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Abstract

CUBIC is a standard TCP congestion control algorithm that uses a cubic function instead of a

linear congestion window increase function to improve scalability and stability over fast and

long-distance networks. CUBIC has been adopted as the default TCP congestion control algorithm

by the Linux, Windows, and Apple stacks.

This document updates the specification of CUBIC to include algorithmic improvements based on

these implementations and recent academic work. Based on the extensive deployment

experience with CUBIC, this document also moves to the Standards Track and obsoletes RFC

8312. This document also updates RFC 5681, to allow for CUBIC's occasionally more aggressive

sending behavior.
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1. Introduction 

CUBIC has been adopted as the default TCP congestion control algorithm in the Linux, Windows,

and Apple stacks, and has been used and deployed globally. Extensive, decade-long deployment

experience in vastly different Internet scenarios has convincingly demonstrated that CUBIC is

safe for deployment on the global Internet and delivers substantial benefits over classical Reno

congestion control . It is therefore to be regarded as the currently most widely

deployed standard for TCP congestion control. CUBIC can also be used for other transport

protocols such as QUIC  and the Stream Control Transmission Protocol (SCTP) 

 as a default congestion controller.

[RFC5681]

[RFC9000]

[RFC9260]
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The design of CUBIC was motivated by the well-documented problem classical Reno TCP has with

low utilization over fast and long-distance networks  . This problem arises from a

slow increase of the congestion window (cwnd) following a congestion event in a network with a

large bandwidth-delay product (BDP).  indicates that this problem is frequently

observed even in the range of congestion window sizes over several hundreds of packets. This

problem is equally applicable to all Reno-style standards and their variants, including TCP-Reno 

, TCP-NewReno  , SCTP , TCP Friendly Rate Control (TFRC)

, and QUIC congestion control , which use the same linear increase function

for window growth. All Reno-style standards and their variants are collectively referred to as

"Reno" in this document.

CUBIC, originally proposed in , is a modification to the congestion control algorithm of

classical Reno to remedy this problem. Specifically, CUBIC uses a cubic function instead of the

linear window increase function of Reno to improve scalability and stability under fast and long-

distance networks.

This document updates the specification of CUBIC to include algorithmic improvements based on

the Linux, Windows, and Apple implementations and recent academic work. Based on the

extensive deployment experience with CUBIC, it also moves the specification to the Standards

Track, obsoleting . This requires an update to , which limits the

aggressiveness of Reno TCP implementations. Since CUBIC is occasionally more aggressive than

the  algorithms, this document updates the first paragraph of ,

replacing it with a normative reference to guideline (1) in , which allows

for CUBIC's behavior as defined in this document.

Specifically, CUBIC may increase the congestion window more aggressively than Reno during the

congestion avoidance phase. According to , during congestion avoidance, the sender

must not increment cwnd by more than Sender Maximum Segment Size (SMSS) bytes once per

RTT, whereas CUBIC may increase cwnd much more aggressively. Additionally, CUBIC

recommends the HyStart++ algorithm  for slow start, which allows for cwnd increases

of more than SMSS bytes for incoming acknowledgments during slow start, while this behavior is

not allowed as part of  standard.

Binary Increase Congestion Control (BIC-TCP) , a predecessor of CUBIC, was selected as

the default TCP congestion control algorithm by Linux in the year 2005 and had been used for

several years by the Internet community at large.

CUBIC uses a window increase function that is similar to BIC-TCP and is designed to be less

aggressive and fairer to Reno in bandwidth usage than BIC-TCP while maintaining the strengths

of BIC-TCP such as stability, window scalability, and round-trip time (RTT) fairness.

 documents the IETF's best current practices for specifying new congestion control

algorithms, specifically, ones that differ from the general congestion control principles outlined

in . It describes what type of evaluation is expected by the IETF to understand the

suitability of a new congestion control algorithm and the process to enable a specification to be

approved for widespread deployment in the global Internet.

[K03] [RFC3649]

[HLRX07]

[RFC5681] [RFC6582] [RFC6675] [RFC9260]

[RFC5348] [RFC9002]

[HRX08]

[RFC8312] Section 3 of [RFC5681]

[RFC5681] Section 3 of [RFC5681]

Section 3 of [RFC5033]

[RFC5681]

[RFC9406]

[RFC5681]

[XHR04]

[RFC5033]

[RFC2914]
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There are areas in which CUBIC differs from the congestion control algorithms previously

published in Standards Track RFCs; those changes are specified in this document. However, it is

not obvious that these changes go beyond the general congestion control principles outlined in 

, so the process in  may not apply.

Also, the wide deployment of CUBIC on the Internet was driven by direct adoption in most of the

popular operating systems, and did not follow the practices documented in . However,

due to the resulting Internet-scale deployment experience over a long period of time, the IETF

has determined that CUBIC may be published as a standards-track specification. This decision by

the IETF does not alter the general guidance in .

