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We consider a mesoscopic region coupled to two leads under the influence of external time-
dependent voltages. The time dependence is coupled to source and drain contacts, the gates con-
trolling the tunnel-barrier heights, or to the gates that de6ne the mesoscopic region. We derive,
with the Keldysh nonequilibrium-Green-function technique, a formal expression for the fully non-
linear, time-dependent current through the system. The analysis admits arbitrary interactions in
the mesoscopic region, but the leads are treated as noninteracting. For proportionate coupling to
the leads, the time-averaged current is simply the integral between the chemical potentials of the
time-averaged density of states, weighted by the coupling to the leads, in close analogy to the time-
independent result of Meir and Wingreen [Phys. Rev. Lett. BS, 2512 (1992)]. Analytical and
numerical results for the exactly solvable noninteracting resonant-tunneling system are presented.
Due to the coherence between the leads and the resonant site, the current does not follow the driving
signal adiabatically: a "ringing" current is found as a response to a voltage pulse, and a complex
time dependence results in the case of harmonic driving voltages. We also establish a connection
to recent linear-response calculations, and to earlier studies of electron-phonon scattering effects in
resonant tunneling.

I. INTRODUCTION

The hallmark of mesoscopic phenomena is the phase
coherence of the charge carriers, which is maintained
over a significant part of the transport process. The
interference efFects resulting &om this phase coherence
are refIected in a number of experimentally measurable
properties. For example, phase coherence is central
to the Aharonov-Bohm efI'ect, universal conductance
Quctuations, and weak localization, 2 and can be affected
by external controls such as temperature or magnetic
field. The study of stationary mesoscopic physics is now
a mature field, and in this work we focus on an alterna-
tive way of afFecting the phase coherence: external time-
dependent perturbations. The interplay of external time
dependence and phase coherence can be phenomenolog-
ically understood as follows. If the single-particle ener-
gies acquire a time dependence, then the wave functions
have an extra phase factor, g exp[—i f dt'e(t')]. For
a uniform system such an overall phase factor is of no
consequence. However, if the external time dependence
is difFerent in difFerent parts of the system, and the parti-
cles can move between these regions (without being "de-
phased" by inelastic collisions), the phase difference be-
comes important.
The interest in time-dependent mesoscopic phenom-

ena stems &om recent progress in several experimental
techniques. Time dependence is a central ingredient in
many difFerent experiments, of which we mention the fol-
lowing:
(i) Single electron pu-mps and turnstiles Here ti. me-

modified gate signals move electrons one by one through
a quantum dot, leading to a current which is proportional
to the frequency of the external signal. These structures
have considerable importance as current standards. The
Coulombic repulsion of the carriers in the central region
is crucial to the operational principle of these devices,
and underlines the fact that extra care must be paid to
interactions when considering time-dependent transport
in mesoscopic systems.
(ii) ac response and transients in resonant tunneling-

devices. Resonant-tunneling devices have a number of
applications as high-&equeney amplifiers or detectors.
For the device engineer a natural approach would be
to model these circuit elements with resistors, capaci-
tances, and inductors. The question then arises as to
what, if any, are the appropriate "quantum" capacitances
and inductances one should ascribe to these devices. An-
swering this question requires the use of time-dependent
quantum-transport theory.
(iii) Interaction upwith laser fields Ultrashort . laser

pulses allow the study of short-time dynamics of charge
carriers. Here again, coherence and time dependence
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combine with the necessity of treating interactions.
A rigorous discussion of transport in an interacting

mesoscopic system requires a formalism that is capable of
including explicitly the interactions. Obvious candidates
for such a theoretical tool are various techniques based
on Green functions. Since many problems of interest in-
volve systems far &om equilibrium, we cannot use linear-
response methods, such as those based on the Kubo for-
mula, but must use an approach capable of addressing the
full nonequilibrium situation. The nonequilibrum-Green-
function techniques, as developed about thirty years ago
by Kadano6' and Baym, and by Keldysh, have during
the recent years gained increasing attention in the anal-
ysis of transport phenomena in mesoscopic semiconduc-
tors systems. In particular, the Steady-state situation has
been addressed by a large number of papers. Axnong
the central results obtained in these papers is that under
certain conditions (to be discussed below) a Landauer-
type conductance formula can be derived. This is quite
appealing in view of the wide spread success of conduc-
tance formulas in the analysis of transport in mesoscopic
systems.
Considerably fewer studies have been reported where

an explicit time dependence is an essential feature.
We are aware of an early paper in surface physics, i4
but only in the recent past have groups working in
mesoscopic physics addressed this problem. 's 2O I The
work reported in this paper continues along these lines:
we give the full details and expand on our short
corrnnunication. ~~

