
RFC 8732
Generic Security Service Application Program
Interface (GSS-API) Key Exchange with SHA-2

Abstract
This document specifies additions and amendments to RFC 4462. It defines a new key exchange
method that uses SHA-2 for integrity and deprecates weak Diffie-Hellman (DH) groups. The
purpose of this specification is to modernize the cryptographic primitives used by Generic
Security Service (GSS) key exchanges.

Stream: Internet Engineering Task Force (IETF)
RFC: 8732
Updates: 4462
Category: Standards Track
Published: February 2020
ISSN: 2070-1721
Authors: S. Sorce

Red Hat, Inc.
H. Kario
Red Hat, Inc.

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc8732

Copyright Notice
Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

https://trustee.ietf.org/license-info

Sorce & Kario Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc8732
https://www.rfc-editor.org/rfc/rfc4462
https://www.rfc-editor.org/info/rfc8732
https://trustee.ietf.org/license-info

1. Introduction
Secure Shell (SSH) Generic Security Service Application Program Interface (GSS-API) methods

 allow the use of GSS-API for authentication and key exchange in SSH.
 defines three exchange methods all based on DH groups and SHA-1. This document

updates with new methods intended to support environments that desire to use the
SHA-2 cryptographic hash functions.

Table of Contents
1. Introduction

2. Rationale

3. Document Conventions

4. New Diffie-Hellman Key Exchange Methods

5. New Elliptic Curve Diffie-Hellman Key Exchange Methods

5.1. Generic GSS-API Key Exchange with ECDH

5.2. ECDH Key Exchange Methods

6. Deprecated Algorithms

7. IANA Considerations

8. Security Considerations

8.1. New Finite Field DH Mechanisms

8.2. New Elliptic Curve DH Mechanisms

8.3. GSS-API Delegation

9. References

9.1. Normative References

9.2. Informative References

Authors' Addresses

[RFC4462] [RFC2743]
[RFC4462]

[RFC4462]

RFC 8732 GSS Keyex SHA-2 February 2020

Sorce & Kario Standards Track Page 2

2. Rationale
Due to security concerns with SHA-1 and with modular exponentiation (MODP) groups
with less than 2048 bits , we propose the use of hashes based on SHA-2

 with DH group14, group15, group16, group17, and group18 . Additionally,
we add support for key exchange based on Elliptic Curve Diffie-Hellman with the NIST P-256,
P-384, and P-521 , as well as the X25519 and X448 curves. Following the
practice of , only SHA-256 and SHA-512 hashes are used for DH groups. For NIST
curves, the same curve-to-hashing algorithm pairing used in is adopted for
consistency.

3. Document Conventions
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

[RFC6194]
[NIST-SP-800-131Ar2]

[RFC6234] [RFC3526]

[SEC2v2] [RFC7748]
[RFC8268]

[RFC5656]

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

4. New Diffie-Hellman Key Exchange Methods
This document adopts the same naming convention defined in to define families of
methods that cover any GSS-API mechanism used with a specific Diffie-Hellman group and SHA-2
hash combination.

Each key exchange method prefix is registered by this document. The IESG is the change
controller of all these key exchange methods; this does NOT imply that the IESG is considered to
be in control of the corresponding GSS-API mechanism.

[RFC4462]

Key Exchange Method Name Implementation Recommendations

gss-group14-sha256-* /

gss-group15-sha512-* /

gss-group16-sha512-* /

gss-group17-sha512-* /

gss-group18-sha512-* /

Table 1: New Key Exchange Algorithms

SHOULD RECOMMENDED

MAY OPTIONAL

SHOULD RECOMMENDED

MAY OPTIONAL

MAY OPTIONAL

RFC 8732 GSS Keyex SHA-2 February 2020

Sorce & Kario Standards Track Page 3

Each method in any family of methods (Table 2) specifies GSS-API-authenticated Diffie-Hellman
key exchanges as described in . The method name for each method
(Table 1) is the concatenation of the family name prefix with the base64 encoding of the MD5
hash of the ASN.1 DER encoding of the corresponding GSS-API
mechanism's OID. Base64 encoding is described in .

Section 2.1 of [RFC4462]

[RFC1321] [ISO-IEC-8825-1]
Section 4 of [RFC4648]

Family Name Prefix Hash Function Group Reference

gss-group14-sha256- SHA-256 2048-bit MODP

gss-group15-sha512- SHA-512 3072-bit MODP

gss-group16-sha512- SHA-512 4096-bit MODP

gss-group17-sha512- SHA-512 6144-bit MODP

gss-group18-sha512- SHA-512 8192-bit MODP

Table 2: Family Method References

Section 3 of [RFC3526]

Section 4 of [RFC3526]

Section 5 of [RFC3526]

Section 6 of [RFC3526]

Section 7 of [RFC3526]

5. New Elliptic Curve Diffie-Hellman Key Exchange Methods
In , new SSH key exchange algorithms based on elliptic curve cryptography are
introduced. We reuse much of to define GSS-API-authenticated Elliptic
Curve Diffie-Hellman (ECDH) key exchanges.

Additionally, we also utilize the curves defined in to complement the three classic
NIST-defined curves required by .

[RFC5656]
Section 4 of [RFC5656]

[RFC8731]
[RFC5656]

5.1. Generic GSS-API Key Exchange with ECDH
This section reuses much of the scheme defined in and combines it with
the scheme defined in ; in particular, all checks and verification steps
prescribed in apply here as well.

The key-agreement schemes "ECDHE-Curve25519" and "ECDHE-Curve448" perform the Diffie-
Hellman protocol using the functions X25519 and X448, respectively. Implementations
compute these functions using the algorithms described in . When they do so,
implementations check whether the computed Diffie-Hellman shared secret is the all-zero
value and abort if so, as described in . Alternative implementations of
these functions abort when either the client or the server input forces the shared secret
to one of a small set of values, as described in Sections 6 and 7 of .