The following sections first briefly explain the design principles of CUBIC, provide the exact

specification of CUBIC, and finally discuss the safety features of CUBIC following the guidelines

specified in .

[RFC2914] [RFC5033]

[RFC5033]

[RFC2914]

[RFC5033]

2. Conventions 

The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14   when, and only when, they appear in

all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD

NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

Principle 1:

Principle 2:

Principle 3:

Principle 4:

3. Design Principles of CUBIC 

CUBIC is designed according to the following design principles:

For better network utilization and stability, CUBIC uses both the concave and

convex profiles of a cubic function to increase the congestion window size, instead of using

just a convex function.

To be Reno-friendly, CUBIC is designed to behave like Reno in networks with short

RTTs and small bandwidth where Reno performs well.

For RTT-fairness, CUBIC is designed to achieve linear bandwidth sharing among

flows with different RTTs.

CUBIC appropriately sets its multiplicative window decrease factor in order to

balance between the scalability and convergence speed.

3.1. Principle 1 for the CUBIC Increase Function 

For better network utilization and stability, CUBIC  uses a cubic window increase

function in terms of the elapsed time from the last congestion event. While most alternative

congestion control algorithms to Reno increase the congestion window using convex functions,

CUBIC uses both the concave and convex profiles of a cubic function for window growth.

[HRX08]
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After a window reduction in response to a congestion event detected by duplicate ACKs, Explicit

Congestion Notification-Echo (ECN-Echo, ECE) ACKs , TCP RACK  or QUIC loss

detection , CUBIC remembers the congestion window size at which it received the

congestion event and performs a multiplicative decrease of the congestion window. When CUBIC

enters into congestion avoidance, it starts to increase the congestion window using the concave

profile of the cubic function. The cubic function is set to have its plateau at the remembered

congestion window size, so that the concave window increase continues until then. After that,

the cubic function turns into a convex profile and the convex window increase begins.

This style of window adjustment (concave and then convex) improves the algorithm stability

while maintaining high network utilization . This is because the window size remains

almost constant, forming a plateau around the remembered congestion window size of the last

congestion event, where network utilization is deemed highest. Under steady state, most window

size samples of CUBIC are close to that remembered congestion window size, thus promoting

high network utilization and stability.

Note that congestion control algorithms that only use convex functions to increase the congestion

window size have their maximum increments around the remembered congestion window size

of the last congestion event, and thus introduce many packet bursts around the saturation point

of the network, likely causing frequent global loss synchronizations.

[RFC3168] [RFC8985]

[RFC9002]

[CEHRX09]

3.2. Principle 2 for Reno-Friendliness 

CUBIC promotes per-flow fairness to Reno. Note that Reno performs well over paths with small

BDPs, and only experiences problems when attempting to increase bandwidth utilization on

paths with large BDPs.

A congestion control algorithm designed to be friendly to Reno on a per-flow basis must increase

its congestion window less aggressively in small-BDP networks than in large-BDP networks.

The aggressiveness of CUBIC mainly depends on the maximum window size before a window

reduction, which is smaller in small-BDP networks than in large-BDP networks. Thus, CUBIC

increases its congestion window less aggressively in small-BDP networks than in large-BDP

networks.

Furthermore, in cases when the cubic function of CUBIC would increase the congestion window

less aggressively than Reno, CUBIC simply follows the window size of Reno to ensure that CUBIC

achieves at least the same throughput as Reno in small-BDP networks. The region where CUBIC

behaves like Reno is called the "Reno-friendly region".

3.3. Principle 3 for RTT Fairness 

Two CUBIC flows with different RTTs have a throughput ratio that is linearly proportional to the

inverse of their RTT ratio, where the throughput of a flow is approximately the size of its

congestion window divided by its RTT.

RFC 0000 TCP CUBIC June 2023
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Specifically, CUBIC maintains a window increase rate independent of RTTs outside the Reno-

friendly region, and thus flows with different RTTs have similar congestion window sizes under

steady state when they operate outside the Reno-friendly region.

This notion of a linear throughput ratio is similar to that of Reno under an asynchronous loss

model, where flows with different RTTs have the same packet loss rate but experience loss events

at different times. However, under a synchronous loss model, where flows with different RTTs

experience loss events at the same time but have different packet loss rates, the throughput ratio

of Reno flows with different RTTs is quadratically proportional to the inverse of their RTT ratio 

.

CUBIC always ensures a linear throughput ratio independent of the loss environment. This is an

improvement over Reno. While there is no consensus on the optimal throughput ratio for

different RTT flows, over wired Internet paths, use of a linear throughput ratio seems more

reasonable than equal throughputs (i.e., the same throughput for flows with different RTTs) or a

higher-order throughput ratio (e.g., a quadratical throughput ratio of Reno in synchronous loss

environments).