Our main formal result from the nonequilibrium-
Green-function approach is a general expression for
the time-dependent current fiowing &om noninteracting
leads to an interacting region. As we will discuss in Sec.
II, the time dependence enters through the self-consistent
parameters defining the model. We show that under
certain restrictions, to be specified below, a Landauer-
like formula can be obtained for the time-averaged cur-
rent. To illustrate the utility of our approach we give
results for an exactly solvable noninteracting case, which
displays an interesting, and experimentally measurable,
nonadiabatic behavior. We also establish a link between
the present formulation and recently published results
for linear-response and electron-phonon interactions, ob-
tained by other techniques.
The paper is organized as follows. We examine in Sec.

II the range of experimental parameters in which we ex-
pect our theoretical formulation to be valid. In Sec. III
we brie8y review the physics behind the nonequilibrium-
Green-function technique of Keldysh, and Baym and
Kadano8', which is our main theoretical tool, and then
introduce the specific model Hamiltonians used in this
work. We derive the central formal results for the time-
dependent current in Sec. IV. We also derive, under spe-
cial restrictions, a Landauer-like formula for the average
current. In Sec. V, we apply the general formulas to an
explicitly solvable resonant-tunneling xnodel. Both ana-
lytical and nuxnerical results are presented. We also show
that the linear ac-response results of Fu and Dudley
are contained as a special case of the exact results of this
section. In Sec. VI, we illustrate the utility of our for-

mulation by presenting a much simplified derivation of
Wingreen et at. results on resonant tunneling in the
presence of electron-phonon interactions. Appendix A
summarizes some of the central technical properties of
the Keldysh technique: we state the definitions, give
the basic equations, and provide the analytic continu-
ation rules employed below. In Appendices B and C, we
present proofs for certain statements made in the main
text, and, finally, in Appendix D we describe some trans-
formations which facilitate numerical evaluation of the
time-dependent current.

II. APPLICABILITY TO EXPERIMENTS
A central question one must address is: under which

conditions are the nonequilibrium techniques, applied
successfully to the steady-state problem, transferrable to
time-dependent situations, such as the experiments men-
tioned above?
The time-dependent problem has to be formulated

carefully, particularly with respect to the leads. It is es-
sential to a Landauer type of approach, that the electrons
in the leads be noninteracting. In practice, however, the
electrons in the leads near the mesoscopic region con-
tribute to the self-consistent potential. We approach this
problem by dividing the transport physics in two steps:
(i) the self-consistent determination of charge pileup and
depletion in the contacts, the resulting barrier heights,
and single-particle energies in the interacting region, and
(ii) transport in a system defined by these self-consistent
parameters. Step (i) requires a capacitance calculation
for each specific geometry, and we do not address it in
this paper. Instead, we assume the results of (i) as time-
dependent input parameters and give a fuD treatment
of the transport through the mesoscopic region (ii). In
practice, the interactions in the leads are absorbed into
a tixne-dependent potential and &om then on the elec-
trons in the leads are treated as noninteracting. This
means that when relating our results to actual experi-
ments some care must be exercised. Specifically, we cal-
culate only the current Bowing into the mesoscopic re-
gion, while the total tixne-dependent current measured
in the contacts includes contributions from charge fiow-
ing in and out of accumulation and depletion regions in
the leads. In the time-averuged (dc) current, however,
these capacitive contributions vanish and the correspond-
ing time-averaged theoretical formulas, such as Eq. (27),
are directly relevant to experiment. It should be noted,
though, that these capacitive currents may inBuence the
effective time-dependent parameters in step (i) above.
Let us next estimate the &equency limits that restrict