This section defers to as the source of information on GSS-API context establishment
operations, Section 3 being the most relevant. All security considerations described in
apply here, too.

Section 2.1 of [RFC4462]
Section 4 of [RFC5656]

Section 4 of [RFC5656]

MUST
[RFC7748]

MUST
Section 6 of [RFC7748]

SHOULD
[RFC7748]

[RFC7546]
[RFC7546]

RFC 8732 GSS Keyex SHA-2 February 2020

Sorce & Kario Standards Track Page 4

https://www.rfc-editor.org/rfc/rfc4462#section-2.1
https://www.rfc-editor.org/rfc/rfc4648#section-4
https://www.rfc-editor.org/rfc/rfc3526#section-3
https://www.rfc-editor.org/rfc/rfc3526#section-4
https://www.rfc-editor.org/rfc/rfc3526#section-5
https://www.rfc-editor.org/rfc/rfc3526#section-6
https://www.rfc-editor.org/rfc/rfc3526#section-7
https://www.rfc-editor.org/rfc/rfc5656#section-4
https://www.rfc-editor.org/rfc/rfc4462#section-2.1
https://www.rfc-editor.org/rfc/rfc5656#section-4
https://www.rfc-editor.org/rfc/rfc5656#section-4
https://www.rfc-editor.org/rfc/rfc7748#section-6
https://www.rfc-editor.org/rfc/rfc7748#section-6
https://www.rfc-editor.org/rfc/rfc7748#section-7
https://www.rfc-editor.org/rfc/rfc7546#section-3

The parties each generate an ephemeral key pair, according to Section 3.2.1 of . Keys are
verified upon receipt by the parties according to Section 3.2.3.1 of .

For NIST curves, the keys use the uncompressed point representation and be converted
using the algorithm in Section 2.3.4 of . If the conversion fails or the point is transmitted
using the compressed representation, the key exchange fail.

A GSS context is established according to ; the client initiates the
establishment using GSS_Init_sec_context(), and the server responds to it using
GSS_Accept_sec_context(). For the negotiation, the client set mutual_req_flag and
integ_req_flag to "true". In addition, deleg_req_flag be set to "true" to request access
delegation, if requested by the user. Since the key exchange process authenticates only the host,
the setting of anon_req_flag is immaterial to this process. If the client does not support the
"gssapi-keyex" user authentication method described in , or does not
intend to use that method in conjunction with the GSS-API context established during key
exchange, then anon_req_flag be set to "true". Otherwise, this flag be set to "true" if
the client wishes to hide its identity. This key exchange process will exchange only a single
message token once the context has been established; therefore, the replay_det_req_flag and
sequence_req_flag be set to "false".

The client include its public key with the first message it sends to the server during this
process; if the server receives more than one key or none at all, the key exchange fail.

During GSS context establishment, multiple tokens may be exchanged by the client and the
server. When the GSS context is established (major_status is GSS_S_COMPLETE), the parties check
that mutual_state and integ_avail are both "true". If not, the key exchange fail.

Once a party receives the peer's public key, it proceeds to compute a shared secret K. For NIST
curves, the computation is done according to Section 3.3.1 of , and the resulting value z
is converted to the octet string K using the conversion defined in Section 2.3.5 of . For
curve25519 and curve448, the algorithms in are used instead.

To verify the integrity of the handshake, peers use the hash function defined by the selected key
exchange method to calculate H:

H = hash(V_C || V_S || I_C || I_S || K_S || Q_C || Q_S || K).

The server uses the GSS_GetMIC() call with H as the payload to generate a Message Integrity Code
(MIC). The GSS_VerifyMIC() call is used by the client to verify the MIC.

If any GSS_Init_sec_context() or GSS_Accept_sec_context() returns a major_status other than
GSS_S_COMPLETE or GSS_S_CONTINUE_NEEDED, or any other GSS-API call returns a
major_status other than GSS_S_COMPLETE, the key exchange fail. The same
recommendations expressed in are followed with regard to error
reporting.

The following is an overview of the key exchange process:

[SEC1v2]
[SEC1v2]

MUST
[SEC1v2]

MUST

Section 4 of [RFC5656]

MUST
MAY

Section 4 of [RFC4462]

SHOULD MAY

SHOULD

MUST
MUST

MUST

[SEC1v2]
[SEC1v2]

Section 6 of [RFC7748]

MUST
Section 2.1 of [RFC4462]

RFC 8732 GSS Keyex SHA-2 February 2020

Sorce & Kario Standards Track Page 5

https://www.rfc-editor.org/rfc/rfc5656#section-4
https://www.rfc-editor.org/rfc/rfc4462#section-4
https://www.rfc-editor.org/rfc/rfc7748#section-6
https://www.rfc-editor.org/rfc/rfc4462#section-2.1

This is implemented with the following messages:

The client sends:

The server may respond with:

The server sends:

Each time the client receives the message described above, it makes another call to
GSS_Init_sec_context().

The client sends:

 Client Server
 ------ ------
 Generates ephemeral key pair.
 Calls GSS_Init_sec_context().
 SSH_MSG_KEXGSS_INIT --------------->

 Verifies received key.
(Optional) <------------- SSH_MSG_KEXGSS_HOSTKEY

(Loop)
| Calls GSS_Accept_sec_context().
| <------------ SSH_MSG_KEXGSS_CONTINUE
| Calls GSS_Init_sec_context().
| SSH_MSG_KEXGSS_CONTINUE ------------>

 Calls GSS_Accept_sec_context().
 Generates ephemeral key pair.
 Computes shared secret.
 Computes hash H.
 Calls GSS_GetMIC(H) = MIC.
 <------------ SSH_MSG_KEXGSS_COMPLETE

 Verifies received key.
 Computes shared secret.
 Computes hash H.
 Calls GSS_VerifyMIC(MIC, H).