[XHR04]

3.4. Principle 4 for the CUBIC Decrease Factor 

To balance between scalability and convergence speed, CUBIC sets the multiplicative window

decrease factor to 0.7, whereas Reno uses 0.5.

While this improves the scalability of CUBIC, a side effect of this decision is slower convergence,

especially under low statistical multiplexing. This design choice is following the observation that

HighSpeed TCP (HSTCP)  and other approaches (e.g., ) made: the current Internet

becomes more asynchronous with less frequent loss synchronizations under high statistical

multiplexing.

In such environments, even strict Multiplicative-Increase Multiplicative-Decrease (MIMD) can

converge. CUBIC flows with the same RTT always converge to the same throughput independent

of statistical multiplexing, thus achieving intra-algorithm fairness. In environments with

sufficient statistical multiplexing, the convergence speed of CUBIC is reasonable.

[RFC3649] [GV02]

4. CUBIC Congestion Control 

This section discusses how the congestion window is updated during the different stages of the

CUBIC congestion controller.

4.1. Definitions 

The unit of all window sizes in this document is segments of the maximum segment size (MSS),

and the unit of all times is seconds. Implementations can use bytes to express window sizes,

which would require factoring in the maximum segment size wherever necessary and replacing 

segments_acked with the number of bytes acknowledged in Figure 4 (Section 4.3).

RFC 0000 TCP CUBIC June 2023
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4.1.1. Constants of Interest 

β
cubic

: CUBIC multiplicative decrease factor as described in Section 4.6.

α
cubic

: CUBIC additive increase factor used in the Reno-friendly region as described in 

Section 4.3.

C: Constant that determines the aggressiveness of CUBIC in competing with other congestion

control algorithms in high-BDP networks. Please see Section 5 for more explanation on how

it is set. The unit for C is

• 

• 

• 

4.1.2. Variables of Interest 

This section defines the variables required to implement CUBIC:

RTT: Smoothed round-trip time in seconds, calculated as described in . 

cwnd: Current congestion window in segments. 

ssthresh: Current slow start threshold in segments. 

cwnd
prior

: Size of cwnd in segments at the time of setting ssthresh most recently, either upon

exiting the first slow start, or just before cwnd was reduced in the last congestion event. 

W
max

: Size of cwnd in segments just before cwnd was reduced in the last congestion event

when fast convergence is disabled (same as cwnd
prior

 on a congestion event). However, if

fast convergence is enabled, W
max

 may be further reduced based on the current saturation

point. 

K: The time period in seconds it takes to increase the congestion window size at the

beginning of the current congestion avoidance stage to W
max

. 

t
current

: Current time of the system in seconds. 

t
epoch

: The time in seconds at which the current congestion avoidance stage started. 

cwnd
epoch

: The cwnd at the beginning of the current congestion avoidance stage, i.e., at time 

t
epoch

. 

W
cubic

(t): The congestion window in segments at time t in seconds based on the cubic

increase function, as described in Section 4.2. 

target: Target value of congestion window in segments after the next RTT, that is, W
cubic

(t + 

RTT), as described in Section 4.2. 

W
est

: An estimate for the congestion window in segments in the Reno-friendly region, that is,

an estimate for the congestion window of Reno. 

segments_acked: Number of MSS-sized segments acked when a "new ACK" is received, i.e., an

ACK that cumulatively acknowledges the delivery of new data. This number will be a

decimal value when a new ACK acknowledges an amount of data that is not MSS-sized.

• [RFC6298]

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 
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Specifically, it can be less than 1 when a new ACK acknowledges a segment smaller than the

MSS. 

4.2. Window Increase Function 

CUBIC maintains the acknowledgment (ACK) clocking of Reno by increasing the congestion

window only at the reception of a new ACK. It does not make any changes to the TCP Fast

Recovery and Fast Retransmit algorithms  .

During congestion avoidance, after a congestion event is detected by mechanisms described in 

Section 3.1, CUBIC uses a window increase function different from Reno.

CUBIC uses the following window increase function:

where t is the elapsed time in seconds from the beginning of the current congestion avoidance

stage, that is,

and where t
epoch

 is the time at which the current congestion avoidance stage starts. K is the time

period that the above function takes to increase the congestion window size at the beginning of

the current congestion avoidance stage to W
max

 if there are no further congestion events and is

calculated using the following equation:

where cwnd
epoch

 is the congestion window at the beginning of the current congestion avoidance

stage.

Upon receiving a new ACK during congestion avoidance, CUBIC computes the target congestion

window size after the next RTT using Figure 1 as follows, where RTT is the smoothed round-trip

time. The lower and upper bounds below ensure that CUBIC's congestion window increase rate is

non-decreasing and is less than the increase rate of slow start .

[RFC6582] [RFC6675]

Figure 1

Figure 2

[SXEZ19]
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The elapsed time t in Figure 1  include periods during which cwnd has not been

updated due to application-limited behavior (see Section 5.8).

