformant clients cannot interoperate with the application. Applications can encourage the implementation of such features, though.

 Specifying URLs
 In HTTP, the resources that clients interact with are identified with URLs . As explains, parts of the URL are designed to be under the control of the owner (also known as the "authority") of that server to give them the flexibility in deployment.
 This means that in most cases, specifications for applications that use HTTP won't contain fixed application URLs or paths; while it is common practice for a specification of a single-deployment API to specify the path prefix "/app/v1" (for example), doing so in an IETF specification is inappropriate.
 Therefore, the specification writer needs some mechanism to allow clients to discover an application's URLs. Additionally, they need to specify which URL scheme(s) the application should be used with and whether to use a dedicated port or to reuse HTTP's port(s).

 Discovering an Application's URLs
 Generally, a client will begin interacting with a given application server by requesting an initial document that contains information about that particular deployment, potentially including links to other relevant resources. Doing so ensures that the deployment is as flexible as possible (potentially spanning multiple servers), allows evolution, and also gives the application the opportunity to tailor the "discovery document" to the client.
 There are a few common patterns for discovering that initial URL.
 The most straightforward mechanism for URL discovery is to configure the client with (or otherwise convey to it) a full URL. This might be done in a configuration document or through another discovery mechanism.
 However, if the client only knows the server's hostname and the identity of the application, there needs to be some way to derive the initial URL from that information.
 An application cannot define a fixed prefix for its URL paths; see . Instead, a specification for such an application can use one of the following strategies:

 Register a well-known URI as an entry point for that application. This provides a fixed path on every potential server that will not collide with other applications.
 Enable the server authority to convey a URI Template or similar mechanism for generating a URL for an entry point. For example, this might be done in a configuration document or other artefact.

 Once the discovery document is located, it can be fetched, cached for later reuse (if allowed by its metadata), and used to locate other resources that are relevant to the application using full URIs or URL Templates.
 In some cases, an application may not wish to use such a discovery document -- for example, when communication is very brief or when the latency concerns of doing so preclude the use of a discovery document. These situations can be addressed by placing all of the application's resources under a well-known location.

 Considering URI Schemes
 Applications that use HTTP will typically employ the "http" and/or "https" URI schemes. "https" is RECOMMENDED to provide authentication, integrity, and confidentiality, as well as to mitigate pervasive monitoring attacks .
 However, application-specific schemes can also be defined. When defining a URI scheme for an application using HTTP, there are a number of trade-offs and caveats to keep in mind:

 Unmodified Web browsers will not support the new scheme. While it is possible to register new URI schemes with Web browsers (e.g., registerProtocolHandler() in , as well as several proprietary approaches), support for these mechanisms is not shared by all browsers, and their capabilities vary.
 Existing non-browser clients, intermediaries, servers, and associated software will not recognise the new scheme. For example, a client library might fail to dispatch the request, a cache might refuse to store the response, and a proxy might fail to forward the request.
 Because URLs commonly occur in HTTP artefacts and are often generated automatically (e.g., in the Location response header field), it can be difficult to ensure that the new scheme is used consistently.
 The resources identified by the new scheme will still be available using "http" and/or "https" URLs. Those URLs can "leak" into use, which can present security and operability issues. For example, using a new scheme to ensure that requests don't get sent to a "normal" Web site is likely to fail.
 Features that rely upon the URL's origin , such as the Web's same-origin policy, will be impacted by a change of scheme.
 HTTP-specific features such as cookies , authentication , caching , HTTP Strict Transport Security (HSTS) , and Cross-Origin Resource Sharing (CORS) might or might not work correctly, depending on how they are defined and implemented. Generally, they are designed and implemented with an assumption that the URL will always be "http" or "https".
 Web features that require a secure context will likely treat a new scheme as insecure.

 See for more information about minting new URI schemes.

 Choosing Transport Ports
 Applications can use the applicable default port (80 for HTTP, 443 for HTTPS), or they can be deployed upon other ports. This decision can be made at deployment time or might be encouraged by the application's specification (e.g., by registering a port for that application).
 If a non-default port is used, it needs to be reflected in the authority of all URLs for that resource; the only mechanism for changing a default port is changing the URI scheme (see).
 Using a port other than the default has privacy implications (i.e., the protocol can now be distinguished from other traffic), as well as operability concerns (as some networks might block or otherwise interfere with it). Privacy implications (including those stemming from this distinguishability) should be documented in Security Considerations.
 See for further guidance.