 byte SSH_MSG_KEXGSS_INIT
 string output_token (from GSS_Init_sec_context())
 string Q_C, client's ephemeral public key octet string

 byte SSH_MSG_KEXGSS_HOSTKEY
 string server public host key and certificates (K_S)

 byte SSH_MSG_KEXGSS_CONTINUE
 string output_token (from GSS_Accept_sec_context())

RFC 8732 GSS Keyex SHA-2 February 2020

Sorce & Kario Standards Track Page 6

As the final message, the server sends the following if an output_token is produced:

If no output_token is produced, the server sends:

The hash H is computed as the HASH hash of the concatenation of the following:

This value is called the "exchange hash", and it is used to authenticate the key exchange. The
exchange hash be kept secret. If no SSH_MSG_KEXGSS_HOSTKEY message has been sent
by the server or received by the client, then the empty string is used in place of K_S when
computing the exchange hash.

Since this key exchange method does not require the host key to be used for any encryption
operations, the SSH_MSG_KEXGSS_HOSTKEY message is . If the "null" host key
algorithm described in is used, this message be sent.

If the client receives an SSH_MSG_KEXGSS_CONTINUE message after a call to
GSS_Init_sec_context() has returned a major_status code of GSS_S_COMPLETE, a protocol error
has occurred, and the key exchange fail.

If the client receives an SSH_MSG_KEXGSS_COMPLETE message and a call to
GSS_Init_sec_context() does not result in a major_status code of GSS_S_COMPLETE, a protocol
error has occurred, and the key exchange fail.

 byte SSH_MSG_KEXGSS_CONTINUE
 string output_token (from GSS_Init_sec_context())

 byte SSH_MSG_KEXGSS_COMPLETE
 string Q_S, server's ephemeral public key octet string
 string mic_token (MIC of H)
 boolean TRUE
 string output_token (from GSS_Accept_sec_context())

 byte SSH_MSG_KEXGSS_COMPLETE
 string Q_S, server's ephemeral public key octet string
 string mic_token (MIC of H)
 boolean FALSE

 string V_C, the client's version string (CR, NL excluded)
 string V_S, server's version string (CR, NL excluded)
 string I_C, payload of the client's SSH_MSG_KEXINIT
 string I_S, payload of the server's SSH_MSG_KEXINIT
 string K_S, server's public host key
 string Q_C, client's ephemeral public key octet string
 string Q_S, server's ephemeral public key octet string
 mpint K, shared secret

SHOULD

OPTIONAL
Section 5 of [RFC4462] MUST NOT

MUST

MUST

RFC 8732 GSS Keyex SHA-2 February 2020

Sorce & Kario Standards Track Page 7

https://www.rfc-editor.org/rfc/rfc4462#section-5

5.2. ECDH Key Exchange Methods

Each key exchange method prefix is registered by this document. The IESG is the change
controller of all these key exchange methods; this does NOT imply that the IESG is considered to
be in control of the corresponding GSS-API mechanism.

Each method in any family of methods (Table 4) specifies GSS-API-authenticated Elliptic Curve
Diffie-Hellman key exchanges as described in Section 5.1. The method name for each method
(Table 3) is the concatenation of the family method name with the base64 encoding of the MD5
hash of the ASN.1 DER encoding of the corresponding GSS-API
mechanism's OID. Base64 encoding is described in .

Key Exchange Method Name Implementation Recommendations

gss-nistp256-sha256-* /

gss-nistp384-sha384-* /

gss-nistp521-sha512-* /

gss-curve25519-sha256-* /

gss-curve448-sha512-* /

Table 3: New Key Exchange Methods

SHOULD RECOMMENDED

MAY OPTIONAL

MAY OPTIONAL

SHOULD RECOMMENDED

MAY OPTIONAL

[RFC1321] [ISO-IEC-8825-1]
Section 4 of [RFC4648]

Family Name Prefix Hash
Function

Parameters / Function
Name

Definition

gss-nistp256-sha256- SHA-256 secp256r1 Section 2.4.2 of

gss-nistp384-sha384- SHA-384 secp384r1 Section 2.5.1 of

gss-nistp521-sha512- SHA-512 secp521r1 Section 2.6.1 of

gss-curve25519-
sha256-

SHA-256 X22519

gss-curve448-sha512- SHA-512 X448

Table 4: Family Method References

[SEC2v2]

[SEC2v2]

[SEC2v2]

Section 5 of
[RFC7748]

Section 5 of
[RFC7748]

RFC 8732 GSS Keyex SHA-2 February 2020

Sorce & Kario Standards Track Page 8

https://www.rfc-editor.org/rfc/rfc4648#section-4
https://www.rfc-editor.org/rfc/rfc7748#section-5
https://www.rfc-editor.org/rfc/rfc7748#section-5

7. IANA Considerations
This document augments the SSH key exchange message names that were defined in
(see and Section 6); IANA has listed this document as reference for those entries in the "SSH
Protocol Parameters" registry.

In addition, IANA has updated the registry to include the SSH key exchange message names
described in Sections 4 and 5.

Key Exchange Method Name Reference

gss-group1-sha1-* RFC 8732

gss-group14-sha1-* RFC 8732

gss-gex-sha1-* RFC 8732

gss-group14-sha256-* RFC 8732

gss-group15-sha512-* RFC 8732

gss-group16-sha512-* RFC 8732

gss-group17-sha512-* RFC 8732

gss-group18-sha512-* RFC 8732

gss-nistp256-sha256-* RFC 8732

gss-nistp384-sha384-* RFC 8732

gss-nistp521-sha512-* RFC 8732

6. Deprecated Algorithms
Because they have small key lengths and are no longer strong in the face of brute-force attacks,
the algorithms in the following table are considered deprecated and be used.