Depending on the value of the current congestion window size cwnd, CUBIC runs in three

different regions:

The Reno-friendly region, which ensures that CUBIC achieves at least the same throughput as

Reno. 

The concave region, if CUBIC is not in the Reno-friendly region and cwnd is less than W
max

. 

The convex region, if CUBIC is not in the Reno-friendly region and cwnd is greater than 

W
max

. 

To summarize, CUBIC computes both W
cubic

(t) and W
est

 (see Section 4.3) on receiving a new ACK

in congestion avoidance and chooses the larger of the two values.

The next sections describe the exact actions taken by CUBIC in each region.

MUST NOT

1. 

2. 

3. 

4.3. Reno-Friendly Region 

Reno performs well in certain types of networks, for example, under short RTTs and small

bandwidths (or small BDPs). In these networks, CUBIC remains in the Reno-friendly region to

achieve at least the same throughput as Reno.

The Reno-friendly region is designed according to the analysis in , which studies the

performance of an AIMD algorithm with an additive factor of α (segments per RTT) and a

multiplicative factor of β, denoted by AIMD(α, β). p is the packet loss rate. Specifically, the

average congestion window size of AIMD(α, β) can be calculated using Figure 3.

By the same analysis, to achieve an average window size similar to Reno that uses AIMD(1, 0.5), α

must be equal to,

Thus, CUBIC uses Figure 4 to estimate the window size W
est

 in the Reno-friendly region with

[FHP00]

Figure 3
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which achieves approximately the same average window size as Reno in many cases. The model

used to calculate α
cubic

 is not absolutely precise, but analysis and simulation in 

, as well as over a decade of experience with CUBIC in the public Internet, show that

this approach produces acceptable levels of rate fairness between CUBIC and Reno flows. Also,

no significant drawbacks of the model have been reported. However, it would be beneficial to

see continued detailed analysis on it. When receiving a new ACK in congestion avoidance (where

cwnd could be greater than or less than W
max

), CUBIC checks whether W
cubic

(t) is less than W
est

.

If so, CUBIC is in the Reno-friendly region and cwnd  be set to W
est

 at each reception of a

new ACK.

W
est

 is set equal to cwnd
epoch

 at the start of the congestion avoidance stage. After that, on every

new ACK, W
est

 is updated using Figure 4. Note that this equation uses segments_acked and cwnd

is measured in segments. An implementation that measures cwnd in bytes should adjust the

equation accordingly using number of acknowledged bytes and MSS. Also note that this equation

works for connections with enabled or disabled Delayed ACKs , as segments_acked will

be different based on the segments actually acknowledged by a new ACK.

Once W
est

 has grown to reach the cwnd at the time of most recently setting ssthresh, that is, W
est

>= cwnd
prior

, the sender  set α
cubic

 to 1 to ensure that it can achieve the same congestion

window increment rate as Reno, which uses AIMD(1, 0.5).

The next two sections assume that CUBIC is not in the Reno-friendly region and uses the window

increase function described in Section 4.2. Although cwnd is incremented in the same way for

both concave and convex regions, they are discussed separately to analyze and understand the

difference between the two regions.

[AIMD-

friendliness]

SHOULD

[RFC5681]

Figure 4

SHOULD

4.4. Concave Region 

When receiving a new ACK in congestion avoidance, if CUBIC is not in the Reno-friendly region

and cwnd is less than W
max

, then CUBIC is in the concave region. In this region, cwnd  be

incremented by

for each received new ACK, where target is calculated as described in Section 4.2.

MUST
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4.5. Convex Region 

When receiving a new ACK in congestion avoidance, if CUBIC is not in the Reno-friendly region

and cwnd is larger than or equal to W
max

, then CUBIC is in the convex region.

The convex region indicates that the network conditions might have changed since the last

congestion event, possibly implying more available bandwidth after some flow departures. Since

the Internet is highly asynchronous, some amount of perturbation is always possible without

causing a major change in available bandwidth.

Unless it is overridden by the AIMD window increase, CUBIC is very careful in this region. The

convex profile aims to increase the window very slowly at the beginning when cwnd is around 

W
max

 and then gradually increases its rate of increase. This region is also called the "maximum

probing phase", since CUBIC is searching for a new W
max

. In this region, cwnd  be

incremented by

for each received new ACK, where target is calculated as described in Section 4.2.

MUST

4.6. Multiplicative Decrease 

When a congestion event is detected by mechanisms described in Section 3.1, CUBIC updates 

W
max

 and reduces cwnd and ssthresh immediately as described below. In case of packet loss, the

sender  reduce cwnd and ssthresh immediately upon entering loss recovery, similar to 

 (and ). Note that other mechanisms, such as Proportional Rate Reduction 

, can be used to reduce the sending rate during loss recovery more gradually. The

parameter β
cubic

  be set to 0.7, which is different from the multiplicative decrease factor

used in  (and ) during fast recovery.