the validity of our approach. Two criteria must be sat-
isfied. First, the driving &equency xnust be suKciently
slow that the applied bias is dropped entirely across the
tunneling structure. When a bias is applied to a sam-
ple, the electric field in the leads can only be screened
if the driving frequency is smaller than the plasma fre-
quency, which is tens of THz in typical doped semicon-
ductor samples. For signals slower than this, the bias
is established entirely across the tunneling structure by
accumulation and depletion of charge near the barriers.
The unscreened Coulomb interaction between net excess
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FIG. 1. Sketch of charge distribution in a three
dimensional resonant-tunneling device under dc bias
Vb;~, ——pL, —p~ with a time modulation of amplitude AI, /~
superposed on the leads. As argued in the text, only a tiny
fraction of charge carriers participates in setting up the volt-
age drop across the structure.

charge is quite strong, and hence the bias across a tun-
neling structure is caused by a relatively small excess of
charge in accumulation and depletion layers. The forma-
tion of these layers then causes a rigid shift [see Eq. (2)
below] of the bottom of the conduction band deeper in
the leads, which is the origin of the rigid shift of energy
levels in our treatment of a time-dependent bias.
The second &equency limit on our approach is that

the buildup of electrons required for the formation of the
accumulation and depletion layers must not significantly
disrupt the coherent transport of electrons incident from
the leads. One way to quantify this is to ask—what is
the probability that an electron incident from the leads
participates in the buildup of charge associated with a
time-dependent bias' This probability will be the ratio
of the net current density fiowing into the accumulation
region to the total incident flux of electrons. For a three-
dimensional double-barrier resonant-tunneling structure
(see Fig. 1) the ac charging the accumulation layer isI'„'= 2n'vCV™/A, where v is the driving &equency,
C is the capacitance, V™is the applied bias, and A
is the area. In comparison, the total incident Hux is
I;„,= 3/8envF Using th. e parameters appropriate for
a typical experiment (we use that of Brown et al.24), we
find that up to 10 THz the probability of an electron par-
ticipating in the charge buildup is only 1%%. Summariz-
ing, these estimates indicate that our approach should be
accurate up to &equencies of tens of 7Hz, which are large
by present experimental standards, and consequently the
analysis presented in what follows should be valid for
most experimental situations.

nection to tunneling physics. Readers interested in tech-
nical details should consult any of the many available
review articles, such as Refs. 25—27. The basic difI'erence
between construction of equilibrium and nonequilibrium
perturbation schemes is that in nonequilibrium one can-
not assume that the system returns to its ground state
(or a thermodynamic equilibrium state at finite tempera-
tures) as t —i +oo. Irreversible effects break the symme-
try between t = —oo and t = +oo, and this symmetry is
heavily exploited in the derivation of the equilibrium per-
turbation expansion. In nonequilibrium situations one
can circumvent this problem by allowing the system to
evolve &om —oo to the moment of interest (for definite-
ness, let us call this instant to), and then continue the
time evolvement &om t = to back to t = —oo.2s (When
dealing with quantities that depend on two time vari-
ables, such as Green functions, the time evolution must
be continued to the later time. ) The advantage of this
procedure is that all expectation values are defined with
respect to a well defined state, i.e., the state in which
the system was prepared in the remote past. The price
is that one must treat the two time branches on an equal
footing (See Fig. 2).
A typical object of interest would be a two time Green

function (see Appendix A); the two times can be located
on either of the two branches of the complex time path
(e.g. , r and w' in Fig. 2). One is thus led to consider
2 x 2 Green-function matrices, and the various terms in
the perturbation theory can be evaluated by matrix mul-
tiplication. Since the internal time integrations run over
the complex time path, a method of bookkeeping for the
time labels is required, and there are various ways of do-
ing this. In the present work we employ a version of the
Keldysh technique.
In the context of tunneling problems the time-

independent Keldysh formalism works as follows. In the
remote past the contacts (i.e., the left and right lead)
and the central region are decoupled, and each region
is in thermal equilibrium. The equilibrium distribution
functions for the three regions are characterized by their
respective chemical potentials; these do not have to coin-
cide nor are the differences between the chemical poten-
tials necessarily small. The couplings between the difI'er-
ent regions are then established and treated as perturba-
tions via the standard techniques of perturbation theory,
albeit on the two-branch time contour. It is important
to notice that the couplings do not have to be small, e.g. ,
with respect level spacings or kBT, and typically must be
treated to all orders.