Key Exchange Method Name Implementation Recommendations

gss-group1-sha1-*

gss-group14-sha1-*

gss-gex-sha1-*

Table 5: Deprecated Algorithms

SHOULD NOT

SHOULD NOT

SHOULD NOT

SHOULD NOT

[RFC4462]

[IANA-KEX-NAMES]

RFC 8732 GSS Keyex SHA-2 February 2020

Sorce & Kario Standards Track Page 9

[RFC1321]

[RFC2119]

[RFC2743]

Key Exchange Method Name Reference

gss-curve25519-sha256-* RFC 8732

gss-curve448-sha512-* RFC 8732

Table 6: Additions/Changes to the Key Exchange
Method Names Registry

8. Security Considerations

8.1. New Finite Field DH Mechanisms
Except for the use of a different secure hash function and larger DH groups, no significant
changes have been made to the protocol described by ; therefore, all the original
security considerations apply.

8.2. New Elliptic Curve DH Mechanisms
Although a new cryptographic primitive is used with these methods, the actual key exchange
closely follows the key exchange defined in ; therefore, all the original security
considerations, as well as those expressed in , apply.

8.3. GSS-API Delegation
Some GSS-API mechanisms can act on a request to delegate credentials to the target host when
the deleg_req_flag is set. In this case, extra care must be taken to ensure that the acceptor being
authenticated matches the target the user intended. Some mechanism implementations (such as
commonly used krb5 libraries) may use insecure DNS resolution to canonicalize the target name;
in these cases, spoofing a DNS response that points to an attacker-controlled machine may result
in the user silently delegating credentials to the attacker, who can then impersonate the user at
will.

9. References

9.1. Normative References

, , ,
, April 1992, .

, , ,
, , March 1997,
.

,
, , , January 2000,

.

[RFC4462]

[RFC5656]
[RFC5656]

Rivest, R. "The MD5 Message-Digest Algorithm" RFC 1321 DOI 10.17487/
RFC1321 <https://www.rfc-editor.org/info/rfc1321>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Linn, J. "Generic Security Service Application Program Interface Version 2,
Update 1" RFC 2743 DOI 10.17487/RFC2743 <https://www.rfc-
editor.org/info/rfc2743>

RFC 8732 GSS Keyex SHA-2 February 2020

Sorce & Kario Standards Track Page 10

https://www.rfc-editor.org/info/rfc1321
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2743
https://www.rfc-editor.org/info/rfc2743

[RFC3526]

[RFC4462]

[RFC4648]

[RFC5656]

[RFC7546]

[RFC7748]

[RFC8174]

[RFC8731]

[SEC1v2]

[SEC2v2]

[IANA-KEX-NAMES]

[ISO-IEC-8825-1]

[NIST-SP-800-131Ar2]

,
, , , May

2003, .

,

, , , May 2006,
.

, , ,
, October 2006, .

,
, , , December 2009,

.

, ,
, , May 2015,
.

, , ,
, January 2016, .

, ,
, , , May 2017,

.

,
, ,

, February 2020, .

,
, , May 2009.

,
, , January 2010.

9.2. Informative References

,
, .

,

, , ,
November 2015,

.

,
, ,

Kivinen, T. and M. Kojo "More Modular Exponential (MODP) Diffie-Hellman
groups for Internet Key Exchange (IKE)" RFC 3526 DOI 10.17487/RFC3526

<https://www.rfc-editor.org/info/rfc3526>

Hutzelman, J., Salowey, J., Galbraith, J., and V. Welch "Generic Security Service
Application Program Interface (GSS-API) Authentication and Key Exchange for
the Secure Shell (SSH) Protocol" RFC 4462 DOI 10.17487/RFC4462
<https://www.rfc-editor.org/info/rfc4462>

Josefsson, S. "The Base16, Base32, and Base64 Data Encodings" RFC 4648 DOI
10.17487/RFC4648 <https://www.rfc-editor.org/info/rfc4648>

Stebila, D. and J. Green "Elliptic Curve Algorithm Integration in the Secure Shell
Transport Layer" RFC 5656 DOI 10.17487/RFC5656 <https://
www.rfc-editor.org/info/rfc5656>

Kaduk, B. "Structure of the Generic Security Service (GSS) Negotiation Loop"
RFC 7546 DOI 10.17487/RFC7546 <https://www.rfc-editor.org/info/
rfc7546>

Langley, A., Hamburg, M., and S. Turner "Elliptic Curves for Security" RFC 7748
DOI 10.17487/RFC7748 <https://www.rfc-editor.org/info/rfc7748>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Adamantiadis, A., Josefsson, S., and M. Baushke "Secure Shell (SSH) Key
Exchange Method Using Curve25519 and Curve448" RFC 8731 DOI 10.17487/
RFC8731 <https://www.rfc-editor.org/info/rfc8731>

Standards for Efficient Cryptography Group "SEC 1: Elliptic Curve
Cryptography" Version 2.0

Standards for Elliptic Cryptography Group "SEC 2: Recommended Elliptic Curve
Domain Parameters" Version 2.0

IANA "Secure Shell (SSH) Protocol Parameters: Key Exchange Method
Names" <https://www.iana.org/assignments/ssh-parameters/>

ITU-T "Information technology -- ASN.1 encoding rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished
Encoding Rules (DER)" ISO/IEC 8825-1:2015 ITU-T Recommendation X.690

<http://standards.iso.org/ittf/PubliclyAvailableStandards/
c068345_ISO_IEC_8825-1_2015.zip>

NIST "Transitioning of the Use of Cryptographic Algorithms and Key
Lengths" DOI 10.6028/NIST.SP.800-131Ar2 NIST Special Publication 800-131A

RFC 8732 GSS Keyex SHA-2 February 2020

Sorce & Kario Standards Track Page 11

https://www.rfc-editor.org/info/rfc3526
https://www.rfc-editor.org/info/rfc4462
https://www.rfc-editor.org/info/rfc4648
https://www.rfc-editor.org/info/rfc5656
https://www.rfc-editor.org/info/rfc5656
https://www.rfc-editor.org/info/rfc7546
https://www.rfc-editor.org/info/rfc7546
https://www.rfc-editor.org/info/rfc7748
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8731
https://www.iana.org/assignments/ssh-parameters/
http://standards.iso.org/ittf/PubliclyAvailableStandards/c068345_ISO_IEC_8825-1_2015.zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c068345_ISO_IEC_8825-1_2015.zip

[RFC6194]

[RFC6234]

[RFC8268]

, November 2015,
.