In Figure 5, flight_size is the amount of outstanding (unacknowledged) data in the network, as

defined in . Note that a rate-limited application with idle periods or periods when

unable to send at the full rate permitted by cwnd could easily encounter notable variations in the

volume of data sent from one RTT to another, resulting in flight_size that is significantly less than 

cwnd when there is a congestion event. The congestion response would therefore decrease cwnd

to a much lower value than necessary. To avoid such suboptimal performance, the mechanisms

described in  can be used. These describe how to manage and use cwnd and ssthresh

during a rate-limited Interval, and how to update cwnd and ssthresh after congestion has been

detected. The mechanism defined in  is safe to use even when cwnd is greater than the

receive window, because it validates cwnd based on the amount of data acknowledged by the

network in an RTT, which implicitly accounts for the allowed receive window.

MUST

[RFC5681] [RFC6675]

[RFC6937]

SHOULD

[RFC5681] [RFC6675]

[RFC5681]

[RFC7661]

[RFC7661]
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Some implementations of CUBIC currently use cwnd instead of flight_size when calculating a new

ssthresh. Implementations that use cwnd  use other measures to prevent cwnd from

growing when the volume of bytes in flight is smaller than cwnd. This also effectively avoids 

cwnd from growing beyond the receive window. Such measures are important to prevent a

CUBIC sender from using an arbitrarily high cwnd value when calculating new values for 

ssthresh and cwnd when congestion is detected. This might not be as robust as the mechanisms

described in .

A QUIC sender that uses cwnd to calculate new values for cwnd and ssthresh after detecting a

congestion event is  to apply similar mechanisms .

A side effect of setting β
cubic

 to a value bigger than 0.5 is that packet loss can happen for more

than one round-trip in certain cases, but it can work efficiently in other cases, for example, when

HyStart++ is used along with CUBIC or when the sending rate is limited by the application. While

a more adaptive setting of β
cubic

 could help limit packet loss to a single round, it would require

detailed analyses and large-scale evaluations to validate such algorithms.

Note that CUBIC  continue to reduce cwnd in response to congestion events due to ECN-Echo

ACKs until it reaches a value of 1 MSS. If congestion events indicated by ECN-Echo ACKs persist, a

sender with a cwnd of 1 MSS  reduce its sending rate even further. It can achieve that by

using a retransmission timer with exponential backoff, as described in .

MUST

[RFC7661]

REQUIRED [RFC9002]

Figure 5

MUST

MUST

[RFC3168]

4.7. Fast Convergence 

To improve convergence speed, CUBIC uses a heuristic. When a new flow joins the network,

existing flows need to give up some of their bandwidth to allow the new flow some room for

growth, if the existing flows have been using all the network bandwidth. To speed up this

bandwidth release by existing flows, the following "Fast Convergence" mechanism  be

implemented.

With Fast Convergence, when a congestion event occurs, W
max

 is updated as follows, before the

window reduction described in Section 4.6.

SHOULD
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At a congestion event, if the current cwnd is less than W
max

, this indicates that the saturation

point experienced by this flow is getting reduced because of a change in available bandwidth.

This flow can then release more bandwidth by reducing W
max

 further. This action effectively

lengthens the time for this flow to increase its congestion window, because the reduced W
max

forces the flow to plateau earlier. This allows more time for the new flow to catch up to its

congestion window size.

Fast Convergence is designed for network environments with multiple CUBIC flows. In network

environments with only a single CUBIC flow and without any other traffic, Fast Convergence 

 be disabled.SHOULD

4.8. Timeout 

In case of a timeout, CUBIC follows Reno to reduce cwnd , but sets ssthresh using β
cubic

(same as in Section 4.6) in a way that is different from Reno TCP .

During the first congestion avoidance stage after a timeout, CUBIC increases its congestion

window size using Figure 1, where t is the elapsed time since the beginning of the current

congestion avoidance, K is set to 0, and W
max

 is set to the congestion window size at the

beginning of the current congestion avoidance stage. In addition, for the Reno-friendly region, 

W
est

  be set to the congestion window size at the beginning of the current congestion

avoidance.

[RFC5681]

[RFC5681]

SHOULD

4.9. Spurious Congestion Events 

In cases where CUBIC reduces its congestion window in response to having detected packet loss

via duplicate ACKs or timeouts, there is a possibility that the missing ACK would arrive after the

congestion window reduction and a corresponding packet retransmission. For example, packet

reordering could trigger this behavior. A high degree of packet reordering could cause multiple

congestion window reduction events, where spurious losses are incorrectly interpreted as

congestion signals, thus degrading CUBIC's performance significantly.

For TCP, there are two types of spurious events - spurious timeouts and spurious fast retransmits.