 Using HTTP Methods
 Applications that use HTTP MUST confine themselves to using registered HTTP methods such as GET, POST, PUT, DELETE, and PATCH.
 New HTTP methods are rare; they are required to be registered in the "HTTP Method Registry" with IETF Review (see) and are also required to be generic. That means that they need to be potentially applicable to all resources, not just those of one application.
 While historically some applications (e.g.,) have defined application-specific methods, now forbids this.
 When authors believe that a new method is required, they are encouraged to engage with the HTTP community early (e.g., on the mailing list) and document their proposal as a separate HTTP extension rather than as part of an application's specification.

 GET
 GET is the most common and useful HTTP method; its retrieval semantics allow caching and side-effect free linking and underlie many of the benefits of using HTTP.
 Queries can be performed with GET, often using the query component of the URL; this is a familiar pattern from Web browsing, and the results can be cached, improving the efficiency of an often expensive process. In some cases, however, GET might be unwieldy for expressing queries because of the limited syntax of the URI; in particular, if binary data forms part of the query terms, it needs to be encoded to conform to the URI syntax.
 While this is not an issue for short queries, it can become one for larger query terms or those that need to sustain a high rate of requests. Additionally, some HTTP implementations limit the size of URLs they support, although modern HTTP software has much more generous limits than previously (typically, considerably more than 8000 octets, as required by).
 In these cases, an application using HTTP might consider using POST to express queries in the request's content; doing so avoids encoding overhead and URL length limits in implementations. However, in doing so, it should be noted that the benefits of GET such as caching and linking to query results are lost. Therefore, applications using HTTP that require support for POST queries ought to consider allowing both methods.
 Processing of GET requests should not change the application's state or have other side effects that might be significant to the client since implementations can and do retry HTTP GET requests that fail. Furthermore, some GET requests protected by TLS early data might be vulnerable to replay attacks (see). Note that this does not include logging and similar functions; see .
 Finally, note that while the generic HTTP syntax allows a GET request message to contain content, the purpose is to allow message parsers to be generic; per , content in a GET is not recommended, has no meaning, and will be either ignored or rejected by generic HTTP software (such as intermediaries, caches, servers, and client libraries).

 OPTIONS
 The OPTIONS method was defined for metadata retrieval and is used both by Web Distributed Authoring and Versioning (WebDAV) and CORS . Because HTTP-based APIs often need to retrieve metadata about resources, it is often considered for their use.
 However, OPTIONS does have significant limitations:

 It isn't possible to link to the metadata with a simple URL because OPTIONS is not the default method.
 OPTIONS responses are not cacheable because HTTP caches operate on representations of the resource (i.e., GET and HEAD). If OPTIONS responses are cached separately, their interactions with the HTTP cache expiry, secondary keys, and other mechanisms need to be considered.
 OPTIONS is "chatty" -- requesting metadata separately increases the number of requests needed to interact with the application.
 Implementation support for OPTIONS is not universal; some servers do not expose the ability to respond to OPTIONS requests without significant effort.

 Instead of OPTIONS, one of these alternative approaches might be more appropriate:

 For server-wide metadata, create a well-known URI or use an already existing one if appropriate (e.g., host-meta).
 For metadata about a specific resource, create a separate resource and link to it using a Link response header field or a link serialised into the response's content. See . Note that the Link header field is available on HEAD responses, which is useful if the client wants to discover a resource's capabilities before they interact with it.