III. THEORETICAL TOOLS AND THE MODEL
A. Baym-Kadanoff-Keldysh nonequilibrium

techniques

Here we wish to outline the physical background be-
hind the Keldysh formulation, and in particular its con-

FIG. 2. The complex-time contour on which nonequilib-
rium-Green-function theory is constructed. In the contour
sense, the time ~q is earlier than Tq even though its real-time
projection appears larger.
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The time-dependent case can be treated similarly.
Before the couplings between the various regions are
turned on, the single-particle energies acquire rigid time-
dependent shifts, which, in the case of the noninteracting
contacts, translate into extra phase factors for the prop-
agators (but not in changes in occupations). The per-
turbation theory with respect to the couplings has the
same diagrammatic structure as in the stationary case.
The calculations, of course, become more complicated
because of the broken time-translational invariance.

signal. This assumption implies that the total number
of electrons in the contacts varies with time. This be-
havior is inconsistent with what happens in real devices:
it is only the relatively small number of electrons in the
accumulation-depletion layers that is time dependent. In
addition to the unphysical charge pileup in the contacts,
the model of Chen and Ting leads to an instantaneous
loss of phase coherence in the contacts, and hence does
not display any of the interesting interference phenomena
predicted by our phase-conserving model.

B.Model Hamiltonian 2. Compliny beheeen leads and cental myion, Hz

We split the total Hamiltonian in three pieces: H =
H~+ Hz + H«, where H describes the contacts, Hz
is the tunneling coupling between contacts and the in-
teracting region, and H„„modelsthe interacting cen-
tral region, respectively. Below we discuss each of these
terms.

Contacts, H,

Guided by the typical experimental geometry in which
the leads rapidly broaden into metallic contacts, we view
electrons in the leads as noninteracting except for an
overall self-consistent potential. Physically, applying a
time-dependent bias between the source and drain con-
tacts corresponds to accumulating or depleting charge
to form a dipole around the central region. The re-
sulting electrostatic-potential difference means that the
single-particle energies become time dependent:
eg (t) = 2& + b, (t) [here a labels the channel in the
left (L) or right (B) lead]. The occupation of each state
kn, however, remains unchanged. The occupation, for
each contact, is determined by an equilibrium distribu-
tion function established in the distant past, before the
time-dependence or tunneling matrix elements are turned
on. Thus, the contact Hamiltonian is

Hc = ) eIen(t)cr, ~cr,n ~
f

k,a&L,R

and the exact time-dependent Green functions in the
leads for the uncoupled system are

t
= pi8(+t p t') exp i dt~eI, (tg)—

tl

One should note that our model for g difFers from the
choice made in the recent study of Chen and Ting. ~5 The
difFerence does not afFect calculations carried out to lin-
ear response in the ac drive, but is signi6cant in nonlinear
response. Speci6cally, Chen and Ting allow the electro-
chemical potential in the distribution function f to vary
with time: pI, —pR = e[V + U(t)], where U(t) is the ac

The coupling between the leads and the central (inter-
acting) region can be modified with time dependent gate
voltages, as is the case in single-electron pumps. The
precise functional form of the time dependence is deter-
mined by the detailed geometry and by the self-consistent
response of charge in the contacts to external driving.
%e assume that these parameters are known, and simply
write

Hz = ) [Vj, „(t)c&t d„+H.c.] .
k,aqL, R

Here (dt) and (d„)form a complete orthonormal set of
single-electron creation and annihilation operators in the
interacting region.

8. The cental-mgion Hamiltonian H

The form chosen for H„„in the central interacting re-
gion depends on geometry and on the physical behavior
being investigated. Our results relating the current to
local properties, such as densities of states and Green
functions, are valid generally. To make the results more
concrete, we will discuss two particular examples in de-
tail. In the 6rst, the central region is taken to consist of
noninteracting, but time-dependent levels,

(4)

Here d~ (d ) creates (destroys) an electron in state
m. The choice (4) represents a simple model for time-
dependent resonant tunneling. Below we shall present
general results for an arbitrary number of levels, and an-
alyze the case of a single level in detail. The latter is
interesting both as an exactly solvable example, and. for
predictions of coherence efFects in time-dependent exper-
iments.
The second example we will discuss is resonant tunnel-

ing with electron-phonon interaction,

H;,'„P"= mod d+ d d ) M~[at + a ~] .