In case of QUIC, there are no spurious timeouts as the loss is only detected after receiving an

ACK.

4.9.1. Spurious Timeout 

An implementation  detect spurious timeouts based on the mechanisms described in

Forward RTO-Recovery . Experimental alternatives include the Eifel . When

a spurious timeout is detected, a TCP implementation  follow the response algorithm

described in  to restore the congestion control state and adapt the retransmission timer

to avoid further spurious timeouts.

MAY

[RFC5682] [RFC3522]

MAY

[RFC4015]
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4.9.2. Spurious Loss Detected by Acknowledgments 

Upon receiving an ACK, a TCP implementation  detect spurious losses either using TCP

Timestamps or via D-SACK . Experimental alternatives include the Eifel detection

algorithm , which uses TCP Timestamps and DSACK-based detection  which

uses DSACK information. A QUIC implementation can easily determine a spurious loss if a QUIC

packet is acknowledged after it has been marked as lost and the original data has been

retransmitted with a new QUIC packet.

This section specifies a simple response algorithm when a spurious loss is detected by

acknowledgments. Implementations would need to carefully evaluate the impact of using this

algorithm in different environments that may experience sudden change in available capacity

(e.g., due to variable radio capacity, a routing change, or a mobility event).

When a packet loss is detected via acknowledgments, a CUBIC implementation  save the

current value of the following variables before the congestion window is reduced.

Once the previously declared packet loss is confirmed to be spurious, CUBIC  restore the

original values of the above-mentioned variables as follows if the current cwnd is lower than 

cwnd
prior

. Restoring the original values ensures that CUBIC's performance is similar to what it

would be without spurious losses.

In rare cases, when the detection happens long after a spurious loss event and the current cwnd

is already higher than cwnd
prior

, CUBIC  continue to use the current and the most recent

values of these variables.

MAY

[RFC2883]

[RFC3522] [RFC3708]

MAY

MAY

SHOULD
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4.10. Slow Start 

CUBIC  employ a slow-start algorithm, when cwnd is no more than ssthresh. In general,

CUBIC  use the HyStart++ slow start algorithm , or  use the Reno TCP slow

start algorithm  in the rare cases when HyStart++ is not suitable. Experimental

alternatives include hybrid slow start , a predecessor to HyStart++ that some CUBIC

implementations have used as the default for the last decade, and limited slow start .

Whichever start-up algorithm is used, work might be needed to ensure that the end of slow start

and the first multiplicative decrease of congestion avoidance work well together.

When CUBIC uses HyStart++ , it may exit the first slow start without incurring any

packet loss and thus W
max

 is undefined. In this special case, CUBIC sets cwnd
prior

 = cwnd and

switches to congestion avoidance. It then increases its congestion window size using Figure 1,

where t is the elapsed time since the beginning of the current congestion avoidance, K is set to 0,

and W
max

 is set to the congestion window size at the beginning of the current congestion

avoidance stage.

MUST

SHOULD [RFC9406] MAY

[RFC5681]

[HR11]

[RFC3742]

[RFC9406]

5. Discussion 

This section further discusses the safety features of CUBIC following the guidelines specified in 

.

With a deterministic loss model where the number of packets between two successive packet

losses is always 1/p, CUBIC always operates with the concave window profile, which greatly

simplifies the performance analysis of CUBIC. The average window size of CUBIC (see Appendix

B) can be obtained by the following function:

With β
cubic

 set to 0.7, the above formula reduces to

The following subsection will determine the value of C using Figure 7.

[RFC5033]

Figure 6

Figure 7
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5.1. Fairness to Reno 

In environments where Reno is able to make reasonable use of the available bandwidth, CUBIC

does not significantly change this state.

Reno performs well in the following two types of networks:

Networks with a small bandwidth-delay product (BDP) 

Networks with short RTTs, but not necessarily a small BDP 

CUBIC is designed to behave very similarly to Reno in the above two types of networks. The

following two tables show the average window sizes of Reno TCP, HSTCP, and CUBIC TCP. The

average window sizes of Reno TCP and HSTCP are from . The average window size of

CUBIC is calculated using Figure 7 and the CUBIC Reno-friendly region for three different values

of C.

Table 1 describes the response function of Reno TCP, HSTCP, and CUBIC in networks with RTT =

0.1 seconds. The average window size is in MSS-sized segments.

1. 

2. 