 Using HTTP Status Codes
 HTTP status codes convey semantics both for the benefit of generic HTTP components -- such as caches, intermediaries, and clients -- and applications themselves. However, applications can encounter a number of pitfalls in their use.
 First, status codes are often generated by components other than the application itself. This can happen, for example, when network errors are encountered; when a captive portal, proxy, or content delivery network is present; or when a server is overloaded or thinks it is under attack. They can even be generated by generic client software when certain error conditions are encountered. As a result, if an application assigns specific semantics to one of these status codes, a client can be misled about its state because the status code was generated by a generic component, not the application itself.
 Furthermore, mapping application errors to individual HTTP status codes one-to-one often leads to a situation where the finite space of applicable HTTP status codes is exhausted. This, in turn, leads to a number of bad practices -- including minting new, application-specific status codes or using existing status codes even though the link between their semantics and the application's is tenuous at best.
 Instead, applications using HTTP should define their errors to use the most applicable status code, making generous use of the general status codes (200, 400, and 500) when in doubt. Importantly, they should not specify a one-to-one relationship between status codes and application errors, thereby avoiding the exhaustion issue outlined above.
 To distinguish between multiple error conditions that are mapped to the same status code and to avoid the misattribution issue outlined above, applications using HTTP should convey finer-grained error information in the response's message content and/or header fields. provides one way to do so.
 Because the set of registered HTTP status codes can expand, applications using HTTP should explicitly point out that clients ought to be able to handle all applicable status codes gracefully (i.e., falling back to the generic n00 semantics of a given status code; e.g., 499 can be safely handled as 400 (Bad Request) by clients that don't recognise it). This is preferable to creating a "laundry list" of potential status codes since such a list won't be complete in the foreseeable future.
 Applications using HTTP MUST NOT re-specify the semantics of HTTP status codes, even if it is only by copying their definition. It is NOT RECOMMENDED they require specific reason phrases to be used; the reason phrase has no function in HTTP, is not guaranteed to be preserved by implementations, and is not carried at all in the HTTP/2 message format.
 Applications MUST only use registered HTTP status codes. As with methods, new HTTP status codes are rare and required (by) to be registered with IETF Review. Similarly, HTTP status codes are generic; they are required (by) to be potentially applicable to all resources, not just to those of one application.
 When authors believe that a new status code is required, they are encouraged to engage with the HTTP community early (e.g., on the mailing list) and document their proposal as a separate HTTP extension, rather than as part of an application's specification.

 Redirection
 The 3xx series of status codes specified in directs the user agent to another resource to satisfy the request. The most common of these are 301, 302, 307, and 308, all of which use the Location response header field to indicate where the client should resend the request.
 There are two ways that the members of this group of status codes differ:

 Whether they are permanent or temporary. Permanent redirects can be used to update links stored in the client (e.g., bookmarks), whereas temporary ones cannot. Note that this has no effect on HTTP caching; it is completely separate.
 Whether they allow the redirected request to change the request method from POST to GET. Web browsers generally do change POST to GET for 301 and 302; therefore, 308 and 307 were created to allow redirection without changing the method.

 This table summarises their relationships:

 Permanent
 Temporary

 Allows change of the request method from POST to GET
 301
 302

 Does not allow change of the request method
 308
 307

 The 303 (See Other) status code can be used to inform the client that the result of an operation is available at a different location using GET.
 As noted in , a user agent is allowed to automatically follow a 3xx redirect that has a Location response header field, even if they don't understand the semantics of the specific status code. However, they aren't required to do so; therefore, if an application using HTTP desires redirects to be automatically followed, it needs to explicitly specify the circumstances when this is required.
 Redirects can be cached (when appropriate cache directives are present), but beyond that, they are not "sticky" -- i.e., redirection of a URI will not result in the client assuming that similar URIs (e.g., with different query parameters) will also be redirected.
 Applications using HTTP are encouraged to specify that 301 and 302 responses change the subsequent request method from POST (but no other method) to GET to be compatible with browsers.
Generally, when a redirected request is made, its header fields are copied from the original request. However, they can be modified by various mechanisms; e.g., sent Authorization () and Cookie () header fields will change if the origin (and sometimes path) of the request changes. An application using HTTP should specify if any request header fields that it defines need to be modified or removed upon a redirect; however, this behaviour cannot be relied upon since a generic client (like a browser) will be unaware of such requirements.

 Specifying HTTP Header Fields
 Applications often define new HTTP header fields. Typically, using HTTP header fields is appropriate in a few different situations:

 The field is useful to intermediaries (who often wish to avoid parsing message content), and/or
 The field is useful to generic HTTP software (e.g., clients, servers), and/or
 It is not possible to include their values in the message content (usually because a format does not allow it).