,
, , ,

March 2011, .

,
, , , May 2011,

.

,
, ,

, December 2017, .

Revision 2 <https://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-131Ar2.pdf>

Polk, T., Chen, L., Turner, S., and P. Hoffman "Security Considerations for the
SHA-0 and SHA-1 Message-Digest Algorithms" RFC 6194 DOI 10.17487/RFC6194

<https://www.rfc-editor.org/info/rfc6194>

Eastlake 3rd, D. and T. Hansen "US Secure Hash Algorithms (SHA and SHA-
based HMAC and HKDF)" RFC 6234 DOI 10.17487/RFC6234 <https://
www.rfc-editor.org/info/rfc6234>

Baushke, M. "More Modular Exponentiation (MODP) Diffie-Hellman (DH) Key
Exchange (KEX) Groups for Secure Shell (SSH)" RFC 8268 DOI 10.17487/
RFC8268 <https://www.rfc-editor.org/info/rfc8268>

Authors' Addresses
Simo Sorce
Red Hat, Inc.
140 Broadway, 24th Floor

, New York NY 10025
United States of America

 simo@redhat.com Email:

Hubert Kario
Red Hat, Inc.
Purkynova 115

 612 00 Brno
Czech Republic

 hkario@redhat.com Email:

RFC 8732 GSS Keyex SHA-2 February 2020

Sorce & Kario Standards Track Page 12

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar2.pdf
https://www.rfc-editor.org/info/rfc6194
https://www.rfc-editor.org/info/rfc6234
https://www.rfc-editor.org/info/rfc6234
https://www.rfc-editor.org/info/rfc8268
mailto:simo@redhat.com
mailto:hkario@redhat.com

	RFC 8732
	Generic Security Service Application Program Interface (GSS-API) Key Exchange with SHA-2
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Rationale
	3. Document Conventions
	4. New Diffie-Hellman Key Exchange Methods
	5. New Elliptic Curve Diffie-Hellman Key Exchange Methods
	5.1. Generic GSS-API Key Exchange with ECDH
	5.2. ECDH Key Exchange Methods

	6. Deprecated Algorithms
	7. IANA Considerations
	8. Security Considerations
	8.1. New Finite Field DH Mechanisms
	8.2. New Elliptic Curve DH Mechanisms
	8.3. GSS-API Delegation

	9. References
	9.1. Normative References
	9.2. Informative References

	Authors' Addresses

 Generic Security Service Application Program Interface (GSS-API) Key Exchange with SHA-2

 Red Hat, Inc.

 140 Broadway, 24th Floor
 New York
 NY
 10025
 United States of America

 simo@redhat.com

 Red Hat, Inc.

 Purkynova 115
 Brno
 612 00
 Czech Republic

 hkario@redhat.com

 Security
 Internet Engineering Task Force
 SSH

 This document specifies additions and amendments to RFC 4462.
 It defines a new key exchange method that uses SHA-2 for integrity and
 deprecates weak Diffie-Hellman (DH) groups. The purpose of this specification is to
 modernize the cryptographic primitives used by Generic Security Service (GSS) key exchanges.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Simplified BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Simplified BSD License.

 Table of Contents

 . Introduction

 . Rationale

 . Document Conventions

 . New Diffie-Hellman Key Exchange Methods

 . New Elliptic Curve Diffie-Hellman Key Exchange Methods

 . Generic GSS-API Key Exchange with ECDH

 . ECDH Key Exchange Methods

 . Deprecated Algorithms

 . IANA Considerations

 . Security Considerations

 . New Finite Field DH Mechanisms

 . New Elliptic Curve DH Mechanisms

 . GSS-API Delegation

 . References

 . Normative References

 . Informative References

 Authors' Addresses

 Introduction
 Secure Shell (SSH) Generic Security Service Application Program Interface (GSS-API)
 methods
 allow the use of GSS-API
 for authentication and key exchange
 in SSH. defines three exchange methods all based on DH groups and
 SHA-1. This document updates with new methods intended to support
 environments that desire to use the SHA-2 cryptographic hash functions.

 Rationale
 Due to security concerns with SHA-1 and with modular exponentiation (MODP) groups with less than 2048 bits ,
 we propose the use of hashes based on SHA-2
 with DH group14, group15,
 group16, group17, and group18 . Additionally, we
 add support for key exchange based on Elliptic Curve Diffie-Hellman with
 the NIST P-256, P-384, and P-521 , as well as the
 X25519 and X448 curves.
 Following the practice of , only SHA-256 and
 SHA-512 hashes are used for DH groups. For NIST curves, the same
 curve-to-hashing algorithm pairing used in is
 adopted for consistency.

 Document Conventions

 The key words " MUST", " MUST NOT",
 " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT",
 " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be interpreted as
 described in BCP 14
 when, and only when, they appear in all capitals, as shown here.

 New Diffie-Hellman Key Exchange Methods
 This document adopts the same naming convention defined in to define families of methods that
 cover any
 GSS-API mechanism used with a specific Diffie-Hellman group and
 SHA-2 hash combination.