[RFC3649]

Loss Rate P Reno HSTCP CUBIC (C=0.04) CUBIC (C=0.4) CUBIC (C=4)

1.0e-02 12 12 12 12 12

1.0e-03 38 38 38 38 59

1.0e-04 120 263 120 187 333

1.0e-05 379 1795 593 1054 1874

1.0e-06 1200 12280 3332 5926 10538

1.0e-07 3795 83981 18740 33325 59261

1.0e-08 12000 574356 105383 187400 333250

Table 1: Reno TCP, HSTCP, and CUBIC with RTT = 0.1 Seconds 

Loss Rate P Reno HSTCP CUBIC (C=0.04) CUBIC (C=0.4) CUBIC (C=4)

1.0e-02 12 12 12 12 12

1.0e-03 38 38 38 38 38

1.0e-04 120 263 120 120 120

1.0e-05 379 1795 379 379 379

1.0e-06 1200 12280 1200 1200 1874
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Table 2 describes the response function of Reno TCP, HSTCP, and CUBIC in networks with RTT =

0.01 seconds. The average window size is in MSS-sized segments.

Both tables show that CUBIC with any of these three C values is more friendly to Reno TCP than

HSTCP, especially in networks with a short RTT where Reno TCP performs reasonably well. For

example, in a network with RTT = 0.01 seconds and p=10^-6, Reno TCP has an average window of

1200 packets. If the packet size is 1500 bytes, then Reno TCP can achieve an average rate of 1.44

Gbps. In this case, CUBIC with C=0.04 or C=0.4 achieves exactly the same rate as Reno TCP,

whereas HSTCP is about ten times more aggressive than Reno TCP.

C determines the aggressiveness of CUBIC in competing with other congestion control algorithms

for bandwidth. CUBIC is more friendly to Reno TCP, if the value of C is lower. However, it is 

 to set C to a very low value like 0.04, since CUBIC with a low C cannot efficiently

use the bandwidth in fast and long-distance networks. Based on these observations and

extensive deployment experience, C=0.4 seems to give a good balance between Reno-friendliness

and aggressiveness of window increase. Therefore, C  be set to 0.4. With C set to 0.4, 

Figure 7 is reduced to

Figure 8 is then used in the next subsection to show the scalability of CUBIC.

Loss Rate P Reno HSTCP CUBIC (C=0.04) CUBIC (C=0.4) CUBIC (C=4)

1.0e-07 3795 83981 3795 5926 10538

1.0e-08 12000 574356 18740 33325 59261

Table 2: Reno TCP, HSTCP, and CUBIC with RTT = 0.01 Seconds 

NOT

RECOMMENDED

SHOULD

Figure 8

5.2. Using Spare Capacity 

CUBIC uses a more aggressive window increase function than Reno for fast and long-distance

networks.

The following table shows that to achieve the 10 Gbps rate, Reno TCP requires a packet loss rate

of 2.0e-10, while CUBIC TCP requires a packet loss rate of 2.9e-8.

Throughput (Mbps) Average W Reno P HSTCP P CUBIC P

1 8.3 2.0e-2 2.0e-2 2.0e-2

10 83.3 2.0e-4 3.9e-4 2.9e-4
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Table 3 describes the required packet loss rate for Reno TCP, HSTCP, and CUBIC to achieve a

certain throughput, with 1500-byte packets and an RTT of 0.1 seconds.

The test results in  indicate that, in typical cases with a degree of background traffic,

CUBIC uses the spare bandwidth left unused by existing Reno TCP flows in the same bottleneck

link without taking away much bandwidth from the existing flows.

Throughput (Mbps) Average W Reno P HSTCP P CUBIC P

100 833.3 2.0e-6 2.5e-5 1.4e-5

1000 8333.3 2.0e-8 1.5e-6 6.3e-7

10000 83333.3 2.0e-10 1.0e-7 2.9e-8

Table 3: Required Packet Loss Rate for Reno TCP, HSTCP, and CUBIC to

Achieve a Certain Throughput 

[HLRX07]

5.3. Difficult Environments 

CUBIC is designed to remedy the poor performance of Reno in fast and long-distance networks.

5.4. Investigating a Range of Environments 

CUBIC has been extensively studied using simulations, testbed emulations, Internet experiments,

and Internet measurements, covering a wide range of network environments   

   . They have convincingly demonstrated that CUBIC

delivers substantial benefits over classical Reno congestion control .

Same as Reno, CUBIC is a loss-based congestion control algorithm. Because CUBIC is designed to

be more aggressive (due to a faster window increase function and bigger multiplicative decrease

factor) than Reno in fast and long-distance networks, it can fill large drop-tail buffers more

quickly than Reno and increases the risk of a standing queue . In this case, proper

queue sizing and management  could be used to mitigate the risk to some extent and

reduce the packet queuing delay. Also, in large-BDP networks after a congestion event, CUBIC,

due its cubic window increase function, recovers quickly to the highest link utilization point.

This means that link utilization is less sensitive to an active queue management (AQM) target

that is lower than the amplitude of the whole sawtooth.

Similar to Reno, the performance of CUBIC as a loss-based congestion control algorithm suffers in

networks where a packet loss is not a good indication of bandwidth utilization, such as wireless

or mobile networks .