 When the conditions above are not met, it is usually better to convey application-specific information in other places -- e.g., the message content or the URL query string.
 New header fields MUST be registered, per .
 See for guidelines to consider when minting new header fields. provides a common structure for new header fields and avoids many issues in their parsing and handling; it is RECOMMENDED that new header fields use it.
 It is RECOMMENDED that header field names be short (even when field compression is used, there is an overhead) but appropriately specific. In particular, if a header field is specific to an application, an identifier for that application can form a prefix to the header field name, separated by a hyphen.
 For example, if the "example" application needs to create three header fields, they might be called "example-foo", "example-bar", and "example-baz". Note that the primary motivation here is to avoid consuming more generic field names, not to reserve a portion of the namespace for the application; see for related considerations.
 The semantics of existing HTTP header fields MUST NOT be redefined without updating their registration or defining an extension to them (if allowed). For example, an application using HTTP cannot specify that the Location header field has a special meaning in a certain context.
 See for the interaction between header fields and HTTP caching; in particular, request header fields that are used to choose (per) a response have impact there and need to be carefully considered.
 See for considerations regarding header fields that carry application state (e.g., Cookie).

 Defining Message Content
 Common syntactic conventions for message contents include JSON , XML , and Concise Binary Object Representation (CBOR) . Best practices for their use are out of scope for this document.
 Applications should register distinct media types for each format they define; this makes it possible to identify them unambiguously and negotiate for their use. See for more information.

 Leveraging HTTP Caching
 HTTP caching is one of the primary benefits of using HTTP for applications; it provides scalability, reduces latency, and improves reliability. Furthermore, HTTP caches are readily available in browsers and other clients, networks as forward and reverse proxies, content delivery networks, and as part of server software.
 Even when an application using HTTP isn't designed to take advantage of caching, it needs to consider how caches will handle its responses to preserve correct behaviour when one is interposed (whether in the network, server, client, or intervening infrastructure).

 Freshness
 Assigning even a short freshness lifetime () -- e.g., 5 seconds -- allows a response to be reused to satisfy multiple clients and/or a single client making the same request repeatedly. In general, if it is safe to reuse something, consider assigning a freshness lifetime.
 The most common method for specifying freshness is the max-age response directive (). The Expires header field () can also be used, but it is not necessary; all modern cache implementations support the Cache-Control header field, and specifying freshness as a delta is usually more convenient and less error-prone.
 It is not necessary to add the public response directive () to cache most responses; it is only necessary when it's desirable to store an authenticated response, or when the status code isn't understood by the cache and there isn't explicit freshness information available.
 In some situations, responses without explicit cache freshness directives will be stored and served using a heuristic freshness lifetime; see . As the heuristic is not under the control of the application, it is generally preferable to set an explicit freshness lifetime or make the response explicitly uncacheable.
 If caching of a response is not desired, the appropriate cache response directive is no-store. Other directives are not necessary, and no-store only needs to be sent in situations where the response might be cached; see . Note that the no-cache directive allows a response to be stored, just not reused by a cache without validation; it does not prevent caching (despite its name).
 For example, this response cannot be stored or reused by a cache:

HTTP/1.1 200 OK
Content-Type: application/example+xml
Cache-Control: no-store

[content]

 Stale Responses
 Authors should understand that stale responses (e.g., with Cache-Control: max-age=0) can be reused by caches when disconnected from the origin server; this can be useful for handling network issues.
 If doing so is not suitable for a given response, the origin should send the must-revalidate cache directive. See and also for additional controls over stale content.
 Stale responses can be refreshed by assigning a validator, saving both transfer bandwidth and latency for large responses; see .

 Caching and Application Semantics
 When an application has a need to express a lifetime that's separate from the freshness lifetime, this should be conveyed separately, either in the response's content or in a separate header field. When this happens, the relationship between HTTP caching and that lifetime needs to be carefully considered since the response will be used as long as it is considered fresh.
 In particular, application authors need to consider how responses that are not freshly obtained from the origin server should be handled; if they have a concept like a validity period, this will need to be calculated considering the age of the response (see).
 One way to address this is to explicitly specify that responses need to be fresh upon use.

 Varying Content Based Upon the Request
 If an application uses a request header field to change the response's header fields or content, authors should point out that this has implications for caching; in general, such resources need to either make their responses uncacheable (e.g., with the no-store cache directive defined in) or send the Vary response header field () on all responses from that resource (including the "default" response).
 For example, this response:

HTTP/1.1 200 OK
Content-Type: application/example+xml
Cache-Control: max-age=60
ETag: "sa0f8wf20fs0f"
Vary: Accept-Encoding

[content]

 can be stored for 60 seconds by both private and shared caches, can be revalidated with If-None-Match, and varies on the Accept-Encoding request header field.