 New Key Exchange Algorithms

 Key Exchange Method Name
 Implementation Recommendations

 gss-group14-sha256-*

 SHOULD/ RECOMMENDED

 gss-group15-sha512-*

 MAY/ OPTIONAL

 gss-group16-sha512-*

 SHOULD/ RECOMMENDED

 gss-group17-sha512-*

 MAY/ OPTIONAL

 gss-group18-sha512-*

 MAY/ OPTIONAL

 Each key exchange method prefix is registered by this document.
 The IESG is the change controller of all these key exchange methods;
 this does NOT imply that the IESG is considered to be in control of
 the corresponding GSS-API mechanism.

 Each method in any family of methods ()
 specifies GSS-API-authenticated Diffie-Hellman key exchanges as
 described in . The method name for each method () is the
 concatenation of the family name prefix with the base64 encoding of
 the MD5 hash of the ASN.1 DER encoding
 of the corresponding GSS-API
 mechanism's OID. Base64 encoding is described in
 .

 Family Method References

 Family Name Prefix
 Hash Function
 Group
 Reference

 gss-group14-sha256-
 SHA-256
 2048-bit MODP

 gss-group15-sha512-
 SHA-512
 3072-bit MODP

 gss-group16-sha512-
 SHA-512
 4096-bit MODP

 gss-group17-sha512-
 SHA-512
 6144-bit MODP

 gss-group18-sha512-
 SHA-512
 8192-bit MODP

 New Elliptic Curve Diffie-Hellman Key Exchange Methods
 In , new SSH key exchange algorithms based on
 elliptic curve cryptography are introduced. We reuse much of

 to define GSS-API-authenticated Elliptic Curve Diffie-Hellman (ECDH) key exchanges.
 Additionally, we also utilize the curves defined in to complement the three classic
 NIST-defined curves required by .

 Generic GSS-API Key Exchange with ECDH
 This section reuses much of the scheme defined in
 and combines it with the scheme defined in
 ; in particular, all checks and
 verification steps prescribed in
 apply
	here as well.
 The key-agreement schemes "ECDHE-Curve25519" and "ECDHE-Curve448" perform
 the Diffie-Hellman protocol using the functions X25519 and X448,
 respectively. Implementations MUST compute these functions using
 the algorithms described in . When they do
 so, implementations MUST check whether the computed Diffie-Hellman
 shared secret is the all-zero value and abort if so, as described in
 .	Alternative implementations of these functions
 SHOULD abort when either the client or the server input
 forces the shared secret to one of a small set of values, as
 described in Sections and of .
 This section defers to as the source of
 information on GSS-API context establishment operations, Section
 being the most relevant. All security considerations described in
 apply here, too.
 The parties each generate an ephemeral key pair, according to
	Section 3.2.1 of
 . Keys are verified upon
 receipt by the parties according to Section 3.2.3.1 of
 .
 For NIST curves, the keys use the uncompressed point representation
 and MUST be converted using the algorithm in Section 2.3.4 of
 . If the conversion fails or the point is
 transmitted using the compressed representation, the key exchange MUST
 fail.
 A GSS context is established according to
 ; the client initiates the establishment
 using GSS_Init_sec_context(), and the server responds to it using
 GSS_Accept_sec_context(). For the negotiation, the client MUST set
 mutual_req_flag and integ_req_flag to "true". In addition,
 deleg_req_flag MAY be set to "true" to request access delegation, if
 requested by the user. Since the key exchange process authenticates
 only the host, the setting of anon_req_flag is immaterial to this
 process. If the client does not support the "gssapi-keyex" user
 authentication method described in
 , or does not intend to use that method in
 conjunction with the GSS-API context established during key exchange,
 then anon_req_flag SHOULD be set to "true". Otherwise,
	this flag MAY
 be set to "true" if the client wishes to hide its identity.
 This key exchange process will exchange only a single message token
 once the context has been established; therefore, the
 replay_det_req_flag and sequence_req_flag SHOULD be set to "false".

 The client MUST include its public key with the first message it
 sends to the server during this process; if the server receives
 more than one key or none at all, the key exchange MUST fail.
 During GSS context establishment, multiple tokens may be exchanged
 by the client and the server. When the GSS context is established
 (major_status is GSS_S_COMPLETE), the parties check that
 mutual_state and integ_avail are both "true". If not, the key
 exchange MUST fail.
 Once a party receives the peer's public key, it proceeds to compute
 a shared secret K. For NIST curves, the computation is done according
 to Section 3.3.1 of , and the resulting value
 z is converted to the octet string K using the conversion defined
 in Section 2.3.5 of . For curve25519 and
 curve448, the algorithms in are
 used instead.
 To verify the integrity of the handshake, peers use the hash
 function defined by the selected key exchange method to calculate H:

 H = hash(V_C || V_S || I_C || I_S || K_S || Q_C || Q_S || K).
 The server uses the GSS_GetMIC() call with H as the payload
 to generate a Message Integrity Code (MIC).

	The GSS_VerifyMIC() call is used by the client to
 verify the MIC.
 If any GSS_Init_sec_context() or GSS_Accept_sec_context() returns
 a major_status other than GSS_S_COMPLETE or GSS_S_CONTINUE_NEEDED, or
 any other GSS-API call returns a major_status other than
 GSS_S_COMPLETE, the key exchange MUST fail. The same recommendations
 expressed in are followed with
 regard to error reporting.
 The following is an overview of the key exchange process:

 Client Server
 ------ ------
 Generates ephemeral key pair.
 Calls GSS_Init_sec_context().
 SSH_MSG_KEXGSS_INIT --------------->

 Verifies received key.
(Optional) <------------- SSH_MSG_KEXGSS_HOSTKEY

(Loop)
| Calls GSS_Accept_sec_context().
| <------------ SSH_MSG_KEXGSS_CONTINUE
| Calls GSS_Init_sec_context().
| SSH_MSG_KEXGSS_CONTINUE ------------>