[HLRX07] [H16]

[CEHRX09] [HR11] [BSCLU13] [LBEWK16]

[RFC5681]

[RFC8511]

[RFC7567]

[LIU16]

5.5. Protection against Congestion Collapse 

With regard to the potential of causing congestion collapse, CUBIC behaves like Reno, since

CUBIC modifies only the window adjustment algorithm of Reno. Thus, it does not modify the ACK

clocking and timeout behaviors of Reno.
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CUBIC also satisfies the "full backoff" requirement as described in . After reducing the

sending rate to one packet per RTT in response to congestion events due to ECN-Echo ACKs,

CUBIC then exponentially increases the transmission timer for each packet retransmission while

congestion persists.

[RFC5033]

5.6. Fairness within the Alternative Congestion Control Algorithm 

CUBIC ensures convergence of competing CUBIC flows with the same RTT in the same bottleneck

links to an equal throughput. When competing flows have different RTT values, their throughput

ratio is linearly proportional to the inverse of their RTT ratios. This is true independently of the

level of statistical multiplexing on the link. The convergence time depends on the network

environments (e.g., bandwidth, RTT) and the level of statistical multiplexing, as mentioned in 

Section 3.4.

5.7. Performance with Misbehaving Nodes and Outside Attackers 

CUBIC does not introduce new entities or signals, so its vulnerability to misbehaving nodes or

attackers is unchanged from Reno.

5.8. Behavior for Application-Limited Flows 

A flow is application-limited if it is currently sending less than what is allowed by the congestion

window. This can happen if the flow is limited by either the sender application or the receiver

application (via the receiver advertised window) and thus sends less data than what is allowed

by the sender's congestion window.

CUBIC does not increase its congestion window if a flow is application-limited. Section 4.2

requires that t in Figure 1 does not include application-limited periods, such as idle periods,

otherwise W
cubic

(t) might be very high after restarting from these periods.

5.9. Responses to Sudden or Transient Events 

If there is a sudden increase in capacity, e.g., due to variable radio capacity, a routing change, or

a mobility event, CUBIC is designed to utilize the newly available capacity faster than Reno.

On the other hand, if there is a sudden decrease in capacity, CUBIC reduces more slowly than

Reno. This remains true regardless of whether CUBIC is in Reno-friendly mode and regardless of

whether fast convergence is enabled.

5.10. Incremental Deployment 

CUBIC requires only changes to the congestion control at the sender, and it does not require any

changes at receivers. That is, a CUBIC sender works correctly with Reno receivers. In addition,

CUBIC does not require any changes to routers and does not require any assistance from routers.
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Applied various formatting changes 

Moved to Standards Track 
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• 

A.2. Since the Original Paper 

CUBIC has gone through a few changes since the initial release  of its algorithm and

implementation. This section highlights the differences between the original paper and 

.

The original paper  includes the pseudocode of CUBIC implementation using Linux's

pluggable congestion control framework, which excludes system-specific optimizations. The

simplified pseudocode might be a good source to start with and understand CUBIC. 

 also includes experimental results showing its performance and fairness. 

The definition of the β
cubic

 constant was changed in . For example, β
cubic

 in the

original paper was the window decrease constant while  changed it to "CUBIC

multiplication decrease factor". With this change, the current congestion window size after a

congestion event in  was β
cubic

 * W
max

 while it was (1-β
cubic

) * W
max

 in the

original paper.

Its pseudocode used W
last_max

 while  used W
max

.

Its AIMD-friendly window was W
tcp

 while  used W
est

.

[HRX08]

[RFC8312]

• [HRX08]

• [HRX08]

• [RFC8312]

[RFC8312]

[RFC8312]

• [RFC8312]

• [RFC8312]

Appendix B. Proof of the Average CUBIC Window Size 

This appendix contains a proof for the average CUBIC window size AVG_W
cubic

 in Figure 6.

We find AVG_W
cubic

 under a deterministic loss model, where the number of packets between

two successive packet losses is 1/p. With this model, CUBIC always operates with the concave

window profile and the time period between two successive packet losses is K.

The average window size AVG_W
cubic

 is defined as follows, where the numerator 1/p is the total

number of packets between two successive packet losses, and the denominator K/RTT is the total

number of RTTs between two successive packet losses.

Figure 9
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Below, we find K as a function of CUBIC parameters β
cubic

 and C, and network parameters p and 

RTT. According to the definition of K in Figure 2, we have

The total number of packets between two successive packet losses can also be obtained as follows

using the window increase function in Figure 1. Specifically, the window size in the first RTT (i.e., 

n=1 or equivalently t=0) is C(-K)
3
+W

max
 and the window size in the last RTT (i.e., n=K/RTT or

equivalently t=K-RTT) is C(-RTT)
3
+W

max
.

After solving Figure 10 and Figure 11 for K and W
max

, we have

The average CUBIC window size AVG_W
cubic

 can be obtained by substituting K with Figure 12 in 

Figure 9.

Figure 10

Figure 11

Figure 12
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