 Handling Application State
 Applications can use stateful cookies to identify a client and/or store client-specific data to contextualise requests.
 When used, it is important to carefully specify the scoping and use of cookies; if the application exposes sensitive data or capabilities (e.g., by acting as an ambient authority), exploits are possible. Mitigations include using a request-specific token to ensure the intent of the client.

 Making Multiple Requests
 Clients often need to send multiple requests to perform a task.
 In HTTP/1 , parallel requests are most often supported by opening multiple connections. Application performance can be impacted when too many simultaneous connections are used because connections' congestion control will not be coordinated. Furthermore, it can be difficult for applications to decide when to issue and which connection to use for a given request, further impacting performance.
 HTTP/2 and HTTP/3 offer multiplexing to applications, removing the need to use multiple connections. However, application performance can still be significantly affected by how the server chooses to prioritize responses. Depending on the application, it might be best for the server to determine the priority of responses or for the client to hint its priorities to the server (see, e.g.,).
 In all versions of HTTP, requests are made independently -- you can't rely on the relative order of two requests to guarantee their processing order. This is because they might be sent over a multiplexed protocol by an intermediary or sent to different origin servers, or the server might even perform processing in a different order. If two requests need strict ordering, the only reliable way to ensure the outcome is to issue the second request when the final response to the first has begun.
 Applications MUST NOT make assumptions about the relationship between separate requests on a single transport connection; doing so breaks many of the assumptions of HTTP as a stateless protocol and will cause problems in interoperability, security, operability, and evolution.

 Client Authentication
 Applications can use HTTP authentication () to identify clients. Per , the Basic authentication scheme is not suitable for protecting sensitive or valuable information unless the channel is secure (e.g., using the "https" URI scheme). Likewise, requires the Digest authentication scheme to be used over a secure channel.
 With HTTPS, clients might also be authenticated using certificates , but note that such authentication is intrinsically scoped to the underlying transport connection. As a result, a client has no way of knowing whether the authenticated status was used in preparing the response (though Vary: * and/or the private cache directive can provide a partial indication), and the only way to obtain a specifically unauthenticated response is to open a new connection.
 When used, it is important to carefully specify the scoping and use of authentication; if the application exposes sensitive data or capabilities (e.g., by acting as an ambient authority; see), exploits are possible. Mitigations include using a request-specific token to ensure the intent of the client.

 Coexisting with Web Browsing
 Even if there is not an intent for an application to be used with a Web browser, its resources will remain available to browsers and other HTTP clients. This means that all such applications that use HTTP need to consider how browsers will interact with them, particularly regarding security.
 For example, if an application's state can be changed using a POST request, a Web browser can easily be coaxed into cross-site request forgery (CSRF) from arbitrary Web sites.
 Or, if an attacker gains control of content returned from the application's resources (for example, part of the request is reflected in the response, or the response contains external information that the attacker can change), they can inject code into the browser and access data and capabilities as if they were the origin -- a technique known as a cross-site scripting (XSS) attack.
 This is only a small sample of the kinds of issues that applications using HTTP must consider. Generally, the best approach is to actually consider the application as a Web application, and to follow best practices for their secure development.
 A complete enumeration of such practices is out of scope for this document, but some considerations include:

 Using an application-specific media type in the Content-Type header field, and requiring clients to fail if it is not used.
 Using X-Content-Type-Options: nosniff to ensure that content under attacker control can't be coaxed into a form that is interpreted as active content by a Web browser.
 Using Content-Security-Policy to constrain the capabilities of active content (i.e., that which can execute scripts, such as HTML and PDF), thereby mitigating XSS attacks.
 Using Referrer-Policy to prevent sensitive data in URLs from being leaked in the Referer request header field.
 Using the 'HttpOnly' flag on Cookies to ensure that cookies are not exposed to browser scripting languages .
 Avoiding use of compression on any sensitive information (e.g., authentication tokens, passwords), as the scripting environment offered by Web browsers allows an attacker to repeatedly probe the compression space; if the attacker has access to the network path of the communication, they can use this capability to recover that information.