 Calls GSS_Accept_sec_context().
 Generates ephemeral key pair.
 Computes shared secret.
 Computes hash H.
 Calls GSS_GetMIC(H) = MIC.
 <------------ SSH_MSG_KEXGSS_COMPLETE

 Verifies received key.
 Computes shared secret.
 Computes hash H.
 Calls GSS_VerifyMIC(MIC, H).
 This is implemented with the following messages:
 The client sends:

 byte SSH_MSG_KEXGSS_INIT
 string output_token (from GSS_Init_sec_context())
 string Q_C, client's ephemeral public key octet string

 The server may respond with:

 byte SSH_MSG_KEXGSS_HOSTKEY
 string server public host key and certificates (K_S)

 The server sends:

 byte SSH_MSG_KEXGSS_CONTINUE
 string output_token (from GSS_Accept_sec_context())

 Each time the client receives the message described above, it makes
 another call to GSS_Init_sec_context().
 The client sends:

 byte SSH_MSG_KEXGSS_CONTINUE
 string output_token (from GSS_Init_sec_context())

 As the final message, the server sends the following if an
	output_token is produced:

 byte SSH_MSG_KEXGSS_COMPLETE
 string Q_S, server's ephemeral public key octet string
 string mic_token (MIC of H)
 boolean TRUE
 string output_token (from GSS_Accept_sec_context())

 If no output_token is produced, the server sends:

 byte SSH_MSG_KEXGSS_COMPLETE
 string Q_S, server's ephemeral public key octet string
 string mic_token (MIC of H)
 boolean FALSE

 The hash H is computed as the HASH hash of the
 concatenation of the following:

 string V_C, the client's version string (CR, NL excluded)
 string V_S, server's version string (CR, NL excluded)
 string I_C, payload of the client's SSH_MSG_KEXINIT
 string I_S, payload of the server's SSH_MSG_KEXINIT
 string K_S, server's public host key
 string Q_C, client's ephemeral public key octet string
 string Q_S, server's ephemeral public key octet string
 mpint K, shared secret

 This value is called the "exchange hash", and it is used to
 authenticate the key exchange. The exchange hash SHOULD be kept
 secret. If no SSH_MSG_KEXGSS_HOSTKEY message has been sent by the
 server or received by the client, then the empty string is used in
 place of K_S when computing the exchange hash.
 Since this key exchange method does not require the host key to
 be used for any encryption operations, the SSH_MSG_KEXGSS_HOSTKEY
 message is OPTIONAL. If the "null" host key algorithm described in
 is used, this message MUST NOT be sent.
 If the client receives an SSH_MSG_KEXGSS_CONTINUE message after
 a call to GSS_Init_sec_context() has returned a major_status code
 of GSS_S_COMPLETE, a protocol error has occurred, and the key
 exchange MUST fail.
 If the client receives an SSH_MSG_KEXGSS_COMPLETE message and a
 call to GSS_Init_sec_context() does not result in a major_status
 code of GSS_S_COMPLETE, a protocol error has occurred, and the key
 exchange MUST fail.

 ECDH Key Exchange Methods

 New Key Exchange Methods

 Key Exchange Method Name
 Implementation Recommendations

 gss-nistp256-sha256-*

 SHOULD/ RECOMMENDED

 gss-nistp384-sha384-*

 MAY/ OPTIONAL

 gss-nistp521-sha512-*

 MAY/ OPTIONAL

 gss-curve25519-sha256-*

 SHOULD/ RECOMMENDED

 gss-curve448-sha512-*

 MAY/ OPTIONAL

 Each key exchange method prefix is registered by this document.
 The IESG is the change controller of all these key exchange methods;
 this does NOT imply that the IESG is considered to be in control of
 the corresponding GSS-API mechanism.

 Each method in any family of methods ()
 specifies GSS-API-authenticated Elliptic Curve Diffie-Hellman key
 exchanges as described in . The method name for each method () is the
 concatenation of the family method name with the base64 encoding of
 the MD5 hash of the ASN.1 DER encoding
 of the corresponding GSS-API
 mechanism's OID. Base64 encoding is described in
 .

 Family Method References

 Family Name Prefix
 Hash Function
 Parameters / Function Name
 Definition

 gss-nistp256-sha256-
 SHA-256
 secp256r1
 Section 2.4.2 of

 gss-nistp384-sha384-
 SHA-384
 secp384r1
 Section 2.5.1 of

 gss-nistp521-sha512-
 SHA-512
 secp521r1
 Section 2.6.1 of

 gss-curve25519-sha256-
 SHA-256
 X22519

 gss-curve448-sha512-
 SHA-512
 X448

 Deprecated Algorithms
 Because they have small key lengths and are no longer strong in
 the face of brute-force attacks, the algorithms in the following
 table are considered deprecated and SHOULD NOT be used.

 Deprecated Algorithms

 Key Exchange Method Name
 Implementation Recommendations

 gss-group1-sha1-*

 SHOULD NOT

 gss-group14-sha1-*

 SHOULD NOT

 gss-gex-sha1-*

 SHOULD NOT

 IANA Considerations
 This document augments the SSH key exchange message names
 that were defined in (see and); IANA has listed this
 document as reference for those entries in the "SSH Protocol Parameters" registry.
 In addition, IANA has updated the registry to include the SSH key
 exchange message names described in Sections and
 .

 Additions/Changes to the Key Exchange Method Names Registry

 Key Exchange Method Name
 Reference

 gss-group1-sha1-*
 RFC 8732

 gss-group14-sha1-*
 RFC 8732

 gss-gex-sha1-*
 RFC 8732

 gss-group14-sha256-*
 RFC 8732

 gss-group15-sha512-*
 RFC 8732

 gss-group16-sha512-*
 RFC 8732

 gss-group17-sha512-*
 RFC 8732

 gss-group18-sha512-*
 RFC 8732

 gss-nistp256-sha256-*
 RFC 8732

 gss-nistp384-sha384-*
 RFC 8732

 gss-nistp521-sha512-*
 RFC 8732

 gss-curve25519-sha256-*
 RFC 8732

 gss-curve448-sha512-*
 RFC 8732

 Security Considerations

 New Finite Field DH Mechanisms
 Except for the use of a different secure hash function and larger
 DH groups, no significant changes have been made to the protocol
 described by ; therefore, all the original
 security considerations apply.