In the above, the 6rst term represents a single site,
while the second term represents the interaction of an
electron on the site with phonons: at(a ) creates (de-
stroys) a phonon in mode q, and Mz is the interaction
matrix element. The full Hamiltonian of the system
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must also include the free-phonon contribution Hph,
hcuzataz. This example, while not exactly solvable,

is helpful to show how interactions in8uence the current.
Furthermore, we can directly compare to previous time-
independent results using (5) to demonstrate the power
of the present formalism.

Gee (tt', ) = ) fdt, (te' (te)

x [G"„(t,t, )g~ (t„t')
+G.' (t, t )g'. (t t')] (12)

IV. TIME-DEPENDENT CURRENT AND
KELDYSH GREEN FUNCTIONS

A. General expression for the current

where the Green functions g+ for the leads are defined
in (2) above. Combining (2), (10), and (12), yields

28
JL, (t) = ——Im ) V& „(t) dt,

k»a&L —OO

The current kom the left contact through the left bar-
rier to the central region can be calculated Rom the time
evolution of the occupation number operator of the left
contact:

» f» ~4& tt(m& )2Vre

x[G (t'„ti)fe,(ee )+Ge (tt, )]I . , (13)

Jl, (t) = —e(Ng) = ——([H, NI, ]),
where Nl, = p& &Lcf, cg and H =H, +HT +H„„.
Since 0, and H„„commutewith Nl. , one readily finds

The discrete sum over k in P& can be expressed in terms
of densities of states in the leads: J'dip (c). Then it is
useful to define

).p-()V-, ( t)V;, ( t)
k, exp L

Now define two Green functions

t
x exp i dt24 (e, t2)

C1

(14)

G~ „(t,t')=—i(c'„(t')d„(t)),
, (' ')= i(d (t )c (t)) .

Using G& „(t,t) = —G„&(t, t), and inserting the
time labels, the current can be expressed as

Jl, (t) =—Re ) Vs, (t)G„/, (t, )
2e

k, n&L
(10)

G e(ee') = ) f de,„G (e, ;e,)„
XVf ~ ~(ry)gg»»(T) t T )

Here G (+, 7q) is the contour-ordered Green function
for the central region, and the 7 variables are now defined
on the contour of Fi.g. 2. Note that the time dependence
of the tunneling matrix elements and single-particle en-
ergies has broken the time-translational invariance. The
analytic continuation rules (A3) of Appendix A can now
be applied, and we Gnd

One next needs an expression for G~& (t, t') For the.
present case, with noninteracting leads, a general rela-
tion for the contour-ordered Green function G„),(7, v')
can be derived rather easily (either with the equation-
of-motion technique, or by a direct expansion of the S
matrix; the details are given in Appendix B), and the
result is

where Vj, „=V „(ef,). In terms of this generalized
linewidth function (14), the general expression for the
current is

t
Je(t) = —— dt, —ImT»{e "(e e)re(e;tt, t)

2m

x[G (tt, ) + fe(e,)G (h)]t) . " (15)

Here the boldface notation indicates that the level-width
function F and the central-region Green functions G
are matrices in the central-region indeces m, n. An anal-
ogous formula applies for J~(t), the current fiowing into
the central region through the right barrier.
This is the central formal result of this work, and the

remainder of this paper is devoted to the analysis and
evaluation of Eq. (15). The current is expressed in terms
of local quantities: Green functions of the central region.
The first term in Eq. (15), which is proportional to the
lesser function G+, suggests an interpretation as the out-
tunneling rate [recalling Im G+ (t, t) = N(t)]. Likewise,
the second term, which is proportional to the occupation
in the leads and to the density of states in the central
region, can be associated to the in-tunneling rate. How-
ever, one should bear in mind that all Green functions in
Eq. (15) are to be calculated in the presence of tunnel-
ing. Thus, G+ will depend on the occupation in the leads.
Furthermore, in the presence of interactions G" will de-
pend on the central-region occupation. Consequently, the
current can be a nonlinear function of the occupation fac-
tors. This issue has recently been discussed also by other
authors.