 Depending on how they are intended to be deployed, specifications for applications using HTTP might require the use of these mechanisms in specific ways or might merely point them out in Security Considerations.
 An example of an HTTP response from an application that does not intend for its content to be treated as active by browsers might look like this:

HTTP/1.1 200 OK
Content-Type: application/example+json
X-Content-Type-Options: nosniff
Content-Security-Policy: default-src 'none'
Cache-Control: max-age=3600
Referrer-Policy: no-referrer

[content]

 If an application has browser compatibility as a goal, client interaction ought to be defined in terms of since that is the abstraction that browsers use for HTTP; it enforces many of these best practices.

 Maintaining Application Boundaries
 Because many HTTP capabilities are scoped to the origin , applications also need to consider how deployments might interact with other applications (including Web browsing) that use the same origin server.
 For example, if cookies are used to carry application state, they will be sent with all requests to the origin by default (unless scoped by path), and the application might receive cookies from other applications on the origin server. This can lead to security issues as well as collision in cookie names.
 One solution to these issues is to require a dedicated hostname for the application so that it has a unique origin. However, it is often desirable to allow multiple applications to be deployed on a single hostname; doing so provides the most deployment flexibility and enables them to be "mixed" together (see for details).
 Therefore, applications using HTTP should strive to allow multiple applications on an origin. Specifically, when specifying the use of cookies, HTTP authentication realms , or other origin-wide HTTP mechanisms, applications using HTTP should not mandate the use of a particular name but instead let deployments configure them. Consideration should be given to scoping them to part of the origin, using their specified mechanisms for doing so.
 Modern Web browsers constrain the ability of content from one origin to access resources from another to avoid leaking private information. As a result, applications that wish to expose cross-origin data to browsers will need to implement the CORS protocol; see .

 Using Server Push
 HTTP/2 added the ability for servers to "push" request/response pairs to clients in . While server push seems like a natural fit for many common application semantics (e.g., "fanout" and publish/subscribe), a few caveats should be noted:

 Server push is hop by hop; that is, it is not automatically forwarded by intermediaries. As a result, it might not work easily (or at all) with proxies, reverse proxies, and content delivery networks.
 Server push can have a negative performance impact on HTTP when used incorrectly, particularly if there is contention with resources that have actually been requested by the client.
 Server push is implemented differently in different clients, especially regarding interaction with HTTP caching, and capabilities might vary.
 APIs for server push are currently unavailable in some implementations and vary widely in others. In particular, there is no current browser API for it.
 Server push is not supported in HTTP/1.1 or HTTP/1.0.
 Server push does not form part of the "core" semantics of HTTP and therefore might not be supported by future versions of the protocol.

 Applications wishing to optimise cases where the client can perform work related to requests before the full response is available (e.g., fetching links for things likely to be contained within) might benefit from using the 103 (Early Hints) status code; see .
 Applications using server push directly need to enforce the requirements regarding authority in to avoid cross-origin push attacks.

 Allowing Versioning and Evolution
 It's often necessary to introduce new features into application protocols and change existing ones.
 In HTTP, backwards-incompatible changes can be made using mechanisms such as:

 Using a distinct link relation type to identify a URL for a resource that implements the new functionality.
 Using a distinct media type to identify formats that enable the new functionality.
 Using a distinct HTTP header field to implement new functionality outside the message content.

 IANA Considerations
 This document has no IANA actions.

 Security Considerations
 Applications using HTTP are subject to the security considerations of HTTP itself and any extensions used; , , and are often relevant, amongst others.
 recommends support for "https" URLs and discourages the use of "http" URLs to provide authentication, integrity, and confidentiality, as well as to mitigate pervasive monitoring attacks. Many applications using HTTP perform authentication and authorization with bearer tokens (e.g., in session cookies). If the transport is unencrypted, an attacker that can eavesdrop upon or modify HTTP communications can often escalate their privilege to perform operations on resources.
 highlights the potential for mismatch between HTTP caching and application-specific storage of responses or information therein.
 discusses the impact of using stateful mechanisms in the protocol as ambient authority and suggests a mitigation.
 highlights the implications of Web browsers' capabilities on applications that use HTTP.
 discusses the issues that arise when applications are deployed on the same origin as websites (and other applications).
 highlights risks of using HTTP/2 server push in a manner other than that specified.
 Applications that use HTTP in a manner that involves modification of implementations -- for example, requiring support for a new URI scheme or a non-standard method -- risk having those implementations "fork" from their parent HTTP implementations, with the possible result that they do not benefit from patches and other security improvements incorporated upstream.