 New Elliptic Curve DH Mechanisms
 Although a new cryptographic primitive is used with these methods,
 the actual key exchange closely follows the key exchange defined in
 ; therefore, all the original security
 considerations, as well as those expressed in ,
 apply.

 GSS-API Delegation
 Some GSS-API mechanisms can act on a request to delegate credentials
 to the target host when the deleg_req_flag is set. In this case, extra
 care must be taken to ensure that the acceptor being authenticated
 matches the target the user intended. Some mechanism implementations
 (such as commonly used krb5 libraries) may use insecure DNS resolution to
 canonicalize the target name; in these cases, spoofing a DNS response
 that points to an attacker-controlled machine may result in the user
 silently delegating credentials to the attacker, who can then
 impersonate the user at will.

 References

 Normative References

 The MD5 Message-Digest Algorithm

 This document describes the MD5 message-digest algorithm. The algorithm takes as input a message of arbitrary length and produces as output a 128-bit "fingerprint" or "message digest" of the input. This memo provides information for the Internet community. It does not specify an Internet standard.

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Generic Security Service Application Program Interface Version 2, Update 1

 This memo obsoletes [STANDARDS-TRACK]

 More Modular Exponential (MODP) Diffie-Hellman groups for Internet Key Exchange (IKE)

 This document defines new Modular Exponential (MODP) Groups for the Internet Key Exchange (IKE) protocol. It documents the well known and used 1536 bit group 5, and also defines new 2048, 3072, 4096, 6144, and 8192 bit Diffie-Hellman groups numbered starting at 14. The selection of the primes for theses groups follows the criteria established by Richard Schroeppel. [STANDARDS-TRACK]

 Generic Security Service Application Program Interface (GSS-API) Authentication and Key Exchange for the Secure Shell (SSH) Protocol

 The Secure Shell protocol (SSH) is a protocol for secure remote login and other secure network services over an insecure network.
 The Generic Security Service Application Program Interface (GSS-API) provides security services to callers in a mechanism-independent fashion.
 This memo describes methods for using the GSS-API for authentication and key exchange in SSH. It defines an SSH user authentication method that uses a specified GSS-API mechanism to authenticate a user, and a family of SSH key exchange methods that use GSS-API to authenticate a Diffie-Hellman key exchange.
 This memo also defines a new host public key algorithm that can be used when no operations are needed using a host's public key, and a new user authentication method that allows an authorization name to be used in conjunction with any authentication that has already occurred as a side-effect of GSS-API-based key exchange. [STANDARDS-TRACK]

 The Base16, Base32, and Base64 Data Encodings

 This document describes the commonly used base 64, base 32, and base 16 encoding schemes. It also discusses the use of line-feeds in encoded data, use of padding in encoded data, use of non-alphabet characters in encoded data, use of different encoding alphabets, and canonical encodings. [STANDARDS-TRACK]

 Elliptic Curve Algorithm Integration in the Secure Shell Transport Layer

 This document describes algorithms based on Elliptic Curve Cryptography (ECC) for use within the Secure Shell (SSH) transport protocol. In particular, it specifies Elliptic Curve Diffie-Hellman (ECDH) key agreement, Elliptic Curve Menezes-Qu-Vanstone (ECMQV) key agreement, and Elliptic Curve Digital Signature Algorithm (ECDSA) for use in the SSH Transport Layer protocol. [STANDARDS-TRACK]

 Structure of the Generic Security Service (GSS) Negotiation Loop

 This document specifies the generic structure of the negotiation loop to establish a Generic Security Service (GSS) security context between initiator and acceptor. The control flow of the loop is indicated for both parties, including error conditions, and indications are given for where application-specific behavior must be specified.

 Elliptic Curves for Security

 This memo specifies two elliptic curves over prime fields that offer a high level of practical security in cryptographic applications, including Transport Layer Security (TLS). These curves are intended to operate at the ~128-bit and ~224-bit security level, respectively, and are generated deterministically based on a list of required properties.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 Secure Shell (SSH) Key Exchange Method Using Curve25519 and Curve448

 SEC 1: Elliptic Curve Cryptography

 Standards for Efficient Cryptography Group

 SEC 2: Recommended Elliptic Curve Domain Parameters

 Standards for Elliptic Cryptography Group

 Informative References

 Secure Shell (SSH) Protocol Parameters: Key Exchange Method Names

 IANA

 Information technology -- ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER)

 ITU-T

 Transitioning of the Use of Cryptographic Algorithms and Key Lengths

 National Institute of Standards and Technology

 Security Considerations for the SHA-0 and SHA-1 Message-Digest Algorithms

 This document includes security considerations for the SHA-0 and SHA-1 message digest algorithm. This document is not an Internet Standards Track specification; it is published for informational purposes.

 US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF)

 Federal Information Processing Standard, FIPS

 More Modular Exponentiation (MODP) Diffie-Hellman (DH) Key Exchange (KEX) Groups for Secure Shell (SSH)

 This document defines added Modular Exponentiation (MODP) groups for the Secure Shell (SSH) protocol using SHA-2 hashes. This document updates RFC 4250. This document updates RFC 4253 by correcting an error regarding checking the Peer's DH Public Key.

 Authors' Addresses

 Red Hat, Inc.

 140 Broadway, 24th Floor
 New York
 NY
 10025
 United States of America

 simo@redhat.com

 Red Hat, Inc.

 Purkynova 115
 Brno
 612 00
 Czech Republic

 hkario@redhat.com