 Privacy Considerations
 HTTP clients can expose a variety of information to servers. Besides information that's explicitly sent as part of an application's operation (for example, names and other user-entered data) and "on the wire" (which is one of the reasons "https" is recommended in), other information can be gathered through less obvious means -- often by connecting activities of a user over time.
 This includes session information, tracking the client through fingerprinting, and code execution.
 Session information includes things like the IP address of the client, TLS session tickets, Cookies, ETags stored in the client's cache, and other stateful mechanisms. Applications are advised to avoid using session mechanisms unless they are unavoidable or necessary for operation, in which case these risks need to be documented. When they are used, implementations should be encouraged to allow clearing such state.
 Fingerprinting uses unique aspects of a client's messages and behaviours to connect disparate requests and connections. For example, the User-Agent request header field conveys specific information about the implementation; the Accept-Language request header field conveys the users' preferred language. In combination, a number of these markers can be used to uniquely identify a client, impacting its control over its data. As a result, applications are advised to specify that clients should only emit the information they need to function in requests.
 Finally, if an application exposes the ability to execute code, great care needs to be taken since any ability to observe its environment can be used as an opportunity to both fingerprint the client and to obtain and manipulate private data (including session information). For example, access to high-resolution timers (even indirectly) can be used to profile the underlying hardware, creating a unique identifier for the system. Applications are advised to avoid allowing the use of mobile code where possible; when it cannot be avoided, the resulting system's security properties need be carefully scrutinised.

 References

 Normative References

 URI Design and Ownership

 HTTP Semantics

 HTTP Caching

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 The Web Origin Concept

 This document defines the concept of an "origin", which is often used as the scope of authority or privilege by user agents. Typically, user agents isolate content retrieved from different origins to prevent malicious web site operators from interfering with the operation of benign web sites. In addition to outlining the principles that underlie the concept of origin, this document details how to determine the origin of a URI and how to serialize an origin into a string. It also defines an HTTP header field, named "Origin", that indicates which origins are associated with an HTTP request. [STANDARDS-TRACK]

 Deprecating the "X-" Prefix and Similar Constructs in Application Protocols

 Historically, designers and implementers of application protocols have often distinguished between standardized and unstandardized parameters by prefixing the names of unstandardized parameters with the string "X-" or similar constructs. In practice, that convention causes more problems than it solves. Therefore, this document deprecates the convention for newly defined parameters with textual (as opposed to numerical) names in application protocols. This memo documents an Internet Best Current Practice.

 Media Type Specifications and Registration Procedures

 This document defines procedures for the specification and registration of media types for use in HTTP, MIME, and other Internet protocols. This memo documents an Internet Best Current Practice.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 Structured Field Values for HTTP

 Uniform Resource Identifier (URI): Generic Syntax

 Web Linking

 Well-Known Uniform Resource Identifiers (URIs)

 Informative References

 HTTP State Management Mechanism

 Content Security Policy Level 3

 W3C Working Draft

 Fetch - Living Standard

 WHATWG

 HTML - Living Standard

 WHATWG

 Extensible Prioritization Scheme for HTTP

 HTTP/1.1

 HTTP/2

 HTTP/3

 The JavaScript Object Notation (JSON) Data Interchange Format

 Problem Details for HTTP APIs

 Referrer Policy

 W3C Candidate Recommendation CR-referrer-policy-20170126

 On the use of HTTP as a Substrate

 Recently there has been widespread interest in using Hypertext Transfer Protocol (HTTP) as a substrate for other applications-level protocols. This document recommends technical particulars of such use, including use of default ports, URL schemes, and HTTP security mechanisms. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Calendaring Extensions to WebDAV (CalDAV)

 This document defines extensions to the Web Distributed Authoring and Versioning (WebDAV) protocol to specify a standard way of accessing, managing, and sharing calendaring and scheduling information based on the iCalendar format. This document defines the "calendar-access" feature of CalDAV. [STANDARDS-TRACK]

 HTTP Extensions for Web Distributed Authoring and Versioning (WebDAV)

 Web Distributed Authoring and Versioning (WebDAV) consists of a set of methods, headers, and content-types ancillary to HTTP/1.1 for the management of resource properties, creation and management of resource collections, URL namespace manipulation, and resource locking (collision avoidance).
 RFC 2518 was published in February 1999, and this specification obsoletes RFC 2518 with minor revisions mostly due to interoperability experience. [STANDARDS-TRACK]

 HTTP Cache-Control Extensions for Stale Content

 This document defines two independent HTTP Cache-Control extensions that allow control over the use of stale responses by caches. This document is not an Internet Standards Track specification; it is published for informational purposes.

 Web Host Metadata

 This specification describes a method for locating host metadata as well as information about individual resources controlled by the host. [STANDARDS-TRACK]

 HTTP Strict Transport Security (HSTS)

 This specification defines a mechanism enabling web sites to declare themselves accessible only via secure connections and/or for users to be able to direct their user agent(s) to interact with given sites only over secure connections. This overall policy is referred to as HTTP Strict Transport Security (HSTS). The policy is declared by web sites via the Strict-Transport-Security HTTP response header field and/or by other means, such as user agent configuration, for example. [STANDARDS-TRACK]

 Pervasive Monitoring Is an Attack

 Pervasive monitoring is a technical attack that should be mitigated in the design of IETF protocols, where possible.

 Transport Layer Security (TLS) Application-Layer Protocol Negotiation Extension

 This document describes a Transport Layer Security (TLS) extension for application-layer protocol negotiation within the TLS handshake. For instances in which multiple application protocols are supported on the same TCP or UDP port, this extension allows the application layer to negotiate which protocol will be used within the TLS connection.

 Guidelines and Registration Procedures for URI Schemes

 This document updates the guidelines and recommendations, as well as the IANA registration processes, for the definition of Uniform Resource Identifier (URI) schemes. It obsoletes RFC 4395.

 Recommendations on Using Assigned Transport Port Numbers

 This document provides recommendations to designers of application and service protocols on how to use the transport protocol port number space and when to request a port assignment from IANA. It provides designer guidance to requesters or users of port numbers on how to interact with IANA using the processes defined in RFC 6335; thus, this document complements (but does not update) that document.

 HTTP Digest Access Authentication

 The Hypertext Transfer Protocol (HTTP) provides a simple challenge- response authentication mechanism that may be used by a server to challenge a client request and by a client to provide authentication information. This document defines the HTTP Digest Authentication scheme that can be used with the HTTP authentication mechanism.

 The 'Basic' HTTP Authentication Scheme

 This document defines the "Basic" Hypertext Transfer Protocol (HTTP) authentication scheme, which transmits credentials as user-id/ password pairs, encoded using Base64.

 An HTTP Status Code for Indicating Hints

 This memo introduces an informational HTTP status code that can be used to convey hints that help a client make preparations for processing the final response.

 The Transport Layer Security (TLS) Protocol Version 1.3

 This document specifies version 1.3 of the Transport Layer Security (TLS) protocol. TLS allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.
 This document updates RFCs 5705 and 6066, and obsoletes RFCs 5077, 5246, and 6961. This document also specifies new requirements for TLS 1.2 implementations.

 Using Early Data in HTTP

 Using TLS early data creates an exposure to the possibility of a replay attack. This document defines mechanisms that allow clients to communicate with servers about HTTP requests that are sent in early data. Techniques are described that use these mechanisms to mitigate the risk of replay.

 Concise Binary Object Representation (CBOR)

 The Concise Binary Object Representation (CBOR) is a data format whose design goals include the possibility of extremely small code size, fairly small message size, and extensibility without the need for version negotiation. These design goals make it different from earlier binary serializations such as ASN.1 and MessagePack.
 This document obsoletes RFC 7049, providing editorial improvements, new details, and errata fixes while keeping full compatibility with the interchange format of RFC 7049. It does not create a new version of the format.

 Secure Contexts

 W3C Candidate Recommendation

 URI Template

 Extensible Markup Language (XML) 1.0 (Fifth Edition)

 Changes from RFC 3205
 captured the Best Current Practice in the early 2000s based on the concerns facing protocol designers at the time. Use of HTTP has changed considerably since then; as a result, this document is substantially different. Consequently, the changes are too numerous to list individually.

 Author's Address

 Prahran
 Australia

 mnot@mnot.net
 https://www.mnot.net/

